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1 Introduction

This research seeks to generate temporal event predictions using the sticky Hierarchical Dirichlet
Process - Hidden Markov Model (sticky HDP-HMM) [2], a generalization of the infinite HMM [1].
Hidden Markov Models (HMMs) are one of the most widely used machine learning techniques for
analyzing temporal data. One significant limitation of this traditional approach is that the number of
states in the HMM, N , has to be decided a priori, but for a number of applications it is not possible
to hypothesize this accurately. The nonparametric Bayesian solution [3] to this is to remove the
dependence on N by effectively making it infinite and specifying a prior over it; such as done in the
HDP-HMM model [4]. An extension to the HDP-HMM model, known as the sticky HDP-HMM
model [2] additionally contains a bias towards self-transitions.

In [2] the sticky HDP-HMM is introduced with application to speaker diarization, where audio
recordings are segmented based on the speaker and simultaneously identify the number of speakers.
For that application inference is done to calculate the posterior of the hidden states corresponding to
the observations, where the hidden states are interpreted to correspond to the various speakers. The
goal is then to identify the number of speakers and which speaker corresponds to each observation.

We believe that another interesting question that can be asked about the HDP-HMM is how effective
it is for making predictions for future observations. We consider in this paper an application of HDP-
HMM to the prediction of events based on stock market indexes. Economic predictions are a well-
researched topic and an area where successful predictions have large impact, so the ability of a model
do well in this domain is very significant. We show that HDP-HMM can be successfully applied
in such prediction tasks and that the utility of the model extends beyond the inference of hidden
states. In addition, we believe that the predictive power of the model is not fully exploited by the use
of only economic data to predict economic events. In extensions to this work we are incorporating
significantly more dimensions to the input data by using indicators from non-traditional sources such
as web search trends, news articles, and social media (such as Tweets and blog posts).

2 Background

An HMM is a generative model of a sequence of observations that hypothesizes that every obser-
vation (or emission) in the sequence is generated from an underlying discrete hidden state that can
transition between time steps. Two main assumptions are made about the dynamics of the process.
First, the observation at a given point in the sequence is dependent on only the hidden state at that
point. Second, the hidden state at a time t + 1 is independent of the hidden states up to time t − 1,
give the state at time t. The HMM requires that the hidden states belong to a discrete set, but the
observations emitted by the hidden states can either be discrete or continuous. For the rest of this
report we restrict the discussion to only continuous observations.

A Bayesian approach to learning an HMM requires defining the number of hidden states N . The
dependence on the number of states N is avoided in the HDP-HMM by making N infinite. Con-
ceptually this means that the transition matrix is infinite, and a prior is placed over these infinite
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matrices. The basic tool that is used in the HDP-HMM to achieve this is the Dirichlet Process.
The Dirichlet Process is a stochastic process that defines a distribution. It has two parameters, α
the “concentration” parameter and H , a base distribution and is denoted as DP (H,α). A draw
from DP (H,α) is itself a distribution with the same support as H . An important property of the
drawn distribution is that it is a discrete distribution, even if H is continuous. The basic idea that
is leveraged in HDP-HMM is that if H is a distribution over emission parameters then a draw from
DP (H,α) is a distribution over an infinite discrete subset of the parameters, which can be taken to
represent a row of the transition matrix of an infinite HMM. DP (H,α) therefore can represent a
prior over a row of the transition matrix.

As a first approach to modeling an infinite HMM, we might consider modeling each row as a separate
draw from DP, thus giving us a prior over the entire transition matrix. However, the Dirichlet process
does not guarantee that the support of each draw from DP (H,α) will be the same. In fact if H is
continuous, the support of each draw will have no overlap with probability 1. This effectively means
that a transition matrix defined using this method specifies a system where every state transition will
be to a state that has never been seen before. This is clearly not a useful model. The hierarchical
Dirichlet process solves this problem by replacing the continuousH with a discrete one H ′ which is
taken to be a draw from another Dirichlet process (call it the top-level DP) H ′ ∼ DP (H, γ). This
forces the output of the low-level DP to be distributions over the same parameters, which makes it
appropriate to use as the rows of the transition matrix.

The HDP-HMM gives us a way to specify priors over the transition matrices that ensure that tran-
sition probabilities are similar. This alone is not fully sufficient for many applications. Consider
for example the intended application where we are modeling daily stock index values. If the hidden
state is intended to indicate market criteria that determine properties such as volatility in the market,
it is reasonable to assume that the hidden state does not change every day. If we model the rows of
the transition matrix as draws fromDP (H,α), even ifH is discrete, the draws will not give us tran-
sition probabilities with this property. The sticky HDP-HMM provides a solution to this. Instead of
drawing from the same DP process to define the rows of the transition matrix, each draw the (now
discrete) base distribution is weighted towards a self-transition.

3 Predictions

We believe that the advantages of the nonparametric Bayesian approach taken in the sticky HDP-
HMM are applicable to the task of data prediction as well as inference of hidden states. We inves-
tigate this idea by using the sticky HDP-HMM in the task of predicting economic events based on
stock index values. There are many different types of events of economic interest and impact. Stock
market crashes, bubbles, changes to indicators such as unemployment, trading activity are some
examples. Of the many ways in which to analyze indicators such as daily changes, percent daily
changes, moving averages among others, one approach that has been used in the economic literature
has been the standard score, or the z score, which measures how many standard deviations a value
is from the mean, z = x−µ

σ . We use the z score of stock index values as the basis for defining events
that we would like to predict. In particular, let xi be the change in the index value between day i and
day i− 1, µi (n) be the average value of the daily change for the n days before i, and σi (n) be the
standard deviation for the daily change for the n days before i. Define n days z score at day i to be:

zni =
xi − µi (n)

σi (n)

We consider an event to have occurred on day i if
∣∣z30i ∣∣ ≥ 4 or

∣∣z90i ∣∣ ≥ 3. Our goal is to predict the
occurrence of an event on the next day based on the values of the stock index during the previous
days.

The sticky HDP-HMM is an appealing model to use in this case. A generative model where hidden
states determine the observations has intuitive justification for the workings of the stock market.
The hidden states could correspond to market situations like bubbles, depressions, volatility, among
others. The number of such hidden states is not known in advance and it is generally expected that
such hidden states do not change quickly, that is, they are sticky. We focus in this paper on the
use the percent daily changes of the index values as our observations and assume that the emission
distributions are Gaussian.
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We learn a sticky HDP-HMM using the percent daily changes of the IGBVL stock index between
the days May 3, 2007 and May 2, 2012. In Figure 1 we plot the observations against the resulting
inferred hidden states.
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Figure 1: Inferred Hidden States for IGBVL between Sep 30, 2009 and Feb 16, 2012

We can see that the different states represent different dynamics of the market. To see the distinctions
between states more clearly we plot in Figure 2.a the proportion of days with events for each inferred
hidden state. We see that there is a marked difference between each state. This gives us optimism
that the model may provide us with useful predictive power. Figure 2.b shows the actual transition
matrix that was learned by the model. One example to note is the non-negligible probability of
transitioning from states 10 and 1 to state 5. Both 10 and 1 have low proportion of events while
state 5 has a high proportion of events. This is further support for the predictive power of the model.
Figure 3.c shows the probability of observations given each state.
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Figure 2

We use the HDP-HMM to define a joint distribution over sequences of observations and then derive
the posterior of future observations given the past observations. The observations are percent daily
changes and so the posterior of the percent daily changes for the next day can be determined which
can then be converted to a posterior over the Z scores from which the probability of an event can be
calculated. Figure 3.a shows the result of training the model on the percent daily change of IGBVL
from May 03, 2007 to Nov 05, 2009 and using the trained model to calculate the probability of
events for the days between Mar 17, 2010 and May 02, 2012. From the figure it is clear that the
model provides us with useful predictive power, as most of the events occur on days where the model
predicts a non-trivial probability of seeing an event. Figure 3.b shows the ROC curve associated with
using different probability thresholds for generating a point estimate of events.

In order to better understand and analyze the predictions provided by the model we provide a detailed
view (Figure 4) into the predictions for the days indexed 265 to 275 in Figure 3.a. Figure 4.a
shows the probability of observations given each state for the learned model. Figure 4.b shows the
probability of an event for the 11 days, Figure 4.c shows the posterior distribution of the hidden
states during that period, and Figure 4.d shows the posterior distribution of observations (percent
daily changes) along with the actual observed value. In Figure 4.d, the area in red corresponds to
values that would lead to a significant z-score event.
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(a) Probability of Events for IGBVL between Mar 17, 2010 and May 02, 2012
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(b) ROC Curve

Figure 3: Analysis of predictive HDP-HMM.
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Figure 4: Details of Model Prediction for Days Indexed 265 to 275

4 Conclusion

In this work we demonstrated that the sticky HDP-HMM model could be used not only for inferring
hidden states, but also for prediction. We demonstrated our initial version of the model against
economic data where our results showed were very promising. This provides strong support for
extending the work to incorporate higher dimensional input data such as web search trends and
social media data.
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