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Abstract- Determining efficient solutions for large scale transportation problems is an 
important task in operations research. In this study, Vogel’s Approximation Method 
(VAM) which is one of well-known transportation methods in the literature was 
investigated to obtain more efficient initial solutions.  A variant of VAM was proposed 
by using total opportunity cost and regarding alternative allocation costs. Computational 
experiments were carried out to evaluate VAM and improved version of VAM (IVAM). 
It was seen that IVAM conspicuously obtains more efficient initial solutions for large 
scale transportation problems. Performance of IVAM over VAM was discussed in terms 
of iteration numbers and CPU times required to reach the optimal solutions. 
 
Keywords- Transportation Problem, Integer Programming, Vogel’s Approximation 
Method, Total Opportunity Cost, Simulation Experiments 
 

1. I�TRODUCTIO� 

 
 The transportation problem is a special kind of the network optimization 
problems. It has the special data structure in solution characterized as a transportation 
graph. Transportation models play an important role in logistics and supply chains.   
The problem basically deals with the determination of a cost plan for transporting a 
single commodity from a number of sources to a number of destinations [16]. The 
purpose is to minimize the cost of shipping goods from one location to another so that 
the needs of each arrival area are met and every shipping location operates within its 
capacity [10]. Network model of the transportation problem is shown in Figure 1 [17]. It 
aims to find the best way to fulfill the demand of n demand points using the capacities 
of m supply points. 
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Figure 1. Network model of the transportation problem 
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In Figure 1, S1-Sm are sources and D1-Dn are destinations. ijc is cost and ijx is number of 

units shipped from supply point i to demand point j then the general linear programming 
representation of a transportation problem is : 
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If total supply equals total demand then the problem is said to be a balanced 
transportation problem. The reader may refer to Wagner [17] and Taha [16] for detailed 
coverage of transportation problem. 
 
Transportation problems can be solved by using general simplex based integer 
programming methods, however it involves time-consuming computations. There are 
specialized algorithms for transportation problem that are much more efficient than the 
simplex algorithm [18].  The basic steps to solve transportation problem are: 
Step 1. Determination the initial feasible solution, 
Step 2. Determination optimal solution using the initial solution. 
 
In this study, basic idea is to get better initial solutions for the transportation problem. 
Therefore, study focused on Step 1 above. Several heuristic methods are available to get 
an initial basic feasible solution. Although some heuristics can find an initial feasible 
solution very quickly, oftentimes the solution they find is not very good in terms of 
minimizing total cost. On the other hand, some heuristics may not find an initial 
solution as quickly, but the solution they find is often very good in terms of minimizing 
total cost [2]. Well-known heuristics methods are North West Corner [4], Best Cell 
Method, Vogel’s Approximation Method (VAM) [11], Shimshak et. al.'s version of 
VAM [14], Goyal's version of VAM [6], Ramakrishnan's version of VAM [9] etc. Kirca 
and Satir [7] developed a heuristic to obtain efficient initial basic feasible solutions, 
called Total Opportunity-cost Method (TOM). Balakrishnan [3] proposed a modified 
version of VAM for unbalanced transportation problems. Gass [5] reviewed various 
methods and discussed on solving the transportation problem. Sharma and Sharma [12] 
proposed a new procedure to solve the dual of the well-known uncapacitated 
transportation problem. Sharma and Prasad [13] proposed heuristic gives significantly 
better solutions than the well-known VAM. This is a best heuristic method than Vogel’s 
to get initial solution to uncapacitated transportation problem. Adlakha and Kowalski 
[1] presented a simple heuristic algorithm for the solution of small fixed-charge 
transportation problems. Mathirajan and Meenakshi [8] were extended TOM using the 
VAM procedure. They coupled VAM with total opportunity cost and achieved very 
efficient initial solutions. 
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In this paper, VAM was improved by using total opportunity cost and regarding 
alternative allocation costs. Mathirajan and Meenakshi [8] applied VAM on the total 
opportunity cost matrix. In addition to this method, improved VAM (IVAM) considers 
highest three penalty costs and calculates alternative allocation costs in VAM 
procedure. Then it selects minimum one of them. 
 
Paper is organized as follows. VAM is summarized and illustrated with solving a 
sample transportation problem in the following section. IVAM is explained in the third 
section. In the fourth section, simulation experiments are given and performance of 
IVAM over VAM is discussed. Results are clarified in fifth section. 
 

 
2. VOGEL’S APPROXIMATIO� METHOD (VAM) 

 

VAM is a heuristic and usually provides a better starting solution than other 
methods. Application of VAM to a given problem does not guarantee that an optimal 
solution will result. However, a very good solution is invariably obtained with 
comparatively little effort [15]. In fact, VAM generally yields an optimum or close to 
optimum starting solution for small sized transportation problems [16].  

 
VAM is based on the concept of penalty cost or regret. A penalty cost is the difference 
between the largest and next largest cell cost in a row or column. VAM allocates as 
much as possible to the minimum cost cell in the row or column with the largest penalty 
cost. Detailed processes of VAM are given below: 

 
 

Step 1: Balance the given transportation problem if either (total supply>total 
demand) or (total supply<total demand) 

Step 2: Determine the penalty cost for each row and column by subtracting the 
lowest cell cost in the row or column from the next lowest cell cost in the 
same row or column. 

Step 3: Select the row or column with the highest penalty cost (breaking ties 
arbitrarily or choosing the lowest-cost cell). 

Step 4: Allocate as much as possible to the feasible cell with the lowest 
transportation cost in the row or column with the highest penalty cost. 

Step 5: Repeat steps 2, 3 and 4 until all requirements have been meet. 
Step 6: Compute total transportation cost for the feasible allocations. 

 
  

An example transportation problem is given in Table 1. In the example matrix size is 
5x5.  S1-S5 are source points and D1-D5 are destination points. Each box in the left of 
the columns represents constant costs (cij) and each empty box in the right of the 
columns represents allocation quantities (xij) which is number of units shipped from 
supply point i to demand point j.  
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Table 1. An example of 5x5 transportation problem 

From/To D1 D2 D3 D4 D5 Supply 

S1 46  74  9  28  99  461 

S2 12  75  6  36  48  277 

S3 35  199  4  5  71  356 

S4 61  81  44  88  9  488 

S5 85  60  14  25  79  393 

Demand 278 60 461 116 1060  

 
 
Initial basic solution for this problem was obtained using VAM and given in Table 2. 
Using the values in Table 2, initial cost was calculated as 68804. 
 

Table 2. Initial solution tableau of VAM 

From/To D1 D2 D3 D4 D5 Supply 

S1 46 1 74 60 9 68 28  99 332 461 

S2 12 277 75  6  36  48  277 

S3 35  199  4  5 116 71 240 356 

S4 61  81  44  88  9 488 488 

S5 85  60  14 393 25  79  393 

Demand 278 60 461 116 1060  

 
 
Optimal solution was achieved using transportation simplex algorithm [4] within five 
iterations and final cost was found as 59356. Optimal solution tableau is given in Table 
3. Solution of proposed method (IVAM) for the same problem is illustrated in the 
following section. 
 

Table 3. Optimal solution tableau 

From/To D1 D2 D3 D4 D5 Supply 

S1 46  74  9 461 28  99  461 

S2 12 277 75  6  36  48  277 

S3 35 1 199  4  5 116 71 239 356 

S4 61  81  44  88  9 488 488 

S5 85  60 60 14  25  79 333 393 

Demand 278 60 461 116 1060  
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3. IMPROVED VAM (IVAM) 

 

VAM was improved by using total opportunity cost (TOC) matrix and regarding 
alternative allocation costs. The TOC matrix is obtained by adding the "row opportunity 
cost matrix" (row opportunity cost matrix: for each row, the smallest cost of that row is 
subtracted from each element of the same row) and the "column opportunity cost 
matrix" (column opportunity cost matrix: for each column of the original transportation 
cost matrix the smallest cost of that column is subtracted from each element of the same 
column) [8]. Proposed algorithm is applied on the TOC matrix and it considers highest 
three penalty costs and calculates alternative allocation costs in VAM procedure. Then 
it selects minimum one of them. Detailed processes are given below: 
 

Step 1: Balance the given transportation problem if either (total supply>total demand) or (total 
supply<total demand). 

Step 2: Obtain the TOC matrix. 
Step 3: Determine the penalty cost for each row and column by subtracting the lowest cell cost 

in the row or column from the next lowest cell cost in the same row or column. 
Step 4: Select the rows or columns with the highest three penalty costs (breaking ties arbitrarily 

or choosing the lowest-cost cell). 
Step 5: Compute three transportation costs for selected three rows or columns in step 4 by 

allocating as much as possible to the feasible cell with the lowest transportation cost.  

Step 6: Select minimum transportation cost of three allocations in step 5 (breaking ties 
arbitrarily or choosing the lowest-cost cell). 

Step 7: Repeat steps 3-6 until all requirements have been meet. 
Step 8: Compute total transportation cost for the feasible allocations using the original 

balanced-transportation cost matrix. 

 
For the transportation problem given in Table 1, initial solution of VAM requires five 
additional iterations to reach the optimal solution.  The problem was resolved using 
IVAM and initial basic solution for this problem is given in Table 4. Initial solution of 
IVAM is the optimal solution of the given example problem without additional 
iterations. Initial cost from Table 4 is 59356 and this also is the optimal value of the 
considered problem. 
 

Table 4. Initial solution tableau of IVAM 
From/To D1 D2 D3 D4 D5 Supply 

S1 46  74  9 461 28  99  461 

S2 12 277 75  6  36  48  277 

S3 35 1 199  4  5 116 71 239 356 

S4 61  81  44  88  9 488 488 

S5 85  60 60 14  25  79 333 393 

Demand 278 60 461 116 1060  

 
This paper focuses on the iteration numbers to the optimal solution and computation 
times of the VAM and improved version IVAM. Simulation experiments of VAM and 
IVAM for different sized transportation problems are presented in the following section. 
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4. SIMULATIO� EXPERIME�TS 

 

For evaluating the performance of the VAM and its variant IVAM, simulation 
experiments were carried out on a 2.13 GHz Intel Core 2 Duo machine with 4096 MB 
RAM. The main goal of the experiment was to evaluate the effectiveness of the initial 
solutions obtained by VAM and IVAM by comparing them with optimal solutions. 
Effectiveness indicates closeness degree which is the lowest iteration number between 
initial solution and the optimal solution. Measures of effectiveness are explained below. 
 
4.1 Measure of effectiveness 

The performances of VAM and IVAM are compared using the following measures: 
Average Iteration (AI): Mean of iteration numbers to obtain optimal solutions using the 
initial solutions of VAM and IVAM over various sized problem instances. 
�umber of best solutions (�BS): A frequency which indicates the number of instances 
VAM and IVAM yielded optimal solution with lower iteration over the total of problem 
instances. NBS does not contain case of equal iteration between VAM and IVAM. 
Computation Time:  The CPU time is represented by three variables: T1, T2 and T3. T1 is 
the time to reach initial solution. T2 is the time to reach optimal solution from initial 
solution and T3 is the total time from the beginning that is sum of T1 and T2. 
 
4.2 Experimental design 

The transportation problems were randomly generated with twelve different sizes (row 
x column): 5x5, 10x10, 10x20, 10x30, 10x40, 20x20, 10x60, 30x30, 10x100, 40x40, 
50x50 and 100x100, respectively. The performance of the VAM and IVAM were 
compared over 1000 problem instances for each different sized problem. Total problem 
instances were 12000.  Costs were generated as uniformly discrete in the range of 
(0,1000) and supplies and demands were generated in the range of (0,100) uniformly 
discrete. All the 12000 problem instances were balanced. The experimental design was 
implemented using ANSI C. 
 
4.3 Comparison of VAM and IVAM 

The experiments and the analysis of the experimental data are presented in this section. 
For each problem instance, a linear programming model was implemented and solved. 
In order to get a linear programming model for each problem instance, a matrix 
generator procedure and VAM and IVAM were implemented using ANSI C. For each 
problem instance, the heuristic solutions were obtained using VAM and IVAM. The 
performance of the VAM and IVAM in comparison with the optimal solution is 
presented below. 
 
Performance measure - AI: AI and other statistics for the iteration numbers of VAM 
and IVAM over various sized problems are given in Table 5. For each different sized 
problem, statistics are calculated using 1000 problem instances. From Table 5, it is seen 
that AI of VAM is better than IVAM for small sized transportation problems but it 
deteriorates when problem size increases. IVAM yields more efficient results than 
VAM for large sized problems. 
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Table 5. Statistical indicators for the iteration numbers of VAM and IVAM 

AI Standard Error Median Range Problem 

size VAM IVAM VAM IVAM VAM IVAM VAM IVAM 

5x5 2.198 2.676 0.034 0.035 2 3 5 5 

10x10 6.155 6.359 0.069 0.066 6 6 14 14 

10x20 10.063 9.913 0.094 0.092 10 10 18 18 

10x30 13.264 12.951 0.120 0.116 13 13 24 27 

10x40 17.761 17.495 0.141 0.144 17 17 28 30 

20x20 17.007 16.337 0.146 0.135 17 16 31 31 

10x60 22.869 22.118 0.173 0.166 23 22 36 32 

30x30 29.912 28.363 0.210 0.200 30 28 56 39 

10x100 32.561 31.139 0.221 0.220 32 31 40 43 

40x40 44.801 42.603 0.291 0.269 44 42 55 59 

50x50 60.505 57.651 0.346 0.328 60 57 74 60 

100x100 158.890 149.53 0.657 0.610 158 149 137 112 

 
Both parametric and nonparametric statistical tests were performed using MINITAB-15 
Statistical Package for comparing iteration numbers of VAM and IVAM. Firstly, 
Student's t-test was used for testing the mean of differences of the iteration numbers 
between VAM and IVAM based on 1000 samples. Secondly Wilcoxon test was used for 
testing the median of differences of the iteration numbers between VAM and IVAM on 
the same samples.  The formal test is Ho: No statistically significant difference in the 
amount of mean (median) to complete the transportation optimization between the 
VAM and IVAM initial methods. Table 6 gives a summary of the results of two-sided 
statistical tests.  

Table 6. Statistical tests for difference of iteration numbers between VAM and IVAM 

 Student's t-test  Wilcoxon Test 
 

Problem 

size Mean ± 

Standard Error 

Confidence 

Interval %95 t P 

Estimated 

Median 

Wilcoxon 

Statistic P 

5x5 -0.478±0.039 -0.555 ; -0.401 -12.190 0.000 -0.500 52276.000 0.000 

10x10 -0.204±0.074 -0.348 ; -0.060 -2.770 0.006 0.000 148409.000 0.008 

10x20 0.150±0.102 -0.051 ;  0.351 1.470 0.143 0.000 203812.000 0.103 

10x30 0.313±0.125 0.068  ;  0.558 2.510 0.012 0.500 218149.500 0.022 

10x40 0.266±0.159 -0.047 ; 0.579 1.670 0.096 0.500 229297.500 0.104 

20x20 0.670±0.157 0.362  ;  0.978 4.270 0.000 0.500 245585.500 0.000 

10x60 0.751±0.191 0.376  ;  1.126 3.930 0.000 1.000 248683.500 0.000 

30x30 1.549±0.229 1.099  ;  1.999 6.760 0.000 1.500 281480.500 0.000 

10x100 1.422±0.249 0.934  ;  1.910 5.720 0.000 1.500 276839.500 0.000 

40x40 2.198±0.313 1.584  ;  2.812 7.030 0.000 2.500 290830.500 0.000 

50x50 2.854±0.375 2.118  ;  3.590 7.600 0.000 3.000 293811.500 0.000 

100x100 9.360±0.725 7.937  ;  10.783 12.900 0.000 9.000 349416.000 0.000 
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It is seen from Table 6 that, VAM has better results at the 0.01 significance level for the 
cases 5x5 and 10x10 problem sizes regarding both mean and median test. There is no 
difference at the 0.05 significance level between VAM and IVAM in the cases 10x20 
and 10x30 problem sizes, regarding both mean and median test. On the other hand, in 
the rest of all the cases 10x40, 20x20, 10x60, 30x30, 10x100, 40x40, 50x50 and 
100x100, both Student's t-test and Wilcoxon test show the same result: the method of 
IVAM is statistically significantly different from the method of VAM. This indicates 
that, in the most of the cases IVAM has better performance in terms of iteration 
numbers than VAM; because of the given statistics in Table 6 are significant at the 0.01 
significance level. As a result of the performed tests above, it can be said that IVAM is 
significantly better than VAM for large sized problems such as having greater than 400 
arcs or cells. 
 
Performance measure - �BS: VAM and IVAM yield optimal solutions with different 
iteration numbers for different sized 1000 problem instances. These values are given in 
Table 7. From Table 7, it is clear that the NBS of VAM and IVAM significantly vary 
for different sized problems. Graphical representation of these values is shown in Figure 
2. VAM gets efficient initial solutions for small sized transportation problems but it is 
insufficient for large sized transportation problems. VAM is better for the problem 
sizes: 5x5, 10x10, 10x20. But for other sized problems, IVAM yields more efficient 
results than VAM. In 100x100 sized transportation problems, IVAM determines more 
effective initial solutions than VAM for 664 of 1000 problem instances. 
 

Table 7. Number of best solutions 

Matrix size �BS 

 

mxn 

 

Size, mxn VAM IVAM 

5x5 25 460 183 

10x10 100 450 365 

10x20 200 420 455 

10x30 300 413 482 

10x40 400 430 499 

20x20 500 414 511 

10x60 600 406 523 

30x30 900 395 557 

10x100 1000 394 564 

40x40 1600 382 578 

50x50 2500 375 587 

100x100 10000 321 664 

 

NBS does not include case of equal iteration between VAM and IVAM. Success rate is 
the ratio of NBS to total of problem instances. For each sized problem, success rates 
(including case of equality) are shown in Figure 3. It shows that IVAM conspicuously 
obtains more efficient initial solutions than VAM. 
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Figure 2. Number of best solutions 

 

 

Figure 3. Success rate of VAM and IVAM for different sized problems 

 

Performance measure -CPU Time: T1, T2 and T3 times for VAM and IVAM over 
various sized problem instances are given in Table 8. For each different sized problem; 
mean, standard error, coefficient of variation and range of times are calculated based on   
1000 samples. 
Statistical tests were also performed for comparing total CPU times T3 of VAM and 
IVAM.  Student's t-test was used for testing the mean of differences of the total CPU 
times between VAM and IVAM based on 1000 samples. And also, one sample 
Wilcoxon test was used for testing the median of differences of total CPU times 
between VAM and IVAM based on 1000 samples. The formal test now is Ho: No 
statistically significant difference in the amount of total CPU time mean (median) to 
complete the transportation optimization between VAM and IVAM initial methods.  
Table 9 gives a summary of the results of two-sided statistical tests.  
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Table 8. T1, T2 and T3 times for VAM and IVAM 

Mean ± 

Standard Error 

Coefficient of 

Variation 

Range 

 

 

Problem 

size 

 

Time 

VAM IVAM VAM IVAM VAM IVAM 

T1 0.923±0.006 1.335±0.003 20.060 6,720 0.969 2.456 

T2 0.490±0.004 0.532±0.023 23.500 140.460 1.507 23.811 

 
    5x5 

T3 1.413±0.007 1.867±0.024 15.960 41.230 1.795 24.410 

T1 3.914±0.007 4.395±0.255 5.83 183.730 1.004 255.404 

T2 1.591±0.021 1.599±0.012 41.65 23.510 14.416 3.447 

 
10x10 

T3 5.505±0.022 5.995±0.256 13.05 134.910 12.805 255.960 

T1 8.188±0.017 9.115±0.059 6.85 20.540 13.777 47.398 

T2 5.421±0.368 4.853±0.054 214.84 35.390 264.654 21.039 

 
10x20 

T3 13.610±0.371 13.969±0.090 86.26 20.450 267.549 68.193 

T1 14.427±0.023 14.700±0.046 5.15 9.860 16.248 22.308 

T2 9.646±0.0778 9.509±0.082 25.54 27.540 24.748 35.524 

 
10x30 

T3 24.074±0.815 24.209±0.094 10.71 12.270 26.586 35.934 

T1 23.599±0.027 23.908±0.046 3.64 6.110 16.223 17.899 

T2 23.198±0.167 22.872±0.175 22.74 24.160 38.456 47.612 

 
10x40 

T3 46.798±0.170 46.780±0.185 11.49 12.480 47.656 48.769 

T1 20.604±0.018 20.790±0.049 2.84 7.460 12.533 24.137 

T2 20.393±0.194 19.415±0.178 30.10 28.920 42.207 50.310 

 
20x20 

T3 40.997±0.196 40.205±0.185 15.11 14.540 44.453 50.462 

T1 37.521±0.272 37.134±0.044 2.290 3.750 20.643 15.402 

T2 50.587±0.361 49.185±0.345 22.570 22.210 74.967 66.375 

 
10x60 

T3 88.108±0.363 86.319±0.347 13.020 12.730 75.154 66.355 

T1 64.438±0.098 60.469±0.147 4.830 7.690 51.111 73.508 

T2 126.01±0.900 119.450±0.826 22.600 21.860 271.920 165.460 

 
30x30 

T3 190.45±0.917 179.920±0.858 15.230 26.080 275.680 224.840 

T1 82.871±0.122 75.701±0.144 4.670 6.000 72.1770 49.895 

T2 182.630±1.230 175.180±1.220 21.290 22.080 275.440 243.270 

 
10x100 

T3 265.500±1.250 250.880±1.250 14.870 15.690 278.990 256.180 

T1 156.980±0.138 143.22±0.341 2.780 7.52 70.390 273.43 

T2 552.460±3.560 526.340±3.290 20.400 19.76 678.010 717.07 

 
40x40 

T3 709.403±3.570 669.550±3.310 15.930 15.63 688.250 732.43 

T1 321.800±0.040 276.580±0.075 0.390 0.860 20.630 41.410 

T2 1662.900±9.440 1585.700±8.960 17.950 17.870 2029.700 1622.700 

 
50x50 

T3 1984.700±9.440 1862.300±8.960 15.040 15.220 2029.300 1620.800 

T1 4737.7±1.440 2625.400±0.646 0.960 0.780 799.4 278.400 

T2 51811±214.000 48760±199 13.060 12.900 44226 37299 

 
100x100 

T3 56549±214.000 51386±199 11.960 12.240 44226 37332 



 
 

An Improved Vogel’s Approximation Method  
 

380 

Table 9. Statistical tests for difference of total CPU times between VAM and IVAM 

Student's t-test  Wilcoxon Test 
 

Problem 

size Mean ± 

Standard Error 

Confidence 

Interval %95 t P 

Estimated 

Median 

Wilcoxon 

Statistic P 

5x5 -0.454±0.024 -0.501 ; -0.406 -18.890 0.000 -0.426 3700.500 0.000 

10x10 -0.490±0.257 -0.993 ;  0.014 -1.910 0.057 -0.246 114172.000 0.000 

10x20 -0.359±0.380 -1.104 ;  0.385 -0.950 0.344 -0.745 146494.500 0.000 

10x30 -0.135±0.103 -0.337 ;  0.066 -1.320 0.189 -0.035 246697.000 0.697 

10x40 0.018±0.204 -0.381 ;  0.418 0.090 0.929 0.066 253332.000 0.736 

20x20 0.792±0.254 0.294 ;  1.291 3.120 0.002 0.750 278891.000 0.002 

10x60 1.789±0.401 1.003 ;  2.576 4.460 0.000 1.816 291998.500 0.000 

30x30 10.525±0.975 8.611 ; 12.439 10.790 0.000 10.370 343213.000 0.000 

10x100 14.620±1.400 11.880 ; 17.360 10.480 0.000 14.600 341338.500 0.000 

40x40 39.880±3.860 32.310 ; 47.450 10.340 0.000 40.920 342112.000 0.000 

50x50 122.400±10.300 102.300;142.600 11.930 0.000 121.100 351714.000 0.000 

100x100 5163.000±236 4701 ; 5626 21.910 0.000 5112 419545.000 0.000 

 

It is seen from Table 9 that, VAM method has better result in the Student’s t-test for 
only the case 5x5 at the 0.01 significance level. VAM has also better results in 
Wilcoxon test for the cases 5x5, 10x10 and 20x20 problem sizes. There is no difference 
at the 0.05 significance level between means of VAM and IVAM for the cases 10x10, 
10x20 and 10x30. Wilcoxon tests show the result:  VAM method is not statistically 
significantly different from IVAM in the cases 10x30 and 10x40. Both the Student t-test 
and the Wilcoxon test show the same result in all the cases 20x20, 10x60, 30x30, 
10x100, 40x40, 50x50 and 100x100: IVAM method is statistically significantly 
different from VAM. This indicates that IVAM has better performance in terms of CPU 
time to complete the optimization problems than VAM in the following cases, 20x20, 
10x60, 30x30, 10x100, 40x40, 50x50 and 100x100.  All these results are significant at 
the 0.01 significance level.  

 

5. CO�CLUSIO� 

 

In this study, Vogel’s Approximation Method which is one of well-known 
transportation methods for getting initial solution was investigated to obtain more 
efficient initial solutions. VAM was improved by using total opportunity cost and 
regarding alternative allocation costs. Proposed method considers highest three penalty 
costs and calculates additional two alternative allocation costs in VAM procedure. For 
more penalty costs, alternative allocation costs can be calculated but it increases 
computational complexity and time too much. Therefore, IVAM consider only two 
additional costs. Simulation experiments showed that VAM gets efficient initial 
solutions for small sized transportation problems but it is insufficient for large sized 
transportation problems. IVAM conspicuously obtains more efficient initial solutions 
for large scale transportation problems and it reduces total iteration number, CPU times 
and computational difficulty for the optimal solution. 
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