Evaluation of image-based modeling and laser scanning accuracy for emerging automated monitoring techniques

Mani Golparvar-Fard a,⁎, Jeffrey Bohn b,1, Jochen Teizer b,1, Silvio Savarese c,2, Feniosky Peña-Mora d,3

a Charles E. Via Department of Civil & Environmental Engineering and Myers-Lawson School of Construction, Virginia Tech, 200 Patton Hall, Blacksburg, VA, 24061, United States
b School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Dr. N.W., Atlanta, GA, 30332-0355, United States
c Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI 48109-2122, United States
d The Fu Foundation School of Engineering and Applied Science and Morris A. and Alma Schapiro Professor of Civil Engineering and Engineering Mechanics, Earth and Environmental Engineering, and Computer Science, Columbia University, 510 S.W. Mudd Bldg, 500 W. 120th St., New York, NY 10027, United States

ARTICLE INFO

Article history:
Accepted 11 April 2011
Available online 31 May 2011

Keywords:
Progress monitoring
Image-based modeling
Structure from motion
Laser scanning
Computer aided design
Construction field imagery
Range point clouds
As-built modeling

ABSTRACT

Accurate and rapid assessment of the as-built status on any construction site provides the opportunity to understand the current performance of a project easily and quickly. Rapid project assessment further identifies discrepancies between the as-built and as-planned progress, and facilitates decision making on the necessary remedial actions. Currently, manual visual observations and surveying are the most dominant data capturing techniques but they are time-consuming, error-prone, and infrequent, making quick and reliable decision-making difficult. Therefore, research on new approaches that allow automatic recognition of as-built performance and visualization of construction progress is essential. This paper presents and compares two methods for obtaining point cloud models for detection and visualization of as-built status for construction projects: (1) A new method of automated image-based reconstruction and modeling of the as-built project status using unordered daily construction photo collections through analysis of Structure from Motion (SfM); (2) 3D laser scanning and analysis of the as-built dense point cloud models. These approaches provide robust means for recognition of progress, productivity, and quality on a construction site. In this paper, an overview of the newly developed automated image-based reconstruction approach and exclusive features which distinguish it from other image-based or conventional photogrammetric techniques is presented. Subsequently the terrestrial laser scanning approach carried out for reconstruction and comparison of as-built scenes is presented. Finally the accuracy and usability of both of these techniques for metric reconstruction, automated production of point cloud models, 3D CAD shape modeling, and as-built visualizations is evaluated and compared on eight different case studies. It is shown that for precise defect detection or alignment tasks, image-based point cloud models may not be as accurate and dense as laser scanners’ point cloud models. Nonetheless image-based point cloud models provide an opportunity to extract as-built semantic information (i.e., progress, productivity, quality and safety) through the content of the images, are easy to use, and do not need add burden on the project management teams by requiring expertise for data collection or analysis. Finally image-based reconstruction automatically provides photo alignment with point cloud models and enables image-based renderings which can remarkably impact automated performance monitoring and as-built visualizations.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Accurate and rapid assessment of progress, productivity, and quality control/quality assurance (QC/QA) is critical to successful project management. These assessments provide an opportunity to understand the current as-built status of a project efficiently, identify discrepancies between as-built and as-planned progress, and aid in deciding on remedial actions. Despite the importance of site assessment, within the Architectural, Engineering, Construction, and Facility Management (AEC/FM) industry, this process has not yet been completely automated, nor has accuracy measurement benchmark been firmly established. Current manual practice for collecting data on as-built status of a project is still time-consuming and labor intensive [1]. For example, on a 200,000 S.F. construction project with 11 bid-packages, on average 20–25 daily construction reports are filled out and collected on a daily basis. Processing of such data is a difficult task due to its labor-intensive nature.
and the necessary level of competency with required processing tech-
niques [2], [3]. In some cases a field engineer spends half to a full-day
worth of work every day to process such a data and compare it with his/
her own or a superintendent’s observations. Furthermore, techniques
that are used to document and report the as-built status are visually
complex and need to be improved to minimize the time required for
describing them in contractor coordination meetings [3]. For example a
drywall contractor may report in their daily construction report that
Framing has been conducted on a particular day without explicitly
indicating the location or the scope of the work. Such lack of accurate
and detailed information occasionally requires more time to be spent in
coordination meetings to discuss and explain the as-is status of a project.
In addition, the formats of these reports (e.g., text-oriented daily
construction reports, S progress curves, and bar charts) may not
accurately and visually represent the physical progress. There is a need
for proper geometrical representations that facilitate decision-
making tasks. Overall, the large amount of data collected, processed and
represented creates management issues in reading, processing, visualiz-
ing and storing the information in a seamless and an efficient way.

In recent years, significant progress towards automating detection
and visualization of as-built status of a project has been achieved. These
methods include image-based sensing technologies (i.e.,
collecting large numbers of time-lapsed and daily site photographs
using digital cameras) and 3D remote sensing technologies (i.e.,
robotic total stations, Global Positioning Systems (GPS), Radio
Frequency Identification (RFID), bar codes, Ultra-Wide Band (UWB)
and laser and distance ranging—LADAR). Among these 3D remote
sensing technologies, laser scanning has a better potential for applica-
tions in the construction industry as it can holistically address all of the
listed inefficiencies associated with the current practice of progress
monitoring (i.e., data collection, analysis and representation), through
collection and analysis of the data and finally using the same data for
representation of the current status of a project. Despite high accuracy of
laser scanners and dense reconstruction of the as-built models, as
reported in several cases [4], [5], [6], and [7], a set of limitations and
challenges in implementation may reduce the observed benefits by
practitioners. These limitations include discontinuity of the spatial
information, mixed pixel phenomenon [5], scanning range, and sensor
calibration. For example, moving objects in line-of-sight of an optical
sensing instrument would create occlusions on the targeted object and
create additional problems for the management team which must
manually fix the superfluous noise. Compounding these issues, as the
distance between the scanned objects increases, the level of details
returned for the captured components can be reduced. Furthermore, the
data collection process is time consuming, requiring sufficient knowl-
edge of surveying theory, multiple individuals, and expensive and
delicate components in an often rugged environment. The raw scanning
data only contains Cartesian coordinate information of the scanned scene
and does not carry any semantic information, such as knowing which
point belongs to what as-built structural component (similar to other 3D
remote sensing technologies).

Recent research efforts address these inefficiencies associated with
the stand-alone application of laser scanners. One example is
presented in El-Omari and Moselhi [9] wherein a new approach for
progress data collection uses an integrated 3D laser scanning and
photogrammetry technique. The method is shown to be less time-
consumer with higher cost savings compared to the stand-alone
application of laser scanners. The suggested approach also minimizes
access limitations of scanner placement by integrating photogram-
metry data with laser scanner point cloud; yet the processing time
required for each scan can be considerable and the registration of
images and 3D point cloud needs further adjustments. Also in this
method, site images taken from arbitrary viewpoints are not
automatically aligned with the 3D point cloud; rather the common
points between laser scanner’s 3D points with images are manually
selected and matched. Considering large size of construction photo
collections, manual selection and matching of common points
between the data sources may challenge effective application of
these systems.

Bosche et al. [8] and Bosche and Hass [4] presented another example
of such research efforts wherein a new approach for automated
recognition of 3D CAD objects from 3D laser scanned scenes is presented.
In their earlier work, the as-planned 3D CAD model is converted to a
point cloud model. Using point recognition metrics, correspondences
between as-planned and as-built models are identified and recognition
of the progress is returned. Recent work of Bosche et al. [8] introduces
an object surface recognition metric that shows high precision/recall on
object recognition performance of a steel structural building.

However none of the current methods take advantage of utilizing
construction site photographs that are collected on a daily basis and are
readily available on almost all construction sites. Even in more
recent photogrammetric or hybrid geometry and image-based re-
construction techniques such as [10], [11] and [12], photographs are
taken in supervised manners (e.g., calibrated cameras) and feature
selection, stereo-matching and image-based modeling steps are all
conducted in interactive ways, so significant manual interventions by
a user is required to facilitate 3D reconstruction of the buildings. The
frequency for site inspections and the amount of required supervision
for these techniques makes their applications less attractive. Recent
advancements in automated feature detection and matching tech-
niques [13] allow photographs that are even randomly taken to be
matched and used for reconstruction purposes [3], [14], [15], and [16].
These approaches as outlined in [3] provide a potential opportunity to
automatically reconstruct as-built scenes from photos that are ran-
domly taken on construction sites and visualizing those through
integrated representation of as-built point cloud models and geo-
registered site imagery.

Before complete utilization of these emerging and automated
image-based reconstructed point cloud models for progress monitor-
ing, their accuracy and usability needs to be evaluated against the
laser scanning point cloud models. A comparison of point cloud
to models automatically generated from site photographs with point
cloud models from high precision laser scanners can provide such an
evaluation. This paper presents a comparison between two recent
methods namely automated image-based reconstruction using Struc-
ture-from-Motion (SfM) techniques and terrestrial laser scanning for
generating as-built models as an underlying basis for performance
monitoring and defect detection. Eight sets of 3D spatial models, four
from real-world construction projects and four from laboratory
settings are generated using (1) laser scanning, and (2) image-
based reconstruction technique using daily construction photo
collections. In this paper, daily construction photographs refer to
uncalibrated images that are casually collected by field engineers with
specific applications for management of progress, productivity or
quality of the construction. In these photlogs, calibration informa-
tion; i.e., intrinsic parameters (i.e., focal length, distortion) as well as
extrinsic parameters (i.e., location and orientation) of the camera at
the time images were captured are not known. Based on the
experiments conducted, both approaches generated 3D CAD surfaces.
For complete as-built model generation and visualization, as well as
progress monitoring, the 3D CAD models and their reconstructed
surfaces are compared for accuracy and usability.

This paper begins by introducing the reader to the two techniques
used in this research. First, we briefly overview the specific features
which differentiate our developed image-based reconstruction tech-
nique from other image-based modeling and conventional photogram-
metry techniques. Subsequently the limitations associated with each of
these methods are discussed. Next, the research methodology including
experimental plan, data collection, and data processing is explained.
Results of the conducted experiments for processing and visualization of
as-built scenes as well as accuracy of each method are presented
followed by conclusions and future work.
2. Background

In this section, previous works that have led to the application of daily construction photo collections and laser scanners for generating and visualizing as-built point cloud models of construction sites are presented. Next, the benefits and barriers of each of these approaches are discussed.

2.1. Image-based reconstruction using daily site photo collections and analysis of structure from motion (SfM)

The most widespread and easy-to-use method of obtaining data for monitoring project controls is simply having a project engineer or superintendent take photographs of construction progress using inexpensive and readily available digital cameras. Another trend using automated time-lapse or videotaping construction cameras has also been useful in project management/controls and documentation of construction projects [17], [18]. Automated cameras allow users to know the current project status at customizable time intervals and field-of-view, taking advantage of remote controllable camera hardware via broadcast or cellular internet connection. Using these cameras, time-lapse videos of construction activities can be created and analyzed for post-action productivity. Although such images are easy to obtain, inexpensive, and easily understandable, automated or semi-automated detection of progress from site images is challenging [3]. Time-lapsed photos only show activities that are (1) unobstructed by secondary activities or equipment (i.e., by machines, scaffolding) and (2) in the camera's field-of-view. These factors limit the application of time-lapse images, since once the envelope of the building is in place, it is impossible to track progress inside the building from the same camera's viewing point. In addition, different lighting conditions, weather, and site conditions make it difficult to use time-lapse photography for performing consistent image analysis [18], [19]. In such cases Golparvar Fard et al. [3] and Leung et al. [20] suggest the installation of multiple cameras on the job site. Yet multiple fixed cameras come at greater expense and cannot overcome all limitations of occlusion, obstruction, weather, and dynamic site conditions.

Given the benefits and limitations of time-lapse photography and webcams, this research suggests application of unordered daily construction photo collections. In this paper, unordered daily construction photo collections refer to photos that are taken from different locations in the same day. The suggested methodology can also work with unordered photo collections captured during several days in which the visual appearance of the site is not significantly changed. Usually key project stakeholders (i.e., construction managers, owner-representatives, and subcontractors) collect large numbers of these images at almost no cost. Such large and already existing visual data enables as-built 3D reconstruction and visualization, and may increase quick and easy communication and recognition of critical issues among project stakeholders.

Nonetheless, automated analysis of daily construction photographs is not easy. These images are usually not organized according to the locations they are taken from. They are not calibrated with respect to known coordinates and vary widely under various illumination, resolution, and image quality. They typically focus on detailed activities that are constantly changing in the work environment and/or may be taken in a panoramic manner. Therefore, they may not carry enough information from the perspective of tracking site progress which is essential for global reconstruction of the as-built scene. In addition to these problems, capturing entirety of progress on dynamic construction sites where in construction work crews and machinery are constantly moving is problematic. Hence, developing computer visualization and image processing techniques that can operate effectively with these data sets is a major challenge. Within the presented research scope, a key challenge is image registration (i.e., finding distinctive features within images and matching those within a common 3D coordinate system). Substantial progress has been done in this area by the computer vision community over the last decade [10], [14], [21], [22], [23], [24], and [25] but many challenges are still unsolved, specifically with respect to applications of Structure-from-Motion (SfM)—approaches that aim to recover camera parameters, pose estimates, and sparse 3D scene geometry from a sequence of images [21]—for fully automated generation of as-built construction point cloud models. Many of such works still depend on using interactive methods for manual feature detection and matching (e.g., [11] and [12]) or calibrating cameras for data collection (e.g., [26] and [27]). These interactive techniques can successfully reconstruct building models, however they add new tasks to the project management team by requiring manual supervision on the as-built reconstruction. Given the usual frequency of progress monitoring observations, application of these techniques may become unattractive.

To address such inefficiencies, this paper looks into techniques that can automatically reconstruct as-built scenes from already available unordered construction photo collections. In Section 3.1, the state-of-the-art steps towards automated image-based generation and visualization of as-built models using these images are presented. Results of reconstructing and localizing the as-built scene and registering progress imagery with the as-built model are also presented.

2.2. Three-dimensional laser scanning

Laser scanning construction sites for progress monitoring has a number of unrealized benefits that are lacking in traditional methods (i.e., total stations, GPS). Laser scanning can be conducted in a number of ways including aerial, mobile, or more traditional, terrestrial based. This research focuses on terrestrial data capture due to the nature of the experiments which require close range and high precision measurements, availability of technology in the construction industry, and ease of integration with other existing technologies. Laser scanning is based on time-of-flight (TOF) measurements to collect range (x, y, and z) and intensity (reflectivity) to distinct points in a scene. A laser scanner returns data as a point cloud, visualized through commercially available software. Users can interact and manipulate so-called dense range point data allowing for construction of as-built conditions in a virtual environment [7]. A unique feature of laser scanning over traditional surveying is the ability to manipulate and view data in a full degree of freedom environment. Laser scanners allow for wide range measurements at high resolution, and are generally not limited by ambient conditions during operation [7]. Developing technology is focusing on semi/fully automated integration of laser scan data with CAD models and other visualization technologies [5].

An observed characteristic of laser scanned scenes is the resulting density and standardization of the generated point cloud models. Laser scanners can output extremely high resolution models, but at a much larger file size and processing time. The data is considerably accurate, though it is dependent on a number of factors including object distance from scanner, target surface reflectivity, and measurement angle [26]. More sophisticated laser scanners have higher accuracy, though at a much greater cost.

On the other hand, laser scanning has a number of limitations that impede implementing the technology alone in construction projects. Laser scanning takes significant time to complete a full scan, and depending on the size of the construction site, can take a crew of two people days (for large scale hi-resolution shots). Much like fixed automated cameras, laser scanners can only return data for objects that are within line-of-sight of the scanner and thus many occlusions occur, which is why multiple station locations are used [7]. Scanners cannot be utilized during inclement weather (e.g., rainfall). Laser scanners also require significant power, which is not always available on a construction site. According to Boehler and Marbs [28], in certain cases laser scanning can be less accurate than photogrammetry or image-based reconstruction techniques, though the metric for this
claim through comparison of point cloud models automatically generated from SfM analysis and those of laser scanning will be established later in the paper. Although laser scanning is currently cost prohibitive, though the technology is becoming less expensive and more widespread, in particular since commercial providers and government entities have begun to realize its return-on-investment (ROI) compared to conventional surveying methods. As the technology continues to grow, cost should decrease and adoption increase. For these reasons, comparison of their application to image-based reconstruction technique is essential.

2.3. Combining site photographs with laser scanned scenes

The current status of remote sensing technology allows the argument that no single remote sensing method alone solves the needs of the AEC industry to build as-built models or to track construction progress. Instead, some studies such as [2] and [9] recommend a combined approach of remote sensing technology. Photo collections and laser scanning are complementary technologies to use in combination because of the similarities in outputted data. Both can produce data in Cartesian coordinates (x, y, and z) which can be easily modeled in a same virtual environment. Laser scanning can capture a comprehensive and dense Cartesian-based data set that photo collections may not. Additionally, site photos allow capture of dynamic events on construction sites (i.e., moving crews and equipment) at high update rates which can be complementary to the detailed and static range data that laser scanners collect from fixed objects. Using site images does not add any burden or new tasks to project management, since daily construction photographs are already being collected. In addition, computer vision and/or image processing techniques that are applied on registered site photographs can add additional information that is essential to decision makers, such as information to work task progress, productivity, quality, site logistics, and safety. Nonetheless, before applying image processing techniques, 3D geometrical reconstruction of the site and auto-calibration of site imagery is necessary. This further motivates the application of image-based reconstruction technique presented in this paper.

3. Overview on the as-built data capturing methodology

In the following sections, SfM and laser scanning methods for capturing as-built conditions are explained.

3.1. Image-based as-built modeling using daily construction photo collections and structure from motion technique

This section briefly explains the steps that are required to generate as-built scenes using daily construction photo collections. The complete technical detail of this approach is not part of the scope of this paper and is already covered in other works [3], [14], [15], and [29]. A brief summary of key components of the method which differentiates our work from others follows. In the computer vision society, the described problem is defined as Structure from Motion (SfM). SfM studies both structure (i.e., three-dimensional structure of the environment) as well as the motion (i.e., motion of the camera within the scene). Such systems require accurate information of calibration information; i.e., both extrinsic (i.e., relative location and orientation), and intrinsic (i.e., focal length and distortion) parameters for each images taken on the construction site. Nonetheless, the photo registration method used in this research approach relies on data extraction from digital images alone [3]. The approach neither relies on GPS and wireless location tracker nor on pre-calibrated cameras for detecting location, orientation of the photographer and/or geometry of the photographed objects. Rather such information is automatically computed from the images themselves. Fig. 1 represents the steps that were implemented in this work towards solving this problem. These state-of-the-art steps are presented as follows:

3.2. Steps for image-based reconstruction

The steps towards reconstruction of the as-built scene are presented in the following:

3.2.1. Automated feature detection and correspondence

The first step to use site images for reconstruction is to find distinct features on each image, which can be automatically matched across a subset of images. Despite significant research on feature detection and matching, only recently have researchers implemented successful methods in extracting and detecting salient regions (in image/scale space) invariant with respect to scale, orientation and affine transformations. The features need to be highly distinctive, in the sense that a single image can be correctly matched with high probability against a large database of images. Mikolajczyk et al. [30] reviewed recently developed view-invariant local image descriptors and experimentally compared their performances. In the approach and implemented system used in this research Lowe’s SIFT features—Scale
Invariant Feature Transforms [13] is applied. This applied has been widely used in the computer vision community over the past few years and achieves good performances over an acceptable range of viewpoint changes. Recent methods have taken advantage of these properties [15], [16], [31], and [32]. Fig. 2 shows the SIFT features detected in an initial reconstruction image pair (explained later) from one of our experimental databases.

Once features have been detected throughout the dataset, it is necessary to know how many of the detected features match in each image pair. In this work, features are automatically matched using a nearest neighborhood matching scheme. Since the number of features is large, a k–d tree matching scheme [33] is used to reduce the computation cost for matching. This is particularly effective when the dimension of the data set is large. Fig. 3 shows the SIFT feature points across the same image pair used in Fig. 2 and visualizes some of these matches through connecting these features by solid lines. Due to potential inaccuracies in feature matching especially because of similar or symmetrical appearance in building components, some false matches may also form. Due to the sensitivity of the reconstruction algorithm to these false matches, a fundamental matrix [21] within a RANSAC (random sample consensus) [34] iterative method is fit to each matching image pair. The fundamental matrix helps remove false matches as it enforces corresponding features to be consistent under change in the view point. Fig. 3 shows 14 SIFT features (out of a total of 849) that are consistently matched after fitting a fundamental matrix.

Fig. 4 schematically presents the configuration of an image pair and the fundamental matrix that is used to remove false matches. The fundamental matrix helps remove false matches as it enforces corresponding features to be consistent under change in the view point. Fig. 4 shows the SIFT (Scale-Invariant Feature) detectors shown over the initial reconstruction pair. A total of (a) 7238 and (b) 9745 SIFT features were detected.

3.2.2. Structure from motion (SfM)

Once the correspondence between a set of feature points across a subset of daily site images are known, extrinsic (rotation and translation) and intrinsic (focal length and distortion) camera parameters for estimating the 3D location of each SIFT feature will be recovered. The recovered parameters should be consistent, in that the re-projection error (i.e., the sum of distances between the projections of each set of 3D corresponding feature points and its corresponding image features) is minimized. This minimization problem can be formulated as a non-linear least squares problem and solved using bundle adjustment [35].

In this work, before formulating this non-linear least square problem, extrinsic and intrinsic parameters of a single image pair is estimated to initialize the reconstruction (third step 3 in Fig. 1). Bundle Adjustment as other algorithms for solving non-linear problems is prone to fail by converging in local minima as opposed to global minima, hence it is strongly suggested by many researchers (e.g., [15], [36]) to start with a good initial image pair and good estimates for camera parameters in the automatically chosen pair. This initial pair for SfM should have a large number of matches, but also have a large baseline, so that the initial scene can be robustly
reconstructed. An image pair that is poorly described by a homographic transformation satisfies this condition. Homographic transformation is represented by a projective transformation matrix (homography matrix) that maps points from one image plane to another image plane [21]. The homography between all image pairs using RANSAC was found with an outlier threshold of 0.4% of the maximum of the image width and height. Stored was the percentage of feature matches that are inliers to the estimated homography. The initial image pair automatically selected was the pair with the lowest percentage of inliers, but with at least 100 matches (as experienced in [15]). The experiments conducted shows that the selection of the initial pair is not sensitive to the threshold used for fitting the homography matrix. Since in this work, the initial pair selection heuristics requires a minimum of 100 matching feature points, changing the threshold for identifying the outliers will not have a significant on how the initial pair is selected. The camera parameters for this pair are estimated using Nistér’s five point algorithm [36], and then the feature points visible in the image pair are triangulated. A two-frame bundle adjustment for this initial pair was performed. Next, all images that were taken by the cameras contribute to this optimization task. The camera that examines the largest number of estimated sets of associated correspondence across a subset of images was chosen, and initializes the new camera’s extrinsic parameters using the Direct Linear Transform (DLT) technique [21] within a RANSAC procedure. For this RANSAC step, an outlier threshold of 0.4% of maximum of image width or height was applied. Focal length for each image was extracted from the EXIF (Exchangeable Image file format) tags of JPEG images (file type of almost all digital cameras) and was used to initialize the focal length of the new camera and estimate the intrinsic camera matrix [15].

Starting from this initial set of parameters, the incremental bundle adjustment algorithm allows any new camera and observed SIFT feature points to change while the rest of the model is kept fixed. In this approach, points that were observed by the new camera are automatically added into the optimization algorithm. The algorithm adds a SIFT feature point if it is observed by at least one existing recovered camera, and if triangulating the point gives a well-conditioned estimate of its location. The condition is satisfied when considering all pairs of rays that could be used to triangulate that point, and finding the pair of rays with the maximum angle of separation. If its maximum angle is larger than a threshold, then the point is triangulated [15]. Once new points have been added, another global bundle adjustment refined the entire as-built reconstructed scene. The minimum error solution used the sparse bundle adjustment library [35]. This procedure is repeated for all cameras until no remaining camera observes enough reconstructed 3D points to be reliably reconstructed. Overall only a subset of the images that satisfy all constraints may be used for reconstruction. For example if images with significantly wide baselines or minimal overlaps are used or even cases where some none-related photos exist in the dataset, those images may not be used for reconstruction. Obviously this subset is not selected beforehand, but is automatically determined by the algorithm and the implemented system. The outcome of the implemented SfM algorithm is two folds: (1) 3D Cartesian coordinates of all 3D points reconstructed. Each 3D as-built point will be associated with a color which is averaged out from all images that this point falls into their view frustas; (2) A set of intrinsic and extrinsic camera parameters for each image. We use these two sets of information to visualize the as-built point cloud and camera frustas. For this purpose, camera parameters are used to render the location and viewpoint of each camera’s frustum and superimpose the image texture on the frustum’s frontal surface. The visualization component of this system called D4AR—4D Augmented Reality is implemented in C++ using DirectX 9.0 graphics library. In this visualization system, users can navigate through the photos and observe the integrated photo and point cloud model both from real and synthetic perspectives (real perspective: rendering of the integrated scene from a camera viewpoint; synthetic perspective: rendering of the integrated scene from all other viewpoints in the 3D environment). The results of experiments using the D4AR system to visualize the sparse as-built site as well as the camera configurations are explained in the experiment section. In summary, the presented approach takes a set of unordered photos and automatically reconstructs a 3D point cloud model and visualizes the model along with the photos registered in the same environment.

3.3. Laser scanning

For this research, eight experiments were conducted to obtain datasets from different environmental settings, as both photographs and laser scanning data are affected by their surroundings. The experimental objects used include a single object cuboidal masonry block (scanned both indoor and outdoor) and two structural concrete columns (located on exterior and interior of the construction site) which enable accuracy of the 3D laser scanning and image-based 3D reconstruction be considered at two different scales. In addition by scanning the same object both at indoor and outdoor, the accuracy differentials between laser scanning and image-based 3D reconstruction under different lighting conditions can be calculated. All objects were scanned so that all visible faces were captured. For each masonry block, 3×3 targets were affixed to the sides and top to be used in (1) post-processing for scene reconstruction (only for laser scanning case) and (2) determining three-dimensional accuracy. This method is more robust than previous research efforts from [9] that attempted to combine laser scans and photos from one face of an object. In addition, this research scanned objects on actual construction sites, allowing for realistic data collection in scenarios faced by surveyors. This experiment enables accuracy of image-based and laser scanner point cloud models to be measured and compared.

4. Description of experimental setup

To obtain digital images for the photo collection, a commercially available Nikon D-80 set at 10 megapixel resolution was used.

Table 1

<table>
<thead>
<tr>
<th>Type of camera</th>
<th>Single-lens reflex digital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective pixels (millions)</td>
<td>10.2</td>
</tr>
<tr>
<td>Image size (pixels)</td>
<td>3872×2592 [L], 2896×1944 [M], 1936×1296 [S]</td>
</tr>
<tr>
<td>Picture angle (mm)</td>
<td>Equivalent in 35 [135] format is approx. $1.5 \times$ lens focal length</td>
</tr>
<tr>
<td>Shutter speed (sec)</td>
<td>Electronically-controlled vertical-travel focal plane shutter; 30 to 1/4000</td>
</tr>
</tbody>
</table>

Fig. 4. A schematic representation of the epipolar geometry for an image pair.
Between 50 and 200 images were taken for each experimental object. Images were taken at a high speed exposure level to aid in fast photo image capture. A realistic scenario was created in which photo takers (e.g., superintendents, construction managers, and owner’s representatives) experience on walk-through on construction sites. All images were taken with an aperture (ISO) of 400 and a resolution of 3872 horizontal and 2592 vertical pixels. Photos were taken immediately before the setup of the laser scanner in order to capture the “as-is” status of the under study site and its components. For each object, a circular path was traversed, with images being shot at approximately every meter to minimize occlusions while maintaining the random distribution of the photos in the scene. Depending on the size and location of the components, different numbers of photos were needed. Technical data on camera is shown in Table 1.

A commercially available hi-resolution laser scanner (Leica ScanStation 2) was used to obtain laser range point data of the same scene. For each object, a 3-point survey traverse was used with scan data taken from each location. As in traditional surveying, each scan station includes both a foresight (following scan point) and backsight (previous scan point). Each location produces a standalone individual point cloud model of a scene that, when combined with other point cloud models from multiple field-of-views, can create a complete 3D point cloud model. Although fully-automated registration methods can match individual point cloud models of a scene to one scan world (a true 3D view of a complete scene), to obtain the highest possible accuracy, this research used highly reflective targets that were placed on the foresight and backsight. This was done in order to automatically register the scan stations during data analysis (this step was only used for laser scanned point cloud registrations and not for image-based reconstruction technique). A typical experimental setup is shown in Fig. 5. Technical data for the laser scanner that was used in this research is shown in Table 2.

4.1. Obtaining progress photo collection

Experimental data from laboratory and field experiments are shown in Table 3. For each experiment, both hi-resolution and low resolution laser scans were performed at each station. For example, at all scan locations a low resolution scan was completed in 360° to capture the entire scene. Next, a hi-resolution scan focused specifically on the masonry block. Once the experimental objects were scanned, the laser scanning point cloud models were registered using commercially available software (Leica Geosystem Inc. Cyclone 6.0 and Cloudworx). The registration process of laser scanning point cloud models is mostly manual, but algorithms in the software use the location of the reflective targets to tie scans together. The algorithms used to register the scene are propriety with Leica and are not in the scope of this research. Fig. 6 shows two experimental results of the laser scanned columns both at exterior and interior.

Experimental data from laboratory and field experiments are shown in Table 3. For each experiment, both hi-resolution and low resolution laser scans were performed at each station. For example, at all scan locations a low resolution scan was completed in 360° to capture the entire scene. Next, a hi-resolution scan focused specifically on the masonry block. Once the experimental objects were scanned, the laser scanning point cloud models were registered using commercially available software (Leica Geosystem Inc. Cyclone 6.0 and Cloudworx). The registration process of laser scanning point cloud models is mostly manual, but algorithms in the software use the location of the reflective targets to tie scans together. The algorithms used to register the scene are propriety with Leica and are not in the scope of this research. Fig. 6 shows two experimental results of the laser scanned columns both at exterior and interior.

4.1. Obtaining progress photo collection

Table 2

Technical data for Leica ScanStation 2.

<table>
<thead>
<tr>
<th>Instrument Type</th>
<th>Laser Type</th>
<th>Scan Rate (points/s)</th>
<th>Field of View (degrees)</th>
<th>Scanning Optics</th>
<th>Modeling Surface Precision (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulsed, dual-axis compensated</td>
<td>Green</td>
<td>Up to 50,000</td>
<td>H: 360°, V: 270°</td>
<td>Single mirror, panoramic</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 3

Laser scanning experimental data.

<table>
<thead>
<tr>
<th>Pictures taken (#)</th>
<th>Weather Conditions</th>
<th>Scans (#)</th>
<th>Number of Points*</th>
<th>Time to complete (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Masonry block (indoors)</td>
<td>382</td>
<td>Indoor</td>
<td>3</td>
<td>961,793</td>
</tr>
<tr>
<td>2. Masonry block (outdoors)</td>
<td>376</td>
<td>Sunny, bright</td>
<td>2</td>
<td>816,039</td>
</tr>
<tr>
<td>3. Column (exterior at construction site)</td>
<td>80</td>
<td>Sunny, bright</td>
<td>3</td>
<td>1,324,118</td>
</tr>
<tr>
<td>4. Column (interior at construction site)</td>
<td>54</td>
<td>Indoor</td>
<td>3</td>
<td>719,320</td>
</tr>
</tbody>
</table>

* Number of points scanned for the object, not the entire scene.
Fig. 6. Laser scanned point clouds for (a) a column at exterior; and (b) a column at interior.

Fig. 7. Experimental setup for photography of the block: Images taken at an indoor laboratory environment (first row), Images taken outdoors (second row).

Fig. 8. Two subsets of photographs taken from a column and its periphery at a construction site: Images taken indoors (first row), Images of an exterior column (second row).
to generate point cloud models. Figs. 7 and 8 show the images from both indoor and outdoor experimental configurations.

Table 4 shows the results of the conducted experiments. The results are benchmarked on a computer with 2.93 GHz Intel® Core2 Extreme CPU, 4.00 GB of RAM, and a Windows 32-bit platform. Figs. 9, 10 and 11 show image-based renderings of the conducted experiments using the developed D4AR system.

5. Accuracy measurements and methods

In these experiments, laser scanning and image-based point clouds were modeled in separate 3D environments. Registration of the laser scanning point clouds collected from different locations took about 10 s. Since in these experiments laser scanning targets were used, the registration process was completely automated. In the case of image-based reconstruction, registration was not required as the point cloud was completely reconstructed in one fully automated step. To measure and compare accuracy, in both point clouds the masonry block and the exterior column were extracted from the rest of the points. Overall the laser scanning and image-based point cloud models generated minimal noise and thus the only required modification involved removing the surrounding environment points that did not belong to the masonry block or the column. Next, a semi-automated step selects the remaining points of the masonry block and forms a CAD object. In order to facilitate shape comparisons, the images collected from the laser scanning device were superimposed on the point cloud model. This is done using a proprietary algorithm created by Leica Geosystems Inc. In presence of a minimum required number of points, this algorithm can automatically generate and apply simple geometric shapes, such as columns, blocks, pipes to the point cloud model. As this research focused on basic construction objects, this algorithm fits well into the scope of this work. Ongoing research is working on automating this task [4] and on optimizing the SfM point cloud models for higher quality reconstructions [37]. Leica claims that the accuracy for fitting objects to point cloud models is 2 mm which for general project progress monitoring seems to be sufficient. Three different views of the returned laser scanned data for the masonry block and three views of the return column (exterior case) are shown in Fig. 12. Part (a) shows a digital photo of the masonry block. Targets have been placed on the block to aid in laser scanning point cloud calibrations. These targets were only used for the laser scanning scenario and they were not used for calibration of the images in the SfM algorithm. Part (b) of Fig. 12 shows a high density laser scan point cloud model of the block and the resulting CAD object produced, while Fig. 12 (c) shows the block with a photo overlay from the laser scanner’s integrated camera.

Table 4 – As-built site photography and SfM experimental data and results.

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Total # of images</th>
<th># of used images</th>
<th>Lighting Condition</th>
<th>Original image resolution</th>
<th>Processed image resolution</th>
<th># of points recovered</th>
<th>Recall++</th>
<th>Computation time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+2</td>
<td>72</td>
<td>53</td>
<td>Lab. lighting</td>
<td>3872 × 2592</td>
<td>2323 × 1555</td>
<td>110,351</td>
<td>1</td>
<td>29 min</td>
</tr>
<tr>
<td>3+4</td>
<td>376</td>
<td>242</td>
<td>Lab. lighting</td>
<td>1936 × 1296</td>
<td>1162 × 778</td>
<td>204,861</td>
<td>1</td>
<td>3872×2592</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>42</td>
<td>Sunny, bright</td>
<td>3872 × 2592</td>
<td>2323 × 1555</td>
<td>80,560</td>
<td>0.94</td>
<td>1 h 12 min</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>42</td>
<td>Sunny, bright</td>
<td>1936 × 1296</td>
<td>2323 × 1555</td>
<td>19,553</td>
<td>0.71</td>
<td>7 h 03 min</td>
</tr>
<tr>
<td>5+6</td>
<td>80</td>
<td>80</td>
<td>Temp. lighting</td>
<td>3872 × 2592</td>
<td>2323 × 1555</td>
<td>38,739</td>
<td>0.41</td>
<td>1 h 13 min</td>
</tr>
<tr>
<td>7+8</td>
<td>54</td>
<td>54</td>
<td>Temp. lighting</td>
<td>3872 × 2592</td>
<td>2323 × 1555</td>
<td>42,854</td>
<td>0.41</td>
<td>10 min</td>
</tr>
</tbody>
</table>

++ Recall = Number of images registered/Number of images used.

Fig. 9. Snapshots of the D4AR system—visualizing indoor laboratory setup as well as outdoor setup for photography of the masonry block at high resolution. From left to right, images show the reconstructed scene, the scene through a camera viewpoint (frustum) as well as the camera frustum showing the image.
Fig. 10. Snapshots of the D4AR—visualizing the point cloud of a column and its periphery at the construction site (high resolution images were used and large points are used for rendering). (a), (c) Point cloud, (b), (e) point cloud visualized through two camera frusta and (e), (f) the same camera viewpoints of (b), (e) with images overlaid on the frontal surface of the frusta.

Fig. 11. Snapshots of the D4AR—visualizing the point cloud of a column at interior and its periphery at the construction site (high resolution images were used and large points are used for rendering). From left to right: (a) Point cloud, (b) point cloud visualized through one camera frustum and (c) the same camera viewpoint of (b) with the image overlaid on the frontal side of the frusta.
dense dataset was required; however in two of our experiments the returned points were not at the necessary density level required by the algorithm to automatically fit a single object to represent the masonry block and thus the system was not able to automatically fit a 3D object. Thus in those cases, for each face of the block individual surfaces were semi-automatically created. The surfaces were subsequently constrained to one another to create intersections, representing the block edges. From these lines, Cartesian distances were measured. Since the SfM reconstructed scene needs to be upgraded to the proper scale, in other words transformed from metric to a Euclidean space, the comparison of the ratios for each dimension (x, y, and z) was used instead of a volumetric comparison. Using this ratio allows the linear accuracy (which is useful for alignment controls) to be evaluated and compared to the true measurements of the objects (obtained using standard tape measuring tools). Table 5 displays a comparison of the ratios for each dimension (x, y, and z).

As observed in Table 5 neither of the used approaches (laser scanning or image-based reconstruction) is completely accurate. The accuracy of these ratios in some of the cases when the image-based point cloud model is used is less than the accuracy of the point cloud model generated by the laser scanner (e.g., see experiments #2 and #3, or experiments #11 and #12 in Table 5). With the experienced accuracy, the applicability of this algorithm for fitting as-built CAD objects on image-based point cloud models may be reduced. Especially for some cases where precise alignments are required, the application of the image-based point cloud model may not be favorable. In contrary to this, within a certain tolerance of perpendicularly (e.g., during post-disaster rapid assessments), image-based point cloud models can still be favorably used to measure deviations. It was also observed that the ratios in each experiment were slightly larger than the controlled ratio. In the case of laser scanner, this was most likely due to superfluous points that were not removed in the post-processing of data. Had these points been removed, the ratio difference would have been smaller (e.g., see experiments #2). In the case of image-based point cloud models, this was most likely due to the synthetically reduced quality of the photographs, the small number of photographs used, the SIFT feature detection technique, as well as the thresholds used in feature detection and bundle adjustment steps (e.g., see experiments #3). In a case where high resolution photographs and/or other feature detection methods are used and the thresholds are less penalizing (as experienced in this study), the number of detected SIFT features, as well as the quality and density of the photo generated point cloud models are higher. Figs. 13 and 14 show the image-based point cloud models as well as the CAD surface that are generated for the masonry block and the exterior concrete column.

Table 6 qualitatively summarizes the advantages/disadvantages associated with using SfM point cloud models (along with still photographs) compared to laser scanning point cloud models. Overall it seems for high precision tasks such as measuring defects or precise alignment of a certain structural or mechanical elements [39], using laser scanners or conventional surveying methods offer valid and practical approaches. For applications where an overall knowledge of project status or even status of a post-disaster site is more important than a detailed and accurate measurement, the use of image-based reconstruction and site photographs becomes very handy. Since

<table>
<thead>
<tr>
<th>#</th>
<th>Object</th>
<th>Data source</th>
<th>Measured values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X/Y</td>
</tr>
<tr>
<td>1</td>
<td>Block (outdoor)</td>
<td>Actual</td>
<td>0.327</td>
</tr>
<tr>
<td>2</td>
<td>Laser</td>
<td></td>
<td>0.322</td>
</tr>
<tr>
<td>3</td>
<td>Photolog #1</td>
<td></td>
<td>0.317</td>
</tr>
<tr>
<td>4</td>
<td>Laser</td>
<td></td>
<td>0.322</td>
</tr>
<tr>
<td>5</td>
<td>Photolog #2</td>
<td></td>
<td>0.320</td>
</tr>
<tr>
<td>6</td>
<td>Laser</td>
<td></td>
<td>0.322</td>
</tr>
<tr>
<td>7</td>
<td>Photolog #1</td>
<td></td>
<td>0.330</td>
</tr>
<tr>
<td>8</td>
<td>Laser</td>
<td></td>
<td>0.330</td>
</tr>
<tr>
<td>9</td>
<td>Photolog #2</td>
<td></td>
<td>0.332</td>
</tr>
<tr>
<td>10</td>
<td>Concrete Column</td>
<td>Actual</td>
<td>0.220</td>
</tr>
<tr>
<td>11</td>
<td>Laser</td>
<td></td>
<td>0.223</td>
</tr>
<tr>
<td>12</td>
<td>Photolog #1</td>
<td></td>
<td>0.198</td>
</tr>
<tr>
<td>13</td>
<td>Laser</td>
<td></td>
<td>0.223</td>
</tr>
<tr>
<td>14</td>
<td>Photolog #2</td>
<td></td>
<td>0.214</td>
</tr>
<tr>
<td>15</td>
<td>Laser</td>
<td></td>
<td>0.223</td>
</tr>
<tr>
<td>16</td>
<td>Photolog #1</td>
<td></td>
<td>0.233</td>
</tr>
<tr>
<td>17</td>
<td>Laser</td>
<td></td>
<td>0.229</td>
</tr>
<tr>
<td>18</td>
<td>Photolog #2</td>
<td></td>
<td>0.230</td>
</tr>
</tbody>
</table>

$|\delta| = |\Delta|/|\Delta_{actual}|$ where in (1) $\Phi = X/Y$, in (2) $\Phi = Y/Z$, or in (3) $\Phi = Z/X$.

Fig. 12. (a) Actual image of masonry block, (b) returned point cloud over fitted CAD object, (c) point cloud with masonry block images overlaid.
The process of generating point cloud models is fully automated. Although an image-based point cloud model is less accurate compared to a laser scanner point cloud model, yet it provides the opportunity of automatically visualizing the as-built scene through geo-registered site photographs with much less effort and no cost. The joint representation of the point cloud and imagery models in addition to the possibility of extracting semantic information from these geo-registered imagery is an improvement to existing photogrammetric techniques or manual alignment of photos with laser scanner point cloud models. Such an integrated visualization can certainly facilitate remote decision makings.

6. Conclusions

This paper presents a new image-based 3D reconstruction approach based on Structure-from-Motion (SfM) and compares it application
with a laser scanner. Eight sets of 3D spatial models, four on actual construction projects and four in laboratory settings were generated. These spatial models were further analyzed to generate 3D CAD surface models. As a stepping stone for a complete as-built model visualization and progress monitoring, these models were compared for accuracy and usability. It is demonstrated that in both laboratory and actual field experiments, the accuracy of using the image-based point cloud models is less than the point cloud generated by the laser scanner, while both approaches allow the as-built environment to be visualized from different viewpoints. In addition, the presented image-based reconstruction approach, automatically overlays hi-resolution photographs to 3D point cloud models. Applying this technique and utilizing existing site photographs for progress monitoring, productivity measurement, as well as QC/QA and safety monitoring, provides project management with a remarkable opportunity on visualization of the as-built data. In order to fully automate the monitoring process, as-planned models need to be properly registered with as-built point cloud models. Such registration allows pose of the searched objects in the as-built model to be known a priori and significantly improves progress monitoring. Particularly when registration of as-planned Building Information Models is considered, benefits are amplified. Such an augmented environment can be used for automatic data collection, processing and reporting. More questions remain to be addressed and additional research is required for algorithms that fully-automatically extract conventional or parametric CAD objects from laser scanners or image-based point cloud models. Optimizing the SfM algorithms for generating higher-quality point cloud models with less computational costs must be further investigated as well.

Acknowledgements

Authors like to thank Turner Construction Co. and Leica Geosystems Inc. for their contributions to this research project. This work was partially funded by the National Science Foundation grants CMMI-0800500, CMS-0324501, CMS-0427089 and CMMI-0800858. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation or the companies mentioned above.

References