D-ARM: A New Proposal for Multi-Dimensional Interconnection Networks

Lee Luan Ling and Alberto José Centeno Filho
UNICAMP-FEEC-DECOM
Caixa Postal 6101
13083-970 - Campinas - SP - Brazil
+55 19 3788-3811
[lee,centeno]@decom.fee.unicamp.br

ABSTRACT
This paper presents a new topology for multidimensional interconnection networks, namely D-ARM, which has the goal of simultaneously providing a high network transmission capacity and a low information transfer delay. The new D-ARM topology has a connection pattern arranged in alternated regular mesh fashions with toroidal boundaries. Five distinct network attributes, normally used to characterize interconnection network topologies, were employed to analyze the D-ARM topology: network diameter, bisection width, deflection index, degree of connectivity and symmetry. Also the evaluation of the performance of the D-ARM network through computer simulations was carried out based on the following measures: throughput and information transfer delay. An upper-bound of the network transmission capacity was derived in function of the network dimension (D) and length (W). In order to validate our proposal, as a viable topology among other well-known topologies, a comparative analysis among the D-ARM, MSN and ShuffleNet was performed. The analysis results show that the D-ARM outperforms the MSN and ShuffleNet in many aspects and suggest some plausible applications of the D-ARM networks, e.g., broadband switching architectures, multiprocessor connection, high-speed MAN, WDM optical networks and photonic networks.

General Terms
Performance Design, Reliability.

Keywords

1. INTRODUCTION
Interconnection networks play an important role in the improvement of the performance of communication and computer systems. Connecting networks with the shortest possible delays is a major goal for any interconnection network, as efficient interconnection networks are critical to large communication networks with hundred or thousand of communication elements (nodes). In addition, it is advisable for each particular application to optimize some performance parameters, such as packet loss rate and throughput of interconnection networks, by implementing suitable routing strategies and conflict resolution rules. Current literature suggests many topologies for interconnection networks. A short list includes recursive cube of rings [35], cyclic cubes [14], macro-star networks [40], offset cubes [22], honeycomb networks [34], midimew networks [23], and cayley graph [38]. In addition, there are also embedded/folded, multistages/hierachical, and scalable networks [19, 30, 15, 31, 4].

Multi-dimensional toroidal networks have some particular performance characteristics that make them very suitable for many applications [29, 11, 12]. This paper introduces a new multi-dimensional network architecture arranged in an alternating regular mesh fashion with toroidal boundaries. The new network topology preserves the main characteristics of many toroidal networks, such as isotropy, easy routing and fast node identification. Some examples of applications of toroidal networks include the Manhattan Street Network [24], the HR4-Net [10], a toroidal based PAX series multiprocessor [21], parallel computers [2], and message-passing multicomputer systems [12].

Attributes of an interconnection network include: diameter, bisection width, symmetry, deflection index and connectivity degree. It is desirable for these attributes of an interconnection network to be determined by the network topology and possibly independent of its traffic characteristics, the input traffic volume, the employed routing mechanism, and the applied congestion control strategy. Unfortunately, only networks with a static topology and permanent nodes are able to maintain the same attributes. Networks assuming a dynamic topology frequently have their attributes easily changed as their topologies are altered from time to time. In this introductory section, we first provide definitions to these network attributes and introduce the concept of network capacity via Little’s Theorem.

This paper presents a new topology for multidimensional interconnection networks. This topology, named D-ARM, can simultaneously provide a high network transmission capacity and a low information transfer delay. Its connection pattern is arranged in an alternating regular mesh fashion with toroidal boundaries. Five distinct network attributes were employed to analyze the D-ARM topology. In addition, performance evaluation of the D-ARM network through computer simulations was carried out.

This paper is organized as follows. First, we provide the basic
defined of network attributes and performance measures. In Section 3 we define the D-ARM topology and briefly describe three conflict resolutions rules: random, straight-through and closest to finish. More detailed discussion about the routing problems on a fixed-connection network is discussed in [16]. Section 4 shows explicitly the formula for determining the attributes of the D-ARM topological networks. The main issue of Section 5 is the derivation and comparison of the upper bounds for the information transfer capacity of the D-ARM networks with different dimensions and numbers of nodes. Section 6 compares the performance of the D-ARM networks to two other well-known interconnection networks: ShuffleNet and MSN. Finally, the paper concludes with some possible applications of the D-ARM networks and suggestions for future investigation.

2. NETWORK ATTRIBUTES AND PERFORMANCE MEASURES

2.1 Diameter
The diameter is the maximum of the shortest distance (hops) between any two nodes. Mathematically, the diameter (δ) of an interconnection network can be expressed by

$$\delta = \max_{1 \leq I, J \leq N} \{m_e(I, J)\},$$

where N denotes the total number of nodes in the network and $m_e(I, J)$ represents the distance measure of the shortest path between nodes I and J. For multi-hop networks, the diameter is an attribute highly representative of and related to the maximum information transfer delay. In cases where a deflection routing strategy is adopted, the diameter represents the maximum transfer delay of packets in the network without deflection. Intuitively, the difference between network diameter and maximum transfer delay would become small if the link occupation rate is low due to the low packet deflection probabilities.

2.2 Bisection Width
The bisection width of an interconnection network can be defined as the minimum number of links that have to be removed to disconnect the network into two halves with an identical number of nodes (or within one node difference) [36]. In fact, the bisection width is a critical factor in determining the performance of a network because in most scientific problems, the data contained and/or computed by one half of the network are needed by the other half. Therefore, it is recommended to use networks with a larger bisection width so that higher efficiency in communication between two halves can be achieved. In addition, a larger bisection width promotes a higher degree of system’s fault tolerance. It is also worth mentioning that, for VLSI circuits, the larger the bisection width is, the higher the circuit implementation cost will be. Hence, it would be necessary to ponder the advantages and disadvantages of a large bisection width according to particular applications. Among partially or totally VLSI implemented systems, we note the prominent multi-computers or multi-processors and broadband network switches.

2.3 Deflection Index
The deflection index of a network is defined as the lowest upper bound over the number of hops a single deflection adds to the packet’s delay [17]. It is evident that deflection index depends on both network topologies and routing algorithms. Like diameter, deflection index is directly related to network transfer delay. An interconnection network with small delay should have small deflection index and diameter. Optimization of these two attributes in designing new network topologies could be a considerable challenge. For some topologies, such as mesh and toroidal networks, deflection index can be defined without referring to any particular routing algorithm. In this case the deflection index may be alternatively defined as: the length of a shortest round-trip path for a given network topology [5].

2.4 Degree of Connectivity
The degree of connectivity of an interconnection network can be defined in two ways based on a node’s incoming and outgoing links. The input (output) degree of connectivity, θ_{in} (θ_{out}), represents the number of incoming (outgoing) links connected to a given network node. Interconnection networks that have the same input and output degree of connectivity for all network nodes are classified as regular topology networks. A regular network is “p-connected” when its degree of connectivity is p.

Different applications impose different limits on the degree of connectivity of interconnection networks. Borgenovo’s argument [33] claims that, for local and metropolitan networks, indiscriminate increment of the degree of connectivity results in high costs; therefore, the utilization of an efficient routing algorithm is preferable. Additionally, network topologies with the degree of connectivity larger than 4 are not considered. For the case of optical networks and broadband switching in which routing time becomes a limiting factor in network design, the degree of connectivity should be high enough to accommodate high network transmission rates. For parallel computing systems, most proposals have adopted a degree of connectivity of not more than 6 [28, 13, 27, 9].

2.5 Symmetry
The definition of symmetry of interconnection network topologies captures the concept of isomorphism and automorphism established in graph theory. Two graphs (or topologies) G and H are isomorphic if there is an one-to-one correspondence between links of G and H [39], i.e., if H can be obtained from renaming links in G. The automorphism of graph G represents the isomorphism of G with respect to the proper graph G [7]. A network is symmetric, if, for any pair of nodes "a" and "b", there is an automorphism of the graph that maps "a" to "b". In other words, the network just "look" the same from any node in terms of the topological homogeneity. Such a property is highly desirable for practical implementation of interconnection networks because the homogeneity of nodes allows the use of the same local routing algorithm. It is worth mentioning that there are many advantages a local routing algorithm has over a centralized routing algorithm: higher fault tolerance, more flexibility in system routing management, and network scalability.

In general, symmetric networks allow the development of stochastic analysis that possibly results in the formulation of some probabilistic models. From these models, many network performance measures, such as mean throughput and mean transfer delay, can be obtained analytically, avoiding exhaustively time-consuming simulation tasks.

2.6 Network Performance Parameters
Performance parameters of an interconnection network are considered as dynamic variables that depend not only on network topologies but also on traffic patterns, traffic intensities, and applied routing algorithms. These variables are capable of providing essential
information in deciding the best use of the network in practice. The principal performance parameters used to evaluate a network include: throughput, transfer delay, channel utilization and network capacity. Next, we define precisely these parameters in the context of interconnection networks (INs). Let

- \(P(t) \) = number of packets in the IN at time \(t \);
- \(N_t \) = number of packets accepted by the IN during the interval \([0, t]\);
- \(T_i \) = time spent in the IN by the \(i^{th} \) arriving packet.

The time average throughput (\(\lambda_t \)) of an interconnection network for interval \([0, t]\) can be defined as

\[
\lambda_t = \frac{N_t}{t}.
\]

Note that \(\lambda_t \) equals the average arrival rate if the IN under study is lossless. As \(t \) increases, the throughput \(\lambda_t \) converges to a steady-state average throughput value \(\lambda \), which can always be achieved by a positive recurrent communication network [8]. In a network simulation, steady state is achieved when the time average packet acceptance rate is equal to the time average packet departure rate. Mathematically, the steady state throughput of an interconnection network is defined as

\[
\lambda = \lim_{t \to \infty} \lambda_t.
\]

Frequently, network throughput normalized with respect to the node transmission rate is used. Therefore, for networks with multi-link connections, the normalized throughput generally assumes a value higher than unity. The network throughput is an important performance parameter capable of indicating whether or not the network supports a certain traffic volume required by the application. In other words, it defines the potentiality and practicability of the interconnection network under consideration.

The time average network information transfer delay (\(T_i \)) for jobs, which arrive in the interval \([0, t]\), can be defined as

\[
T_i = \frac{\sum_{i=1}^{\infty} T_i}{N_t}
\]

where \(T_i \) includes the total time spent by the \(i^{th} \) accepted packet in the IN system. The steady-state network information transfer delay is defined as

\[
T = \lim_{t \to \infty} T_i.
\]

Like throughput, the network information transfer delay also sets some limitation on the practical utilization of the network. For instance, off-line transfer of voice and videos often is not tolerable [26, 25].

Two elements are needed to define channel utilization; they are the time-average of number \(P \) of packets and number \(l \) of links in the network. Let \(P(r) \) denote the traffic intensity. If the “typical” number \(P_l \) of packets in the network observed up to time \(t \) is given by

\[
P_l = \frac{1}{t} \int_0^t P(\tau) d\tau,
\]

\(P_l \) converges to \(P \) as \(t \) increases, i.e.,

\[
P = \lim_{t \to \infty} P_l.
\]

The number \(l \) of links in the network is a static variable which depends exclusively on the network topology and can be defined as the total number of end-to-end links comprising a topology of the network. Hence, the steady state channel utilization \(U \) in an interconnection network can be defined as “the fraction of average time that the network links remain busy (information transmission) when the network operates in the steady state” [20]. Under the assumption that each network link serves up to one packet transmission per unit time slot, the channel utilization is given by

\[
U = \frac{P}{T}
\]

In this case, since the number of links in a network represents the maximum number of packets that the network is able to accommodate at a given time instant, the network channel utilization reflects a measure of network efficiency with respect to the maximum transmission rate of the network.

Three of the above defined parameters, throughput, transfer delay and channel utilization, can be related to each other by Little’s result:

\[
\lambda = \frac{P}{T}
\]

In terms of a queueing system, the formula concludes that the average number of customers in the system is equal to the product between the average customer arrival rate and the average time that each customer spends in the system queue.

All network performance parameters described so far depend largely on the network traffic volume as well as the applied routing strategies. It would be highly illustrative to predict the utmost performance that a new designed network system can achieve. Interconnection Network Capacity, which is expected to be independent of the network traffic volume and a candidate for this purpose, represents the maximum achievable steady state throughput [1]. Network capacity (\(C \)) is a function of the network topologies and routing strategies, mathematically expressed as

\[
C = \max_{r \in R} \lambda
\]

where \(R \) is the set of all applicable routing algorithms (\(r \)).

3. THE D-ARM NETWORK TOPOLOGY

The new proposed network architecture has a multi-dimensional topology arranged in alternating regular mesh fashion (D-ARM). The borders of the new network are connected in a toroidal way to avoid the boundary effects [29], and, consequently, to reduce the distance between nodes. Each node of a D-ARM network has \(D \) incoming links and \(D \) outgoing links. The node address inside the network is represented by a \(D \)-dimensional vector \(I = (i_1, \ldots, i_D) \) where each entry of the vector \(I \) is a non-negative integer value. Figure 1 shows an example of 3-ARM with 8 nodes.

In order to facilitate the D-ARM network representation and analysis we associate the orientation of the network links to the orientation of coordinate axes of a \(D \) dimensional vector space, i.e.,
the 1st dimension link, 2nd dimension link, ... and Dth dimension link, as shown in Figure 1. Note that in a D-ARM network each network node has just one incoming link and one outgoing link at each of D dimensions (or directions). The direction of an outgoing link can be along (increasing) or against (decreasing) with respect to the orientation of the corresponding coordinate axis. To find the direction of a jth dimension outgoing link of node I, we apply the following rule:

\[
I_j = \begin{cases}
\text{even}, & \text{the link is decreasing} \\
\text{odd}, & \text{the link is increasing}
\end{cases}
\]

Another way to look at a D-ARM network is to consider a set of rings, each of which is formed by a group of nodes connected by links all with the same orientation. The length of each ring corresponds to the number of nodes in the ring. Let \(l_1, l_2, ..., l_D\) denote the length of rings in the 1st, 2nd, ..., and Dth dimension, respectively. In this work, we consider only the case of \(l_1 = l_2 = ... = l_D = W\) that is a necessary condition to obtain networks with symmetric, regular and toroidal properties at the same time. Hence, the total number (N) of nodes in a D-ARM network of length \(W\) is \(W^D\), and the \(k\)th entry \(i_k\) of node \(I = (i_D, ..., i_2, i_1)\) is an integer number varying from 0 to \(W-1\). Interestingly enough, the topology of a D-ARM network now is completely defined by its dimension \(D\) and length \(W\). Moreover, in order to preserve the network’s toroidal boundary connection pattern, the length \(W\) must be an even number.

Because of the global isotropy property of the D-ARM networks [11], a distributed and self-routing algorithm that identifies the shortest paths, based only on addresses of the source and destination nodes, can be easily developed and implemented. It may happen that at a given node an outgoing link is disputed by two or more packets. Under such circumstances, a contention resolution rule should be invoked to solve the conflict. Some basic contention resolution rules that are frequently adopted by interconnection networks include the following deflection strategies:

- **random**: the conflict is resolved by a random choice among the conflicting packets;
- **straight-through**: the packet is sent via the outgoing link in the same direction (dimension) as the incoming link;
- **closest to finish**: the preference is given to the packet near its destination. If two or more packets have equal distance from their destinations, the conflict is resolved by a random choice.

The D-ARM network is a slotted packet communication system where each node can receive up to \(D\) packets from its incoming links and generate one new packet per time slot \((t-1, t)\). In the following time slot \((t, t + 1)\) each node tries to send all packets (received + generated) through its \(D\) outgoing links by applying a routing algorithm. By assumption, the packets already found in the network have a higher priority than a new packet when disputing an outgoing link. As a consequence, a new packet can be sent if at most \(D - 1\) routing packets are received or if at least one routing packet is addressed to the node.

4. Topological Attributes of the D-ARM Networks

Through either simulation or analysis of all shortest paths, we determined the diameter \(\delta\) of a D-ARM network with length \(W\) as follows:

- If \(W\) is odd, \(\delta = \frac{D(W-1)+2}{2}\)
- If \(W\) is even and not divided by 4, \(\delta = \frac{DW}{2}\)
- If \(W\) is even and divided by 4, \(\delta = \frac{DW+2}{2}\)

Note that when a D-ARM is symmetric, which fits the second case above, the network diameter \(\delta\) can be easily derived from this simple reasoning. When the network does not meet the symmetric properties (the first and third cases above), we can find the network diameter by running a Flooding algorithm [8].

Figure 2 shows how the diameter varies with the number of nodes for topologies of ShuffleNet, MSN and D-ARM networks with up to 400 nodes. Note that, for small networks (< 50 nodes), no significant difference in diameter is observed for these network topologies. However, for a large number of nodes, the ShuffleNet and D-
ARM topologies are able to maintain the network diameter considerably low in comparison with the MSN topology. Since the ShuffleNet topology belongs to the group of topologies of minimum diameters [17], we adopt it as a reference merit figure to evaluate the diameters of the D-ARM topology networks. For networks with up to 400 nodes, a 3-ARM network is enough to keep the network diameter smaller than or equal to that of the ShuffleNet. Even for networks with a very large number of nodes, there is still no need to increase the dimension of the D-ARM topology beyond \(D = 4 \) or 5 in order to keep the network diameter as low as that of the ShuffleNet. For instance, in designing a network with 10,240 nodes, the diameter of the ShuffleNet is of 19 jumps (hops) while 20 and 16 jumps are found to be the diameter for a 4-ARM and 5-ARM network, respectively.

For the D-ARM topology, the bisection width (\(\beta \)) is a function of the network dimension (\(D \)) and length (\(W \)):

- If \(W \) is odd, \(\beta = 2W^{D-1} + 2W^{D-2} \)
- If \(W \) is even, \(\beta = 2W^{D-1} \)

Figure 3 compares the bisection width of the ShuffleNet, MSN and D-ARM topologies with up to 400 nodes. The ShuffleNet topology presents bisection widths considerably superior to the MSN topology. For D-ARM, the larger the number of nodes is, the higher the dimension degree of the D-ARM should be, so that the D-ARM networks outperform the ShuffleNet in terms of bisection width. For example, for networks with a number of nodes varying between 100 and 400, a D-ARM network with \(D = 5 \) or higher should be employed. As mentioned before, a large bisection width is essential for low information transfer delay in networks with uniformly distributed traffic. Larger bisection width implies a higher traffic flow between the two halves of the supposedly divided subnetworks. On the other hand, as in most of the practical applications involving large networks (> 1000 nodes), when the information routing involves some small parts of the networks, the variation in the bisection width has generally little effect on transfer delays.

The deflection index (\(\phi \)) is another network parameter related directly to the network transfer delay. Since both MSN and D-ARM topologies are connected in a toroidal fashion, their deflection indices are constant, i.e., \(\phi = 4 \), independent of either the network dimension (\(D \)) or its length (\(W \)). In contrast, the deflection index in the ShuffleNet topology is proportional to the number of nodes.

Table 1: Routing complexities in interconnection D-ARM networks using the deflection routing.

<table>
<thead>
<tr>
<th>(D)</th>
<th>Routing Options</th>
<th>Clock Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>600</td>
</tr>
<tr>
<td>6</td>
<td>720</td>
<td>4,320</td>
</tr>
<tr>
<td>7</td>
<td>5,040</td>
<td>35,289</td>
</tr>
<tr>
<td>8</td>
<td>40,320</td>
<td>322,560</td>
</tr>
<tr>
<td>16</td>
<td>2.092 (\times 10^{16})</td>
<td>3.344 (\times 10^{18})</td>
</tr>
</tbody>
</table>

Table 2: Routing complexities in interconnection D-ARM networks using the store-and-forward routing.

<table>
<thead>
<tr>
<th>(D)</th>
<th>Routing Options</th>
<th>Clock Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>1,024</td>
</tr>
<tr>
<td>5</td>
<td>3,125</td>
<td>15,625</td>
</tr>
<tr>
<td>6</td>
<td>46,656</td>
<td>29,936</td>
</tr>
<tr>
<td>7</td>
<td>823,543</td>
<td>5,764,801</td>
</tr>
<tr>
<td>8</td>
<td>16,777,216</td>
<td>134,217,728</td>
</tr>
<tr>
<td>16</td>
<td>1.84 (\times 10^{16})</td>
<td>2.9 (\times 10^{18})</td>
</tr>
</tbody>
</table>

Clearly, the ShuffleNet topology should be avoided in a network design if a low deflection index is required. Note that a deflection index of 4 in the MSN and D-ARM topologies is only achieved by a ShuffleNet with 64 nodes.

For high speed interconnection networks, the degree of connectivity imposes a limitation on the utilization of high dimensional D-ARM topologies. This is due to the fact that the D-ARM input and output degrees of connectivity are exactly equal to the network dimension value (\(D \)), i.e.,

\[\theta_{\text{in}} = \theta_{\text{out}} = D \]

In fact, a high degree of connectivity means more complexities involved in making routing decisions and in real network implementations. In order for networks to work properly and to remain stable, the time spent in packet routing should not be larger than the mean packet interarrival time. A simple computation reveals that the routing complexities, in terms of the number of the possible routing choices, increase exponentially with the total number of outgoing links at a given node. For example, as shown in Table 1, in a \(p \)-connected topology, there are \(p! \) and \(p^p \) different ways to direct \(p \) packets to their \(p \) outgoing links using the deflection routing and the store-and-forward routing strategies, respectively. Table 1 and Table 2 provide a rough estimate of the minimum number of clock cycles required for an ATM network with 1 Gbps data rate and 10 GHz clock frequency. Based on this information we conclude that the dimension value (\(D \)) of the D-ARM network should not exceed 5 and 4 when the deflection routing and the store-and-forward routing algorithms are used, respectively.
5. THE D-ARM PERFORMANCE

To evaluate the performance of the D-ARM network topologies, we tested two well-known conflict resolution rules (random and straight-through) [17] and introduced a new conflict resolution rule named preferential rule. The preferential conflict resolution rule assigns an outgoing link to a routing packet according to its degree of preference (G_p), which is defined as the total number of optimum paths available at the moment of conflict. Note that the degree of preference ranges from 0 to D. Once the degrees of preference of all routing packets are determined, the preferential conflict resolution rule assigns outgoing links to the packets based on the following criteria:

1. The packets with the lowest G_p have the highest priorities to choose their preferable outgoing links;
2. $G_p = 0$ is attributed to the packets that have lost the possibility of choosing an optimum path;
3. A random strategy will be invoked to assign unused outgoing links to the packets with $G_p = 0$;
4. The same random strategy will be invoked whenever the number of the packets with the same G_p is larger than the value of G_p.

Figures 4 and 5 respectively show how the throughput and delay of the 3-ARM network (64 nodes) as functions of new packet generation rate (g) for three conflict resolution strategies (random, straight-through, preferential) described before. It is assumed that for each time slot each node has the probability g of generating a new packet and the packets’ final destination nodes are uniformly distributed. Note that no significant difference in throughput (1.15%) and delay (1.42%) is observed among the three deflection strategies. In addition, the preferential and straight-through techniques present the same performance in terms of throughput and delay.

Repeating the same simulation procedure on a 4-ARM network (256 nodes), we obtained a network performance (Figures 6 and 7) similar to that of the 3-ARM (Figures 4 and 5). Note that the preferential and straight-through techniques no longer have the same performance measures as in the case of the 3-ARM network although the performance differences are very small. Moreover, the differences in throughput and delay between the random and preferential techniques have increased from 1.15% to 2.00% and 1.4% to 2.44%, respectively, when our investigation advanced from the 3-ARM network to the 4-ARM network. In spite of the increase, the differences in terms of throughput and transfer delay are still considerably small between two conflict resolution rules.

Bound on Transmission Capacity: As mentioned before, network transmission capacity represents a network’s maximum achievable throughput. Precise evaluation of the network capacity is by no means a trivial task because we do not have the knowledge about all factors that affect routing. In this work, we concentrate our effort on an attempt to find an upper bound to the D-ARM network transmission capacity, and then compare this upper bound to that of networks of different topologies. Most importantly, this upper bound provides us with some indication about what would be the peak network throughput.

The mean number (\bar{N}) of packets in a D-ARM network is upper bounded by the total number of outgoing links as:

$$\bar{N} \leq DW^D$$ \hspace{1cm} (13)

The transfer delay (T) between a source node I_s and a destination node I_d can be written as:

$$T \leq sp(I_s, I_d) + 4F$$ \hspace{1cm} (14)

where $sp(I_s, I_d)$ denotes the length of the chosen shortest path from I_s to I_d, and F denotes the number of deflections in the
shortest path. On D-ARM networks when a packet is deflected, the length of its path can be increased by 4 hops. In other words, the deflection index of the D-ARM networks is just 4. On the other hand, the mean transfer delay (\bar{T}) is lower bounded by the mean length of the shortest path, i.e.,

$$\bar{T} = E\{T\} \geq E\{sp(I_s, I_d)\} \approx DW/4 = DW/4 \quad (15)$$

Note that we approximate the mean length of the shortest paths ($E\{sp(I_s, I_d)\}$) by $DW/4$ based on the fact that the diameter on each ring of a toroidal network is $W/2$ [29]. Consequently, the mean distance between two nodes of the ring is $W/4$. We have verified, via computer simulation, that the suggested delay value, although not exact, is a good approximation for the D-ARM network with error less than 1% with respect to the real mean distance between two nodes. In addition, the larger the network is, the smaller errors will be.

The steady state throughput ($\bar{\lambda}$) of a D-ARM network can be obtained by Little’s Theorem and is upper bounded by

$$\bar{\lambda} = \frac{\bar{N}}{\bar{T}} \leq 4W^{D-1} \quad (16)$$

Since no routing algorithm is explicitly mentioned, the upper bound for $\bar{\lambda}$ suggested in (16) should be valid for all applicable routing algorithms including the optimal ones. Considering the set R of all applicable routing algorithms, the D-ARM network capacity is upper bounded by

$$C = \max_{r \in R} \{\bar{\lambda}\} \leq 4W^{D-1} \quad (17)$$

The use of networks with higher capacity reduces packet loss rates and deflection probabilities. High dimension networks are suitable for applications where small transfer delays and low cell loss rates are expected. An example is ATM switching. Figure 8 shows the upper bound of the D-ARM network capacity versus number of nodes. From the figure, we conclude that larger network dimension leads to higher network capacity. Such a conclusion is intuitively plausible from the following observations: (a) a higher order D-ARM network is able to accommodate more packets and reduce the probability of the network congestion; (b) for a fixed number of nodes, a higher dimensional D-ARM network presents a smaller diameter, and, therefore, a smaller packet transfer delay.

We also made a brief analysis about the cost which would be incurred in implementing the D-ARM networks. The cost parameter would provide us with some indications about the most adequate network dimension and length to be chosen for each application. Reed and Grunwald [27] have defined a cost function that permits the analysis of different networks topologies:

$$\text{Cost} = C_{node}N + C_{link}DN + C_{con}2DN \quad (18)$$

where N, D, C_{node}, C_{link}, and C_{con} are the number of network nodes, network dimension, node cost, link cost, and connection cost, respectively. Adapting to the suggested cost function, where $N = W^D$, we show in Figure 9 how the cost function of the D-ARM networks varies in terms of number of nodes. Under the linear assumption, with a fixed number of nodes, the cost varies linearly with the network dimension (D). It is worth remembering that we should not increase the network dimension size (D) unless it represents a significant decrease in the diameter value as well as the network cost. However, it is important to note that the cost of each component in a network depends on the chosen implementation technology and intended applications. Since the main goal of this work is to develop a comparative analysis among different toroidal networks, assigning unit cost for network elements is suitable for this purpose.

6. PERFORMANCE COMPARISON

In this section, we compare the performance measures considering 3 network topologies: MSN, ShuffleNet and D-ARM. The analysis of the network performance is based on throughput, delay and
upper bounds of network capacity defined in the previous section. Since these network topologies may not be defined for an arbitrary number of nodes, it seems imperative to establish a common base in order to achieve a meaningful comparison. For the network throughput and delay comparison, we demand that the number of nodes in the networks be the same and the same routing strategy be applied. Simple computation reveals that in the realm of 2 to 400 nodes and network dimension (D) no greater than 5, networks of 64 nodes are the only feasible case as shown in Table 3. In other words, we perform our comparative analysis on the 3-ARM (4x4x4), 64-node ShuffleNet and 8x8-node MSN.

Figure 10 plots the throughput of the three networks as function of new packet generation rate (g) in each node under the deflection routing and the random conflict resolution rule. Our analysis on the behavior of these three throughput curves is based on the concept of saturation rate, defined as the lower bound of an interval in which the network throughput gradient (or growing rate) is equal to or less than 10% of the gradient of the throughput in an interval of low values of g, e.g., [0, 0.3]. Such a definition of gradient, instead of adopting strictly the generating rate at which 90% of the saturated throughput value occurs, is frequently convenient due to the fact that some throughput curves may not present ‘saturate’ behavior. For the ShuffleNet and MSN, we found that the throughput gradient is \(g_s \) in the interval [0, 0.3] of generating rate g. Taking this interval ([0, 0.3]) of generating rate g as a reference for comparison, we found the throughput gradient falling below 3.93 occurring in the interval [0.5, 6] of generating rate g. Hence, in this case the saturation rate is taken as \(g_s = 0.5 \). On the other hand, for the 3-ARM network, the throughput gradient in the interval [0, 0.3] of the generating rate is approximately 56.7 and therefore \(g_s = 0.9 \). Comparing these derived saturation rates, we found that the 3-ARM network is evidently much superior to the other two (ShuffleNet and the MSN) in terms of the capacity of supporting high traffic volumes.

Table 3: Feasible numbers of nodes for different network topologies.

<table>
<thead>
<tr>
<th>Topology</th>
<th>Number of Nodes (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShuffleNet</td>
<td>2, 8, 24, 64, 160, 384 (N = k^2)</td>
</tr>
<tr>
<td>MSN</td>
<td>4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400 (N = k^2)</td>
</tr>
<tr>
<td>3-ARM</td>
<td>8, 27, 64, 125, 216, 343 (N = k^2)</td>
</tr>
<tr>
<td>4-ARM</td>
<td>16, 81, 256 (N = k^2)</td>
</tr>
<tr>
<td>5-ARM</td>
<td>32, 243 (N = k^2)</td>
</tr>
</tbody>
</table>

Figure 11 compares the amount of transfer delays introduced by the 3-ARM, MSN and ShuffleNet each operating at different generating rates. The transfer delay in the ShuffleNet and MSN is at least 59% larger than that in the 3-ARM network. In addition, the 3-ARM network presents a smaller variation in transfer delay as the generation rate g varies. Such a feature brings considerable advantage in applications of high speed networks in which the system response does not vary considerably during some sporadic fluctuations of traffic volumes.

A comparative study of upper-bounds of transmission capacity of different networks allows us to infer the potential of information transfer of these networks and helps us choose the most adequate network for practical applications. Figure 12 plots capacity upper-bound curves of the ShuffleNet [5, 33], MSN, 3-ARM, 4-ARM and 5-ARM. From these curves, the 5-ARM network with 400 nodes has potential of offering a traffic volume about 243% and 381% more than the ShuffleNet and MSN, respectively.

Table 4 shows how channel utilization changes with a new packet generation rate (g) for the MSN, ShuffuleNet and 3-ARM all with 64 nodes under the random conflict resolution rule. Analyzing Table 4 jointly with the throughput and the delay curves of these three toroidal networks as shown in Figure 10 and Figure 11, we clearly see some advantages of using the D-ARM network such as higher throughput, low transfer delay and low channel utilization.

7. COMPUTER SIMULATIONS

The performance evaluation of the D-ARM was done via computational simulations. For this purpose several simulation modules were implemented in C++ and over UNIX (Sparc 1000) and PC platforms. Here we describe some major elements of the proposed D-ARM simulation model.

A discrete time simulation and event oriented model is chosen for the D-ARM modeling. In other words, the system is modeled by partitioning the time into a primary or secondary event, and each
primary event is scheduled directly by the simulator according to
the timing information. A secondary event, which is not previous
scheduled, depends on the primary event that causes its appearance [32].

The following stop criterion is used in the simulation:

- The absolute value of the difference between the packet output rate at time \(t \) and the packet output rate at time \(t + 1 \) is less than \(10^{-3} \);
- The absolute value of the difference between the packet input rate at time \(t \) and the packet input rate at time \(t + 1 \) is less than \(10^{-3} \);
- The absolute value of the difference between the packet output rate at time \(t + 1 \) and the packet input rate at time \(t + 1 \) is less than \(10^{-3} \).

The value of \(10^{-3} \) was chosen experimentally among many values \((10^{-3}, 10^{-4}, 10^{-5} \) and \(10^{-6}) \) because it strikes a good balance between the accuracy and the duration of simulations. Under the chosen stop criterion \((10^{-3}) \) we have observed the differences between the performance parameters obtained from consecutive simulations is less than 1.0\% whenever the number of samples (input packets) is larger than 50000.

With respect to the traffic pattern used in the simulation, we adopted the uniform distribution and assumed that the traffic generation is done independently among nodes but using the same rate. Each packet's destination is randomly and uniformly chosen among the remaining \(N - 1 \) nodes.

In order to validate our simulation model and provide a high degree of confidence about the simulation results, the following procedure was performed:

- The calculation of each type of performance measure (throughput, delay and channel utility) is done independently;
- Little's Theorem is used to verify the consistency of the values obtained from the simulation.

In other words, all the values of throughput, transfer delay and channel utilization obtained from the simulation must satisfy Little's Theorem with error never superior to 0.1\%.

8. CONCLUSION

This paper proposes a new multi-dimensional network architecture (\(D \)-ARM), where each node has \(D \) outgoing links arranged in alternating directions. The analysis of its topological attributes and performance parameters suggests some practical applications that include computer networks, WDM optical networks, processors interconnection, and broadband switching architectures.

Maxemchuck [24], suggesting the MSN network (2-ARM), reinforces the advantages of the mesh topology over the conventional topologies such as ring and bus topologies. The replacement of the conventional topological networks by meshed ones may increase the transmission throughput without necessity of augmenting the packet generation rate. This is due to the mesh network's high connectivity and the nodes' parallel processing that result in more packets accepted by the network. In addition, the reliability of the mesh networks is considerably higher than conventional MAN's and LAN's without mentioning the possibility of being used for wide area networks.

In the optical connectivity layer, defined by Acampora [1], it is necessary to have a streamlined connection network with high transmission capacity and short transfer delay. Some interconnection networks, such as ShuffleNet, have been already considered for this application. Based on our analytical results, the \(D \)-ARM networks can be successfully adapted to large optical networks with high capacity and extremely short delay.

Reed and Grunwald [28] have analyzed the performance of many interconnection network topologies. Among the outstanding topologies are the \(N \)-cube and \(D \)-torus. More precisely they analyzed a 3 dimensional \(D \)-torus (similar to the 3-ARM) and showed that for a network up to 1000 nodes the topology the \(D \)-torus presented the highest routing packet rate. Further investigation is necessary to establish the advantages and disadvantages of the \(D \)-ARM networks over the other processor interconnection network topologies.

Since we impose that the \(D \)-ARM model presents a symmetry topology, the length of all \(D \)-ARM networks proposed in the paper is even. Such a requirement no doubt will pose some limitation to the practical applications of the model.
Concerning the broadband switching architecture, there are two fundamental points that must be emphasized: the transfer delay and cell loss probability. We conclude that the D-ARM network can perform better than some well-known architectures such as tandem banyan switching fabric (TBSF) [37] and Shuffle network [6], especially for D = 3, 4 or 5. Nevertheless, for a larger D, ShuffleNet outperforms the D-ARM model due to its larger bisection width. In addition, fast packet or information switching frequently requires the use of simple contention resolution and routing strategies, therefore, an IN module with a low degree of connectivity. Such a restriction may again limit the use of high order D-ARM networks.

We have no doubt that a more detailed investigation is needed in order to better evaluate other performance parameters of the D-ARM networks. Parameters such as the packet loss probability, the deflection probability, and the mean transfer delay are important to determine accurately all the advantages and disadvantages of the D-ARM networks over other interconnection networks. It is also desirable to develop a stochastic model that best describes the dynamic properties and accurately evaluates all performance parameters of the D-ARM networks. It is worth mentioning that stochastic models, such as one node model [18] and signal flow graphs [3], can be generalized to the case of the D-ARM networks. In addition, further improvement on the performance of the D-ARM networks can be done by adding input queues to lower effective packet loss rates, possibly achieving a zero packet loss rate.

9. REFERENCES

