Subdivisions of graphs: A generalization of paths and cycles
Ch. Sobhan Babu, Ajit A. Diwan
Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

Abstract
One of the basic results in graph theory is Dirac’s theorem, that every graph of order $n \geq 3$ and minimum degree $\geq n/2$ is Hamiltonian. This may be restated as: if a graph of order n and minimum degree $\geq n/2$ contains a cycle C then it contains a spanning cycle, which is just a spanning subdivision of C. We show that the same conclusion is true if instead of C, we choose any graph H such that every connected component of H is non-trivial and contains at most one cycle. The degree bound can be improved to $(n - t)/2$ if H has t components that are trees.

We attempt a similar generalization of the Corrádi–Hajnal theorem that every graph of order $\geq 3k$ and minimum degree $\geq 2k$ contains k disjoint cycles. Again, this may be restated as: every graph of order $\geq 3k$ and minimum degree $\geq 2k$ contains a subdivision of kK_3. We show that if H is any graph of order n with k components, each of which is a cycle or a non-trivial tree, then every graph of order $\geq n$ and minimum degree $\geq n - k$ contains a subdivision of H.

Keywords: Spanning subdivision; Minimum degree condition; Unicyclic graphs

1. Introduction
The study of paths and cycles in a graph is an important topic in graph theory with many fundamental results and extensive literature. An excellent survey of this literature may be found in [1]. In this paper, we attempt to generalize some of these results by viewing a path as a subdivision of K_2 and a cycle as a subdivision of K_3. A subdivision of a graph G is a graph obtained from G by replacing some of the edges of G by internally vertex-disjoint paths.

One of the basic results on paths and cycles is Dirac’s theorem [6] that every graph of order $n \geq 3$ and minimum degree $\geq n/2$ is Hamiltonian. This result has been generalized in several ways, some of which may be found in [1]. We consider another generalization in terms of subdivisions of graphs.

Dirac’s theorem may be restated as: if a graph G of order n and minimum degree $\geq n/2$ contains a cycle C, then it contains a spanning cycle, which is just a spanning subdivision of C. We show that the same conclusion is true, if instead of the cycle C, we consider any graph H such that every connected component of H is non-trivial and contains at most one cycle. In particular, if G contains k disjoint cycles, then G has a 2-factor with exactly k components. This special case has already been proved by Brandt et al. [4], with the weaker assumption that the sum of degrees of any two non-adjacent vertices in G is $\geq n$. However, our result applies to graphs whose components may be trees or arbitrary graphs with exactly one cycle. The degree bound can be improved to $(n - t)/2$ where t is the number of tree components of H.
Another fundamental result on cycles in graphs, due to Corrádi and Hajnal [5], is that every graph of order \(\geq 3k \) and minimum degree \(\geq 2k \) contains \(k \) disjoint cycles. Enomoto [7] gave a simpler proof of the same result, with a weaker assumption that the sum of degrees of any two non-adjacent vertices is \(\geq 4k - 1 \). On the other hand, Brandt [3] showed that if \(H \) is any forest of order \(n \) with \(k \) components, then any graph of order \(\geq n \) and minimum degree \(\geq n - k \) contains \(H \). Schuster [8] combined both results and showed that if \(H \) is any forest of order \(n \) with \(m \) non-trivial components, and \(G \) is any graph of order \(\geq n + 3k \) and minimum degree \(\geq n - m + 2k \), then \(G \) contains \(H \) and \(k \) disjoint cycles that are also disjoint from \(H \).

We can view these results in terms of subdivisions of graphs. The Corrádi–Hajnal theorem may be restated as: if \(H \) is a graph containing \(k \) components, each of which is a 3-cycle, and \(G \) is any graph of order \(\geq |H| \) and minimum degree \(\geq |H| - k \), then \(G \) contains a subdivision of \(H \). Again, we show that the same conclusion is true if \(H \) is any graph, each of whose components is either a cycle or a non-trivial tree. Further, we show that \(G \) contains a subdivision of \(H \) such that only edges of \(H \) contained in a cycle are replaced by paths. We call such a subdivision a cyclic subdivision of \(H \). Thus our result generalizes Schuster’s since edges of \(H \) contained in a tree component are not subdivided in a cyclic subdivision of \(H \). Our proof follows that of Enomoto [7] and is simpler than Schuster’s.

All graphs considered are simple and finite. All terms that are not defined are standard and may be found in [2], for example. We say that a graph \(G \) contains a graph \(H \) if there is a subgraph of \(G \) isomorphic to \(H \). If \(G \) contains \(H \), and \(f \) is an isomorphism from \(H \) to a subgraph \(f(H) \) of \(G \), a vertex \(v \) of \(H \) is said to correspond to the vertex \(f(v) \) of \(G \). Similarly, \(G \) contains a (spanning) subdivision of \(H \) if there is a (spanning) subgraph of \(G \) isomorphic to some subdivision of \(H \).

If \(H \) is any subgraph of \(G \) and \(v \) a vertex in \(G \), then \(d(v, H) \) is the number of vertices of \(H \) that are adjacent to \(v \) in \(G \). If \(v \notin V(H) \), \(H + v \) is the subgraph of \(G \) obtained by adding the vertex \(v \) to \(H \) and all edges in \(G \) joining \(v \) to a vertex of \(H \). In all cases, the graph \(H \) will be understood from the context.

If \(G \) is any graph and \(S \) is either a vertex or an edge in \(G \), a subset of vertices or edges, or any subgraph of \(G \), then \(G - S \) is the subgraph of \(G \) obtained by deleting all vertices and edges in \(S \). If \(S \) is a subset of vertices of \(G \) then \(G[S] \) denotes the subgraph of \(G \) induced by \(S \). A bridge is an edge whose removal increases the number of connected components in the graph. A connected graph is said to be unicyclic if it has exactly one cycle. Note that any unicyclic graph is obtained by adding an edge to a tree.

In the next section, we prove the generalization of Dirac’s theorem, while in Section 3 we prove the generalization of Corrádi–Hajnal theorem. We conclude in Section 4 with some remarks indicating further possible generalizations.

2. Hamiltonian cycles

Lemma 2.1. Let \(H \) be any unicyclic graph of order \(k \). Any graph \(G \) with \(\delta(G) \geq k - 1 \) contains a cyclic subdivision of \(H \).

Proof. Let the vertices of \(H \) be enumerated as \(v_1, v_2, \ldots, v_k \) such that \(v_1, v_2, \ldots, v_l \) is the cycle in \(H \) and every vertex \(v_i \), for \(l < i \leq k \), is adjacent to exactly one vertex \(v_j \) with \(j < i \). Since \(\delta(G) \geq k - 1 \geq l - 1 \), \(G \) contains a cycle of length \(\geq l \). Let \(C = u_1, u_2, \ldots, u_m \) be a shortest cycle in \(G \) such that \(m \geq l \). Note that \(d(v, C) < l \) for all vertices \(v \in V(C) \), and \(d(v, C) \leq l \) for all vertices \(v \in V(G) \setminus V(C) \), otherwise we can find a shorter cycle in \(G \) of length \(\geq l \). Now we choose the vertices \(u_{m+1}, \ldots, u_{m+k-l} \) corresponding to the vertices \(v_{l+1}, \ldots, v_k \) to construct a cyclic subdivision of \(H \) in \(G \). If \(v_i \), for \(l < i \leq k \), is adjacent to \(v_j \) with \(j < i \), choose \(u_{m+i-1} \) to be a vertex adjacent to \(u_{m+j-l} \) that is different from \(u_r \), for \(1 \leq r < m + i - l \). Such a vertex must exist since \(u_{m+j-l} \) is adjacent to at most \(i - 2 \leq k - 2 \) vertices in \(\{u_1, u_2, \ldots, u_{m+i-l-1}\} \). This gives the cyclic subdivision of \(H \) in \(G \). \(\square \)

Theorem 2.1. Let \(H \) be a graph, contained in a graph \(G \), such that every connected component of \(H \) is either a non-trivial tree or unicyclic. Let \(t \) be the number of tree components of \(H \). If \(|G| = n \) and \(\delta(G) \geq (n - t)/2 \) then \(G \) contains a spanning subdivision of \(H \).

Proof. Since \(H \) is contained in \(G \), \(G \) contains a subdivision of \(H \). Let \(H^s \) be a subgraph of \(G \) isomorphic to some subdivision of \(H \) such that \(|H^s| \) is maximum. We will assume that \(H^s \) is not a spanning subgraph of \(G \), derive
various properties of H^s, and show that we can find a larger subdivision of H in G, thus contradicting the maximality of $|H^s|$.

Let $|H^s| = n^s < n$ and let $G^s = G - H^s$. No vertex in G^s can be adjacent to any leaf vertex of H^s, otherwise G contains a subdivision of H of order $> n^s$. Similarly, no vertex in G^s can be adjacent to both endpoints of any edge in H^s. So, for any vertex v in G^s, $d(v, H^s) < |H^s|/2$ for any unicyclic component H^s_j of H^s and $d(v, H^s) < (|H^s_j| - 1)/2$ for any tree component H^s_j of H^s.

Claim 2.1. The vertices of H^s that have a neighbour in G^s must have degree 2 in H^s and must be contained in a cycle of H^s.

Proof. Suppose there exists a vertex x in a component of H^s, say H^s_1, such that it is adjacent to a vertex p in G^s, and either it has degree ≥ 3 in H^s_1 or it is not contained in the cycle of H^s_1. At least one edge e in H^s_1, incident to x, must be a bridge. Let y be the other end of e. At least one component of $H^s_1 - e$ is a tree and we choose x and e such that the order of the smallest tree component T in $H^s_1 - e$ is as small as possible. No vertex of T can be adjacent to a vertex in G^s, otherwise T is non-trivial and we can choose a vertex and an edge in T as x and e. This implies that y is in T. Let $|H^s_1| = n_1$ and $|T| = t_1$.

For any vertex v in G^s, if H^s_1 is a tree then $d(v, H^s_1) \leq (n_1 - t_1)/2$ and if H^s_1 is unicyclic then $d(v, H^s_1) \leq (n_1 - t_1 + 1)/2$. In either case, $d(v, H^s) \leq (n^s - t_1 - t + 1)/2$. This implies that $\delta(G^s) \geq n_1$, which implies that G^s contains a subdivision of H^s_1 of order $> n_1$. Replacing H^s_1 by this tree in H^s gives a subdivision of H in G of order $> n^s$, a contradiction. \Box

Claim 2.2. If the number of tree components of H is larger than zero (i.e. $t > 0$) then H^s is a spanning subdivision of H in G.

Proof. Suppose that H^s_1 is a tree component of H^s with $|H^s_1| = n_1 > 1$. No vertex of G^s can be adjacent to any vertex in H^s_1, by Claim 2.1. Thus $d(v, H^s) \leq (n^s - n_1 - (t - 1))/2$ for every vertex v in G^s and therefore $\delta(G) \geq (n - n^s) + n_1 - 1)/2$. Hence $\delta(G) \geq n_1$, which implies that G^s contains a subdivision of H^s_1 of order $> n_1$. Replacing H^s_1 by this tree in H^s gives a subdivision of H in G of order $> n^s$, a contradiction. \Box

Since $d(v, H^s) \leq (n^s)/2$ for any vertex v in G^s, by Claim 2.2 we may assume that $\delta(G) \geq \frac{n}{2}$, so $\delta(G^s) \geq |G^s|/2$. This implies that $|G^s| > 1$ and G^s has a Hamiltonian path. For any edge uv in H^s, at least one of u, v has no neighbour in G^s, otherwise we can replace the edge by a path of length > 1, with all internal vertices in G^s, to get a larger subdivision of H in G. Since $\delta(G) \geq n/2$, either u or v has $\geq n/2$ neighbours in H^s. Therefore $n^s \geq n/2 + 1$, $|G^s| \leq n/2 - 1$ and every vertex in G^s has at least two neighbours in H^s.

Claim 2.3. $\delta(G^s) \geq (|G^s| + 2)/2$.

Proof. Suppose there is a vertex v in G^s such that $d(v, G^s) \leq (|G^s| + 1)/2$. Then $d(v, H^s) \geq (n^s - 1)/2$, which implies that $d(v, H^s_1) = (|H^s_1|)/2$ for all components of H^s except perhaps for one, say H^s_1, and $d(v, H^s_1) \geq (|H^s_1| - 1)/2$. Then, by Claim 2.1, every component apart from H^s_1 is an even cycle and v is adjacent to every other vertex in the cycle. H^s_1 is a unicyclic graph with at most one vertex not contained in the cycle. Note that if $|H^s_1|$ is even then H^s_1 must also be an even cycle.

Let u be any neighbour of v in G^s. If u has a neighbour y in a component of H^s that is an even cycle, then since v is adjacent to every other vertex of the cycle, there exists a neighbour $x \neq y$ of v at distance at most 2 from y in the cycle. Replacing the path of length at most 2 between x and y in the cycle by the path x, v, u, y gives a larger subdivision of H in G.

If u has no such neighbour, then $|H^s_1|$ must be odd and u has all its neighbours in H^s in the component H^s_1. Since u has at least two neighbours in H^s, $|H^s_1| > 3$ otherwise u is adjacent to both endpoints of an edge in H^s_1. H^s_1 contains exactly one pair of adjacent vertices p, q such that v is not adjacent to both p and q. $H^s_1 - \{p, q\}$ is a path of odd order such that v is adjacent to every other vertex in the path including the endpoints of the path. Since u cannot be adjacent to both p and q, u has a neighbour y in $H^s_1 - \{p, q\}$, and there exists a neighbour $x \neq y$ of v in $H^s_1 - \{p, q\}$ at distance
at most 2 from y. Replacing the path of length at most 2 between x and y in $H_1 - \{p, q\}$ by the path x, v, u, y gives a larger subdivision of H in G.

Therefore $d(v, H^s) \leq (n^s - 2)/2$ for every vertex v in G^s and hence $\delta(G^s) \geq (|G^s| + 2)/2$. □

Claim 2.4. There exist two distinct vertices x, y in a component of H^s such that they are, respectively, adjacent to two distinct vertices p, q in G^s.

Proof. Let p be a vertex of minimum degree in G^s and q be any other vertex in G^s. Let y be a neighbour of q in a component, say H_1^s, of H^s and let $|H_1^s| = n_1$. If p has at least 2 neighbours in H_1^s, we choose x to be a neighbour of p in H_1^s that is different from y. If p has at most one neighbour in H_1^s, then $d(p, H^s) \leq (n^s - n_1)/2 + 1$, and

\[d(p, G^s) = \delta(G^s) \geq (|G^s| + n_1 - 2)/2.\]

Since $|G^s| > \delta(G^s)$, we get $\delta(G^s) \geq n_1 - 1$. If $\delta(G^s) \geq n_1$, then G^s contains a subdivision of H_1^s of order $\geq n_1$, by Lemma 2.1. Replacing H_1^s by this subgraph in H^s, we get a larger subdivision of H in G. Therefore $\delta(G^s) = n_1 - 1$, $|G^s| = n_1$ and $(n^s - n_1)/2 \geq d(p, H^s - H_1^s) \geq n/2 - n_1 = (n^s - n_1)/2$. Hence, equality holds and every component of H^s other than H_1^s is an even cycle and p is adjacent to every other vertex of these cycles. Also p is adjacent to exactly one vertex in H_1^s.

If q has at least two neighbours in H_1^s, we choose x to be the neighbour of p in H_1^s and y to be the neighbour of q different from x. If q has only one neighbour in H_1^s, then since $d(q, H^s) > 1$, we choose y to be a neighbour of q in a component of H^s other than H_1^s, say H_2^s. Since p has at least 2 neighbours in every component of H^s other than H_1^s, we can choose x to be a neighbour of p in H_2^s that is different from y. Thus in all cases we can find two distinct vertices x, y in some component of H^s that are, respectively, adjacent to distinct vertices p, q in G^s. □

Choose vertices x, y satisfying Claim 2.4 such that the length of a shortest path between x and y in H_1^s is minimum. Let p, q be the vertices in G^s adjacent to x, y, respectively, and let H_1^s be the component of H^s containing x, y. Let x, v_1, \ldots, v_l, y be a shortest path between x and y in H_1^s. Note that $l \geq 1$ and none of the vertices $v_1, 1 \leq i \leq l$ can have a neighbour in G^s, otherwise it contradicts the choice of the vertices x, y. Let T_1 and T_2 be the components of $H_1^s - \{xv_1, v_lv\}$ and assume, without loss of generality, that $v_1 \in V(T_1)$. Both T_1 and T_2 are trees by Claim 2.1 and let $|T_i| = t_i$, for $i = 1, 2$.

Claim 2.5. $\delta(G^s) \geq t_1 + 1$.

Proof. Let v be a vertex of minimum degree in G^s. No vertex in G^s can be adjacent to any vertex in T_1. Therefore,

\[d(v, H^s) \leq (n^s - t_1 + 1)/2 \quad \text{and} \quad d(v, G^s) = \delta(G^s) \geq (n - n^s + t_1 - 1)/2,\]

which implies $\delta(G^s) \geq t_1$. If $\delta(G^s) = t_1$, then $n - n^s = t_1 + 1$. Since $d(v, H^s - H_1^s) \leq (n^s - t_1 + t_2)/2$, $d(v, H_1^s) = d(v, T_1) \geq (n - n^s + t_1 + t_2)/2 - t_1 = (t_2 + t_1)/2$.

This implies that T_2 is a path of odd order between x and y and v is adjacent to every other vertex in the path starting from x. Without loss of generality, $v \neq p$, and let z be the vertex at distance 2 from x in T_2. Replace the path of length two in T_2 from x to z by a path from p to v in G^s, and add the edges xp, vz. This gives a larger subdivision of H in G. □

We now complete the proof of Theorem 2.1. Let the vertices of T_1 be enumerated as $v_1, v_2, \ldots, v_{t_1}$ such that v_i is adjacent to exactly one vertex v_j with $j < i$ for all $i > 1$. Note that v_1, v_2, \ldots, v_l are the vertices of T_1 in the path from x to y in H_1^s. By Claim 2.3, $\delta(G^s) \geq (|G^s| + 2)/2$ and hence G^s is pancutected [9], that is, there is a path of length i between any two vertices in G^s, for all $2 \leq i < |G^s|$. By Claim 2.5, $|G^s| > t_1 + 1 > l + 1$ and hence there is a path $p, u_1, u_2, \ldots, u_l, q$ of length $l + 1$ between p and q in G^s.

We will show that there exists a subgraph of $G^s - \{p, q\}$ isomorphic to T_1 such that vertex v_i corresponds to vertex u_i for $1 \leq i \leq l$. If vertex v_i, for $l < i \leq t_1$, is adjacent to the vertex v_j with $j < i$ in T_1, we choose the corresponding vertex u_i in G^s to be a neighbour of u_j in G^s that is different from p, q and u_m, for $1 \leq m < i$. We can always find such a vertex since $\delta(G^s) \geq t_1 + 1$ by Claim 2.5, and u_j has at most $i \leq t_1$ neighbours in $\{p, q, u_1, u_2, \ldots, u_{i-1}\}$. Replace the tree T_1 by this tree in H_1^s and add the edges xp, ut_1, u_1q and qy. This gives a subdivision of H in G of order $> n^s$, a contradiction.

Thus the largest subdivision of H contained in G must be a spanning subdivision. This completes the proof of the theorem. □
3. Disjoint cycles

Theorem 3.1. Let H be any graph of order n with k connected components, each of which is either a non-trivial tree or a cycle. Let G be any graph such that $|G| \geq n$ and $\delta(G) \geq n - k$. Then G contains a cyclic subdivision of H.

Proof. Suppose there exists a counterexample. Choose graphs H and G satisfying the hypothesis of the theorem but G does not contain a cyclic subdivision of H. Choose H such that the number of edges in H is minimum. If H is a forest then G contains H, by the theorem of Brandt [3]. Therefore at least one component, say H_1, of H is a cycle. Let e be any edge in H_1. Then $H - e$ contains fewer edges than H and by the minimality of H, G contains a cyclic subdivision of $H - e$. This implies that there is a subgraph H^* of G isomorphic to a cyclic subdivision of $H - e$. Let $G^* = G - H^*$ be the component of H^* isomorphic to a cyclic subdivision of H_j, for all $j \neq i$. Let $\beta(H^*) = \sum_{j \neq i} |E(G[V(H^*_j)])|$. Choose H^* such that

1. $|H^*|$ is as small as possible.
2. Subject to condition (1), $\beta(H^*)$ is as large as possible.
3. Subject to conditions (1) and (2), the length of a longest path in G^* is as large as possible.

From the previous discussion, any cycle component of H is a missing component and H contains at least one such component. Before proving the main theorem, we prove some properties of missing components.

Lemma 3.1. Let H_i be a missing component of H and let H^*_i be any component of H^*. Then for any vertex v in G^*, $d(v, H^*_i) \leq |H_j|$ and for every vertex u in H^*_j, $d(u, H^*_j) < |H_j|$. Further, if $d(v, H^*_j) = |H_j|$, then $G[V(H^*_j)]$ is a clique of order $|H_j|$.

Proof. Suppose $|H^*_j| = |H_j|$ and $d(v, H^*_j) = |H_j|$. Since v is adjacent to all vertices in H^*_j, we can replace any vertex in H^*_j by v. Since $\beta(H^*)$ is maximum, $G[V(H^*_j)]$ must be a clique of order $|H_j|$.

Suppose H^*_j is a cycle of length $> |H_j|$. If $d(v, H^*_j) \geq |H_j|$, then $H^*_j + v$ contains a cycle of length $< |H^*_j|$ but $\geq |H_j|$. This contradicts the choice of H^*. The same argument holds if $d(u, H^*_j) \geq |H_j|$. ⊙

Lemma 3.2. Let H_i be a missing component of H. Let u, v be any two vertices in G^* such that $d(u, G^*) + d(v, G^*) < 2(|H_i| - 1)$. Then there exists a component H^*_j of H^* such that $d(u, H^*_j) + d(v, H^*_j) \geq 2|H_j| - 1$. Further, $G[V(H^*_j)]$ is a clique of order $|H_j|$ and there exists a neighbour w of v in H^*_j such that $G[V(H^*_j)] + u - w$ is a clique of order $|H_j|$.

Proof. Suppose there is no such component H^*_j. Then $d(u, H^*) + d(v, H^*) \leq \sum_{j \neq i} 2(|H_j| - 1) = 2(n - |H_i| - k + 1)$. Therefore $d(u, G) + d(v, G) < 2(n - |H_i| - k + 1) + 2(|H_i| - 1) = 2(n - k)$, contradicting $\delta(G) \geq n - k$.

Since at least one of u, v has $|H_j|$ neighbours in H^*_j, $G[V(H^*_j)]$ is a clique of order $|H_j|$, by Lemma 3.1. Since $|H_j| > 1$, both u and v have at least one neighbour in H^*_j.

If $d(u, H^*_j) = |H_j|$, we can choose w to be any neighbour of v. If $d(u, H^*_j) = |H_j| - 1$, then $d(v, H^*_j) = |H_j|$ and we can choose w to be the vertex in H^*_j that is not adjacent to u. Note that $G[V(H^*_j)] + u - w$ is a clique of order $|H_j|$. ⊙

Lemma 3.3. K_2 cannot be a missing component of H.

Proof. If K_2 is a missing component, then G^* contains at least two isolated vertices u, v. By Lemma 3.2, there exists a component H^*_j of H^* and a neighbour w of v in H^*_j such that $G[V(H^*_j)] + u - w$ is a clique of order $|H_j|$. The edge uw forms a K_2 and thus G contains a cyclic subdivision of H, a contradiction. ⊙

Lemma 3.4. Let H_i be a missing component of H that is a cycle. Then G^* has a Hamiltonian path.
Proof. Let P be a longest path in G^s and u, v be the endpoints of P. Suppose there is a vertex x in $G^s - P$. If $d(v, G^s) \geq |H_i| - 1$ then there is a cycle of length $\geq |H_i|$ in G^s and hence G contains a cyclic subdivision of H, a contradiction. If $d(x, G^s) < |H_i|$, by Lemma 3.2, there exists a neighbour w of v in some component H_j of G^s such that $G[V(H^*_j)] + x - w$ is a clique of order $|H_j|$. This contradicts the choice of H^* since $G^s + w - x$ contains a path longer than P.

Therefore $d(x, G^s) \geq |H_i|$ for all vertices x in $G^s - P$. If $d(x, P) \geq |H_i| - 1$, G^s contains a cycle of length $\geq |H_i|$, and G contains a cyclic subdivision of H, a contradiction. Therefore $\delta(G^s - P) \geq 2$. Let Q be a longest path in $G^s - P$ and let x and y be the endpoints of Q. We must have $d(x, Q), d(y, Q) < |H_i| - 1$ and since $d(x, G^s), d(y, G^s) \geq |H_i|$, we have $d(x, P), d(y, P) \geq 2$. Let p be a neighbour of x or y in P that is nearest to v in P. Without loss of generality, p is a neighbour of x. Let q be the neighbour of y in P that is farthest from v in P. Since $d(y, G^s) \geq |H_i|$ and $d(y, Q) \leq |Q|$, we have $d(y, P) \geq |H_i| - |Q| + 1$, and the subpath of P between p and q contains at least $|H_i| - |Q| + 1$ vertices. This path, together with Q and the edges xp, yq forms a cycle of length $\geq |H_i|$ in G^s, and G contains a cyclic subdivision of H, a contradiction. Hence P contains all the vertices of G^s and is a Hamiltonian path. □

We now come to the proof of the main theorem. We consider two different cases, depending on whether a missing component has order 3 or order ≥ 4. Note that if a missing component has order 3, it is sufficient to consider the case when it is K_3, since $K_{1,2}$ is a subgraph of any cycle.

Case 1: Suppose there exists a missing component H_i of H that is a cycle of length 3. This part of the proof is essentially the same as Enomoto’s [7]. By Lemma 3.4, G^s contains a Hamiltonian path. Note that in this case G^s itself must be a path of length ≥ 2, since if it contains a cycle, G contains a cyclic subdivision of H. Let u, v be the endpoints of the Hamiltonian path. Both u and v have degree 1 in G^s, and by Lemmas 3.1 and 3.2, there exists a component H^*_j of H^s such that $d(u, H^*_j) \leq |H_j|, d(v, H^*_j) \leq |H_j|$ and $d(u, H^*_j) + d(v, H^*_j) \geq 2|H_j| - 1$. Further, Lemma 3.2 implies that H^*_j is a clique of order $|H_j|$. We may assume, without loss of generality, that $d(v, H^*_j) = |H_j|$ and $d(u, H^*_j) \geq |H_j| - 1$. Let x be a vertex of H^*_j such that u is adjacent to all vertices in $H^*_j - x$.

Claim 3.1. No vertex of G^s other than u, v is adjacent to any vertex in H^*_j.

Proof. If a vertex w in G^s, different from u and v, is adjacent to x, then $H_j^* + u - x$ contains H_j and $G^s + x - u$ contains a cycle, and therefore G contains a cyclic subdivision of H. Similarly, if w is adjacent to a vertex $y \neq x$ in H^*_j, then $G^s + y - v$ contains a cycle and $H^*_j + v - y$ contains H_j, contradicting the fact that G does not contain a cyclic subdivision of H. □

Let w be any vertex in G^s other than u, v. By Claim 3.1, $d(w, G^s) + d(w, H^*_j) = 2 < |H_i| + |H_j| - 2$, since $|H_i| = 3$ and $|H_j| \geq 2$. Also, for all $z \in \{u, v, x\}, d(z, G^s) + d(z, H^*_j) \leq |H_j| + 1 = |H_i| + |H_j| - 2$.

Claim 3.2. There exists a component H^*_m of $H^s - H^*_j$ such that $2(d(w, H^*_m) + d(x, H^*_m)) + d(u, H^*_m) + d(v, H^*_m) \geq 6|H_m| - 5$.

Proof. If there is no such component, then $2(d(w, H^s - H^*_j) + d(x, H^s - H^*_j)) + d(u, H^s - H^*_j) + d(v, H^s - H^*_j) \leq 6(n - |H_i| - |H_j| - k + 2)$. Therefore $2(d(w, G) + d(x, G)) + d(u, G) + d(v, G) < 6(n - |H_i| - |H_j| - k + 2) + 6(|H_i| + |H_j| - 2) = 6(n - k)$, contradicting $\delta(G) \geq n - k$. Hence there exists such a component H^*_m. □

Claim 3.3. $G[V(H^*_m)]$ is a clique of order $|H_m| > 2$.

Proof. By Claim 3.2, either $d(w, H^*_m) + d(x, H^*_m) \geq 2|H_m| - 1$ or $d(u, H^*_m) + d(v, H^*_m) \geq 2|H_m| - 1$. This implies that at least one of u, v, w, x is adjacent to $|H_m|$ vertices in H^*_m. If any vertex $z \in \{u, v, w\}$ is adjacent to $|H_m|$ vertices in H^*_m, $G[V(H^*_m)]$ is a clique of order $|H_m|$, by Lemma 3.1. Further, $H^*_m + z$ contains a 3-cycle and therefore G contains a cyclic subdivision of $H - H_m$ of order $\leq |G| - |H_m|$. This implies that H_m is a missing component of H.

Similarly, if x is adjacent to $|H_m|$ vertices in H^*_m, since $G[V(H^*_j)] + u - x$ is a clique of order $|H_j|$ we can apply the same argument as above after interchanging the vertices u and x. Since H_m is a missing component of H, by Lemma 3.3, H_m is not a K_2. Thus $G[V(H^*_m)]$ is a clique of order $|H_m| > 2$. □
Let H_m^s be the component of H^s satisfying Claims 3.2 and 3.3. By Claim 3.2, either $d(u, H_m^s) + d(v, H_m^s) \geq 2|H_m| - 1$ or $d(w, H_m^s) + d(x, H_m^s) \geq 2|H_m| - 1$. We consider the two cases separately.

Case 1.1: Suppose $d(u, H_m^s) + d(v, H_m^s) \geq 2|H_m| - 1$. Then at least one of u, v, without loss of generality say v, is adjacent to $|H_m|$ vertices in H_m^s. At most one vertex in H_m^s is not adjacent to u. Since $d(w, H_m^s) + d(x, H_m^s) \geq 2|H_m| - 2$ and $|H_m| > 3$, w has a neighbour y in H_m^s. If y is adjacent to u, then $H_m^s + v + y$ contains a cycle. If y is not adjacent to u, then $H_m^s + u - y$ contains H_m and $G^s + y - u$ contains a cycle. In either case, G contains a cyclic subdivision of H, a contradiction.

Case 1.2: Suppose $d(w, H_m^s) + d(x, H_m^s) \geq 2|H_m| - 1$. We consider subcases based on which of the vertices w, x are adjacent to $|H_m|$ vertices in H_m^s.

Case 1.2.1: Suppose $d(x, H_m^s) = |H_m|$ and $d(w, H_m^s) = |H_m| - 1$. Then $d(u, H_m^s) + d(v, H_m^s) \geq 2|H_m| - 3$ and at least one of u, v, without loss of generality v, has $|H_m| - 1$ neighbours in H_m^s. Since $|H_m| > 2$, w and v have a common neighbour y in H_m^s. Then $H_m^s + w - y$ contains H_m and $G^s + w - y$ contains a cycle, hence G contains a cyclic subdivision of H.

Case 1.2.2: If both $d(x, H_m^s), d(w, H_m^s) = |H_m|$ and $d(u, H_m^s) + d(v, H_m^s) \geq 2|H_m| - 5 \geq 1$. Without loss of generality, v has a neighbour y in H_m^s. Then $G^s + v - y$ contains a cycle, $H_m^s + v - x$ contains H_j and $H_m^s + x - y$ contains H_m. Thus G contains a cyclic subdivision of H.

Case 1.3: Suppose $d(x, H_m^s) = |H_m| - 1$ and $d(w, H_m^s) = |H_m|$. Let y be the vertex of H_m^s that is not adjacent to x. Suppose y is adjacent to either u or v, without loss of generality u, then $G^s + y - u$ contains a cycle, $H_j + u - x$ contains H_j and $H_m^s + x - y$ contains H_m. Therefore both $d(u, H_m^s)$ and $d(v, H_m^s)$ are $|H_m| - 1$, and since $d(u, H_m^s) + d(v, H_m^s) \geq 2|H_m| - 3$, u must be adjacent to a vertex $z \neq y$ in H_m^s. Since v is adjacent to all vertices in H_j^s, $G[\{v, x, z\}]$ is a 3-cycle, $H_j^s + u - x$ contains H_j and $H_m^s + w - z$ contains H_m. Thus G contains a cyclic subdivision of H.

This completes the proof for the case when the missing component has order 3.

Case 2: Suppose the missing component H_j of H is a cycle of length > 3. By Lemma 3.4, G^s has a Hamiltonian path. Let u, v be the endpoints of the Hamiltonian path in G^s and let y and x be the neighbours of u and v, respectively, in the path. Note that $x \neq y$ since the path has order $>|H_j|\geq 4$. We have $d(u, G^s), d(v, G^s) < |H_j| - 1$ and $d(x, G^s), d(y, G^s) \leq |H_j| - 1$, otherwise G^s contains a cycle of length $>|H_j|$ and G contains a cyclic subdivision of H.

Claim 3.4. There exists a component H_j^s of H^s such that $d(u, H_j^s) + d(v, H_j^s) + d(x, H_j^s) + d(y, H_j^s) \geq 4|H_j| - 3$. Further, H_j^s is a clique of order $>|H_j|$ and H_j is a missing component of H.

Proof. If there is no such component, then $d(v, H_j^s) + d(u, H_j^s) + d(x, H_j^s) + d(y, H_j^s) \leq 4(n - |H_j| - k + 1)$, which implies $d(v, G) + d(u, G) + d(x, G) + d(y, G) < 4(n - k)$, a contradiction. Since at least one of u, v, x, y is adjacent to at least $|H_j|$ vertices in H_j^s, $G[V(H_j^s)]$ must be a clique of order $>|H_j|$, by Lemma 3.1.

Either u and y or v and x have a common neighbour z in H_j^s, otherwise $2|H_j| \geq 4|H_j| - 3$, a contradiction. Since $G^s + z$ contains a cycle of length $>|H_j|$ excluding either u or v, G contains a cyclic subdivision of $H - H_j$ of order $\leq |G| - |H_j|$. Hence H_j is a missing component of H. □

If the component H_j^s satisfying Claim 3.4 has order ≤ 3, we can apply Case 1 of the proof to this missing component. Suppose $|H_j^s| \geq 4$.

Since $d(u, H_j^s) + d(v, H_j^s) \geq 2|H_j| - 3$, we may assume, without loss of generality, that $d(v, H_j^s) \geq |H_j| - 1$. Vertices u and y have a common neighbour z in H_j^s, since $4|H_j| - 3 > 3|H_j|$. Since $G[V(H_j^s)]$ is a clique and v is adjacent to at least 3 vertices in H_j^s, $G[V(H_j^s)] + v - z$ contains H_j and $G^s + z - v$ contains a cycle of order $> |H_j|$. Thus G contains a cyclic subdivision of H.

Therefore, in all cases, we can find a cyclic subdivision of H in G, contradicting the fact that G and H are a counterexample to the theorem. This completes the proof of the theorem. □

4. Remarks

It is possible to generalize many of these results. The minimum degree condition in Theorem 3.1 can be replaced by an Ore-type condition on the sum of degrees of non-adjacent vertices, as in [4,7]. Further, Theorem 3.1 is true for graphs H containing arbitrary unicicyclic components. These will be presented separately.
Another possible generalization is to consider similar questions for other types of graphs H, perhaps complete graphs. It is not difficult to show that the complete bipartite graph $K_{n/2,n/2}$ does not contain a spanning subdivision of K_5. However, we do not know any other examples. It is possible that for every fixed graph H, there exists an integer $f(H)$ such that every graph of order $n \geq f(H)$ and minimum degree $\geq (n + 1)/2$ contains a spanning subdivision of H.

It would be interesting to see if other results on paths and cycles can be generalized in a similar way.

Acknowledgements

We thank Dhruv Mubayi for his suggestion to consider unicyclic graphs and the referee for many valuable suggestions that helped in improving the presentation.

References