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This paper reviews evidence for the idea thatmuch of human learning, perception, and cognitionmay be understood as information
compression and often more specifically as “information compression via the matching and unification of patterns” (ICMUP).
Evidence includes the following: information compression canmean selective advantage for any creature; the storage and utilisation
of the relatively enormous quantities of sensory information would be made easier if the redundancy of incoming information was
to be reduced; content words in natural languages, with theirmeanings,may be seen as ICMUP; other techniques for compression of
information—such as class-inclusionhierarchies, schema-plus-correction, run-length coding, and part-whole hierarchies—may be
seen in psychological phenomena; ICMUPmay be seen in how we merge multiple views to make one, in recognition, in binocular
vision, in how we can abstract object concepts via motion, in adaptation of sensory units in the eye of Limulus, the horseshoe
crab, and in other examples of adaptation; the discovery of the segmental structure of language (words and phrases), grammatical
inference, and the correction of over- and undergeneralisations in learning may be understood in terms of ICMUP; information
compression may be seen in the perceptual constancies; there is indirect evidence for ICMUP in human cognition via kinds of
redundancy such as the decimal expansion of 𝜋 which are difficult for people to detect; much of the structure and workings of
mathematics—an aid to human thinking—may be understood in terms of ICMUP; and there is additional evidence via the SP
Theory of Intelligence and its realisation in the SP Computer Model. Three objections to the main thesis of this paper are described,
with suggested answers. These ideas may be seen to be part of a “Big Picture” with six components, outlined in the paper.

1. Introduction

“Fascinating idea! All that mental work I’ve done
over the years, and what have I got to show for it?
A goddamned zipfile! Well, why not, after all?”
(John Winston Bush, 1996).

This paper describes empirical evidence for the idea
that much of human learning, perception, and cognition
may be understood as information compression. (This paper
updates, revises, and extends the discussion in [1, Chapter
2] but with the main focus on human learning, percep-
tion, and cognition.) To be more specific, evidence will be
presented that much of human learning, perception, and
cognition may be understood as information compression
via the discovery of patterns that match each other, with the
merging or “unification” of two or more instances of any
pattern to make one. References will also be made to the SP

Theory of Intelligence and its realisation in the SP Computer
Model in which information compression has a central role
(Section 2.2.1).

Although this paper is primarily about information com-
pression in human brains, it seems that similar principles
apply throughout the nervous system and throughout much
of the animal kingdom. Accordingly, this paper has things to
say here and there about the workings of neural tissue outside
the human brain and in nonhuman species.

1.1. Abbreviations. For the sake of brevity in this paper:
“information compression” may be shortened to “IC”; the
expression “information compression via the matching and
unification of patterns” may be referred to as “ICMUP”;
and “human learning, perception, and cognition” may be
“HLPC”.
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Figure 1: A schematic representation of the way two instances of the pattern “INFORMATION” in a body of raw data may be unified to form
a single “unified” pattern or “chunk” of information, below the “raw data”. Lower again in the figure, “w62” is added to the unified chunk as
a relatively short identifier or “code”. The lowest part of the figure shows how the raw data may be compressed by replacing each instance of
“INFORMATION” with a copy of the short identifer. Adapted with permission from Figure 2.3 in [1].

The main thesis of this paper—that much of HLPC may
be understood as IC—may be referred to as “ICHLPC”.

For reasons given in Section 2.2, the name “SP” stands for
Simplicity and Power.

The SP Theory of Intelligence, with its realisation in the
SP Computer Model, may be referred to, together, as the SP
System.

1.2. Presentation. In this paper, the next section (Section 2)
describes some of the background to this research and some
relevant general principles; the next-but-one section (Sec-
tion 3) describes related research; Sections 4 to 20 describe
relatively direct empirical evidence in support of ICHLPC;
and Section 21 summarises indirect support for ICHLPC via
the SPTheory of Intelligence.

Appendix A, referenced from Section 2.3 and elsewhere,
gives some mathematical details related to ICMUP and the
SP System.

Appendix B, referenced from Section 3.1.1 and elsewhere,
describes Horace Barlow’s change of view about the sig-
nificance of IC in mammalian learning, perception, and
cognition, with comments.

Appendix C, referenced from Section 22 and elsewhere,
describes apparent contradictions of ideas in this paper and
how they may be resolved.

2. Background and General Principles

This section provides some background to this paper and
summarises some general principles that have a bearing on

ICHLPC and the programme of research of which this paper
is a part.

2.1. Seven Variants of “Information Compression via the
Matching and Unification of Patterns” (ICMUP). This sub-
section fills out the concept of ICMUP, starting with the
essentials, described in Section 2.1.1, next. Six variants of the
basic idea are described in Sections 2.1.2 to 2.1.7.

While care has been taken in this programme of research
to avoid unnecessary duplication of information across differ-
ent publications, the importance of the following seven vari-
ants of ICMUP has made it necessary, for the sake of clarity,
to describe them quite fully both in this paper and also in [2].

2.1.1. Basic ICMUP. The main idea in ICMUP is illustrated
in the top part of Figure 1. Here, a stream of raw data may be
seen to contain two instances of the pattern “INFORMATION”.
Subjectively, we “see” this immediately. But, in a computer or
a brain, the discovery of that kind of replication of patterns
must necessarily be done by some kind of searching for
matches between patterns.

In itself, the detection of repeated patterns is not very
useful. But by merging or “unifying” the two instances of
“INFORMATION” in Figure 1, wemay create the single instance
shown below the raw data, thus achieving some compression
of information in the raw data (Appendix A.1).

Other relevant points include the following:
(i) Repetition of patterns and “redundancy” in infor-

mation. From the perspective of ICMUP, the con-
cept of redundancy in information may be seen as
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the occurrence of two or more arrays of symbols
that match each other. As noted in Section 2.2.2
below, redundancy may take the form of good partial
matches between patterns as well as exact matches
between patterns.

(ii) A threshold on frequency of occurrence. With regard to
the previous point, an important qualification is that,
for a given repeating array of symbols,A, to represent
redundancy within a given body of information, I,A’s
frequency of occurrence within Imust be higher than
what would be expected by chance for an array of the
same size [1, Sections 2.2.8.3 and 2.2.8.4].

(iii) Frequencies and sizes of patterns. In connection
with the preceding point, the minimum frequency
needed to exceed the threshold is smaller for large
patterns than it is for small patterns. Contrary to
the common assumption that large frequencies are
needed to attain statistical significance, frequencies as
small as 2 can be statistically significant with patterns
of quite moderate size or larger; and large patterns of
a given frequency yield more compression than small
ones of the same frequency (Appendix A.1 [1, Section
2.2.8.4]).

(iv) The concept of a “chunk” of information. A discrete
pattern like “INFORMATION” is often referred to as a
chunk of information, a term that gained prominence
in psychology largely because of its use by George
Miller in his influential paper The magical number
seven, plus or minus two [3].
Miller did not use terms like “unification” or “IC”,
and he sees some uncertainty in the significance of
the concept of a chunk: “The contrast of the terms bit
and chunk also serves to highlight the fact that we are
not very definite about what constitutes a chunk of
information” (p. 93, emphasis in the original). How-
ever, he describes how chunking of information may
achieve something like compression of information:
“. . .wemust recognize the importance of grouping or
organizing the input sequence into units or chunks.
Since the memory span is a fixed number of chunks,
we can increase the number of bits of information
that it contains simply by building larger and larger
chunks, each chunk containing more information
than before” (p. 93, emphasis in the original) and “. . . the dits and dahs are organized by learning into
patterns and . . . as these larger chunks emerge the
amount of message that the operator can remember
increases correspondingly” (p. 93, emphasis in the
original).

(v) Basic ICMUPmeans lossy compression of information.
A point to notice about basic ICMUP of a body of
information, I, is that, without the code mentioned
above, it must always be “lossy”, meaning that nonre-
dundant information in I will be lost. This is because,
in the unification of two or more matching patterns
in I, information is lost about the location of the
following: (1) all but one of those patterns if the unified

chunk is stored in one of the original locations within
I or alternatively (2) all of those patterns if the unified
chunk is stored outside I.

2.1.2. Chunking-with-Codes. The key idea with the chunking-
with-codes variant of ICMUP is that each unified chunk of
information (Section 2.1.1) receives a relatively short name,
identifier, or code, and that code is used as a shorthand for
the chunk of information wherever it occurs.

As already noted, this idea is illustrated in Figure 1,
where, in the middle of the figure, the relatively short code
or identifier “w62” is attached to a copy of the “chunk”
“INFORMATION”, and we may suppose that the pairing of
code and unified chunk would be stored in some kind of
“dictionary”, separate from the main body of data. Then,
under the heading “Compressed data” at the bottom of the
figure, each of the two original instances of “INFORMATION”
is replaced by the short code “w62” yielding an overall
compression of the original data.

Examples of chunking-with-codes from this paper are
the use of “ICMUP” as a shorthand for “information com-
pression via the matching and unification of patterns” and
“HLPC” as a shorthand for “human learning, perception, and
cognition”.

The chunking-with-codes variant of ICMUP overcomes
theweakness of basic ICMUPnoted at the end of Section 2.1.1:
that it loses nonredundant information about the locations of
chunks in the original data, I. The problem may be remedied
with chunking-with-codes because copies of the code for
a given chunk may be used to mark the locations of each
instance of the chunk within I.

Another point of interest is that, with the chunking-
with-codes technique, compression of information may be
optimised by assigning shorter codes to more frequent
chunks and longer codes to rarer chunks, in accordance with
some such scheme as Shannon-Fano-Elias coding [4, Section
5.9].

Similar principles may be applied in the other variants of
ICMUP described in Sections 2.1.3 to 2.1.7 below.

2.1.3. Schema-Plus-Correction. The schema-plus-correction
variant of ICMUP is like chunking-with-codes but the unified
chunk of information may have variations or “corrections” on
different occasions.

An example from everyday life is a menu in a restaurant
or café. This provides an overall framework, something
like “starter, main course, pudding” which may
be seen as a chunk of information. Each of the three
elements of the menu may be seen as a place where
each customer may make a choice or “correction” to
the menu. For example, one customer may choose
“starter(soup), main course(fish), pudding
(apple pie)” while another customer may choose
“starter(salad) main course(vegetable hotpot)
pudding(ice cream)”, and so on.

The schema-plus-correction variant of ICMUP may
achieve compression of information via two mechanisms:
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(i) The schema may itself have a short code. In our menu
example, each menu may have a short code such as
“bm” for the breakfast menu, “lm” for the lunch-time
menu, and so on.

(ii) Each “correction” may have a short code. Again with
ourmenu example, options such as “soup”, “fish”, and
so onmay each have a short code such as “s” for soup,
“f” for fish, and so on.

With those two devices, a customer’s order such as
“[lunch-time-menu: starter(soup), main course
(fish), pudding(apple pie)]” may be reduced to
something like “[lm: s, f, ap]”.

2.1.4. Run-Length Coding. The run-length coding variant of
ICMUPmay be usedwith any sequence of two ormore copies
of a pattern where each copy except the first one follows
immediately after the preceding copy. In that case, it is only
necessary to record one copy of the pattern with the number
of copies or with symbols or “tags” to mark the start and end
of the sequence.

For example, a repeated pattern like

“INFORMATIONINFORMATIONINFORMATION
INFORMATIONINFORMATION”

may be reduced to something like “INFORMATION(×5)”
(where “×5” records the number of instances of
“INFORMATION”). Alternatively, the sequence may be
reduced to something like “p INFORMATION* #p”, where
“*” means that the pattern “INFORMATION” is repeated an
unspecified number of times, and “p . . . #p” specifies where
the sequence begins and where it stops.

2.1.5. Class-Inclusion Hierarchy with Inheritance of Attributes.
With the class-inclusion hierarchy variant of ICMUP, there
is a hierarchy of classes and subclasses, with “attributes” at
each level. At every level except the top level, each subclass
“inherits” the attributes of all the higher levels.

For example, in simplified form, the class “motorised
vehicle” contains subclasses like “road vehicle” and
“rail vehicle”; the class “road vehicle” contains sub-
classes like “bus”, “lorry”, and “car”, and so on. An
attribute like “contains engine” would be assigned to
the top level (“vehicle”) and would be inherited by all
lower-level classes, thus avoiding the need to record that
information repeatedly at all levels in the hierarchy and
likewise for attributes at lower levels. Thus a class-inclusion
hierarchy with inheritance of attributes combines IC with
inference, in accordancewith the close relation between those
two things, noted in Section 2.5.

Of course there are many subtleties in the way people
use class-inclusion hierarchies, such as cross-classification,
“polythetic” or “family resemblance” concepts (in which no
single attribute is necessarily present in every member of the
given category and there need be no single attribute that is
exclusive to that category [5]), and the ability to recognise
that something belongs in a class despite errors of omission,
commission, or substitution. The way in which the SP System

can accommodate those kinds of subtleties is discussed in [1,
Sections 2.3.2, 6.4.3, 12.2, and 13.4.6.2].

2.1.6. Part-Whole Hierarchy with Inheritance of Contexts.
The part-whole hierarchy variant of ICMUP is like a class-
inclusion hierarchy with inheritance of attributes except that
the hierarchical structure represents the parts and subparts of
some class or entity, and any given part inherits information
about the context which it shares with all its siblings on
the same level. A part-whole hierarchy promotes economy
by sidestepping the need for each part of an entity at any
given level to store full information about the higher-level
structures of which it is a part—which is the same as other
parts on the same level.

A simple example is the way that a “person” has parts
like “head”, “body”, “arms”, and “legs”, while an arm may
be divided into “upper arm”, “forearm”, “hand”, and so on.
In a structure like this, inheritance means that if one hears
that a given person has an injury to his or her hand, one can
infer immediately that that person”s “arm” has been injured
and indeed his or her whole “person”.

2.1.7. SP-Multiple-Alignment as a Generalised Version of
ICMUP. The seventh of the versions of ICMUP consid-
ered in this paper is the concept of SP-multiple-alignment,
described in Section 2.2.2 below.

SP-multiple-alignment may be seen to be a generalised
version of ICMUP which encompasses the other six versions
described in Sections 2.1.1 to 2.1.6.

This versatility in modelling other versions of ICMUP
is not altogether surprising since SP-multiple-alignment is
largely responsible for the SP System’s versatility in diverse
aspects of intelligence (including diverse kinds of reasoning),
in the representation of diverse kinds of knowledge, and its
potential for the seamless integration of diverse aspects of
intelligence and diverse kinds of knowledge, in any combi-
nation (Section 2.2.5).

2.2. The SP Theory of Intelligence. Readers will see that the
paper contains references to the SP Theory of Intelligence, its
realisation in the SP Computer Model, and associated ideas,
especially the concept of SP-multiple-alignment. But it must
be emphasised that the SPTheory is not the main focus of the
paper. Instead it is relevant for subsidiary reasons:

(i) Empirical evidence for ICHLPC strengthens empirical
support for the SP Theory. Since IC and, more specif-
ically, ICMUP are central in the SPTheory, empirical
evidence for ICHLPC (presented in Sections 4 to
20) strengthens empirical support for the SP Theory,
viewed as a theory of HLPC.

(ii) Direct empirical evidence for the SP Theory pro-
vides indirect evidence for ICHLPC. Direct empirical
evidence for the SP Theory—summarised in Sec-
tion 2.2.5—provides indirect evidence for ICHLPC
which is additional to that in in Sections 4 to 20 (see
Section 21).



Complexity 5

Old
(compressed)

New
(uncompressed)

Figure 2: Schematic representation of the SP System from an “input” perspective. Reproduced with permission from Figure 1 in [6].

(iii) Clarifying theoretical issues related to HLPC. The SP
Computer Model, which may be seen as a working
model of several aspects of HLPC, can help to clarify
theoretical issues related toHLPC. It has, for example,
proved useful in understanding issues discussed in
Appendices B and C.

For those reasons, an outline of the theory is appropriate
here.

2.2.1. Outline of the SP Theory of Intelligence: Introduction.
The SP Theory of Intelligence and its realisation in the SP
Computer Model—the SP System—is a unique attempt to
simplify and integrate observations and concepts across
artificial intelligence, mainstream computing, mathematics,
and human learning, perception, and cognition, with IC as
a unifying theme. This broad scope for the SP programme
of research has been adopted for reasons summarised in
Section 2.6 below.

As mentioned in Section 1.1, the name “SP” stands for
Simplicity and Power. This is because compression of any
given body of information, I, may be seen as a process of
reducing informational “redundancy” in I and thus increas-
ing its “simplicity”, while retaining as much as possible of its
nonredundant expressive “power”.

The SP Theory, the SP Computer Model, and some
applications are described quite fully in [6] and much more
fully in [1]. Details of other publications about the SP System,
most with download links, may be found on http://www
.cognitionresearch.org/sp.htm. A download link for the
source code of SP71, the latest version of the SP Computer

Model, may be found under the heading “SOURCE CODE”
near the bottom of that page.

The SP Theory is conceived as a brain-like system as
shown schematically in Figure 2. The system receives New
information via its senses and stores some or all of it in
compressed form as Old information.

All kinds of knowledge or information in the SP System
are represented with arrays of atomic SP-symbols in one
or two dimensions called SP-patterns. At present, the SP
Computer Model works only with one-dimensional SP-
patterns but it is envisaged that, at some stage, it will be
generalised to work with two-dimensional SP-patterns.

2.2.2. SP-Multiple-Alignment. A central part of the SP System
is the powerful concept of SP-multiple-alignment, outlined
here.The concept is describedmore fully in [6, Section 4] and
[1, Sections 3.4 and 3.5].

The concept of SP-multiple-alignment in the SP System is
derived from the concept of “multiple sequence alignment”
in bioinformatics (see, e.g., [7]).That latter concept means an
arrangement of two or more DNA sequences or sequences
of amino-acid residues so that, by judicious “stretching” of
sequences in a computer, symbols that match from row to
row are aligned—as illustrated in Figure 3. A “good”multiple
sequence alignment is one with a relatively high value for
somemetric related to the number of symbols that have been
brought into line.

For a given set of sequences, finding or creating “good”
multiple sequence alignments amongst the many possible
“bad” ones is normally a complex process—normally too

http://www.cognitionresearch.org/sp.htm
http://www.cognitionresearch.org/sp.htm
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Figure 3: A “good” multiple sequence alignment amongst five DNA sequences. Reproduced with permission from Figure 3.1 in [1].
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Figure 4:The best SP-multiple-alignment produced by the SP Computer Model with a New SP-pattern representing a sentence to be parsed
and a repository of user-supplied Old SP-patterns representing grammatical categories, including words. Reproduced with permission from
Figure 2 in [8].

complex to be solved by exhaustive search. For that rea-
son, bioinformatics programs for finding good multiple
sequence alignments use heuristic methods, building mul-
tiple sequence alignments in stages and discarding low-
scoringmultiple sequence alignments at the end of each stage,
with backtracking or something equivalent to improve the
robustness of the search.

With such methods, it is not normally possible to guar-
antee that the best possible multiple sequence alignment
has been found, but it is normally possible to find multiple
sequence alignments that are good enough for practical
purposes.

The two main differences between the concept of SP-
multiple-alignment in the SP System and the concept of mul-
tiple sequence alignment in bioinformatics are the following:

(i) New and Old information. With an SP-multiple-
alignment, one of the SP-patterns (sometimes more
than one) is New information from the system’s
environment (see Figure 2), and the remaining SP-
patterns are Old information, meaning information
that has been previously stored (also shown in Fig-
ure 2).

(ii) Encoding New information economically in terms of
Old information. In the creation of SP-multiple-
alignments, the aim is to build ones that, in each
case, allow the New SP-pattern (or SP-patterns) to
be encoded economically in terms of the Old SP-
patterns in the given SP-multiple-alignment. In each
case, there is an implicit merging or unification of SP-
patterns or parts of SP-patterns that match each other,
as described in [6, Section 4.1] and [1, Section 3.5].

In the SP-multiple-alignment shown in Figure 4, oneNew
SP-pattern is shown in row 0, and Old SP-patterns, drawn
from a repository of Old SP-patterns, are shown in rows 1 to
9. By convention, the New SP-pattern(s) is always shown in
row 0 and the Old SP-patterns are shown in the other rows,
one SP-pattern per row.

In this example, the New SP-pattern is a sentence and
the Old SP-patterns in rows 1 to 9 represent grammatical
structures including words. The overall effect of the SP-
multiple-alignment is to “parse” or analyse the sentence into
its constituent parts and subparts, with each part marked
with a category like “NP” (meaning “noun phrase”), “N”
(meaning “noun”), “VP” (meaning “verb phrase”), and so on.
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But, as described in Section 2.2.5, the SP-multiple-alignment
construct can do much more than parse sentences.

Each SP-multiple-alignment is evaluated in terms of how
it provides for the New SP-pattern in row 0 to being encoded
economically in terms of the Old SP-patterns in the other
rows. An SP-multiple-alignment is “good” if the encoding is
indeed economical. Details of how this is done are described
in Appendix A.4.

With SP-multiple-alignments in the SP System, as with
multiple sequence alignments in bioinformatics, the process
of finding “good” SP-multiple-alignments is too complex for
exhaustive search, so it is normally necessary to use heuristic
methods—which means that, as before, the best possible
results may be missed but it is normally possible to find SP-
multiple-alignments that are reasonably good.

At the heart of SP-multiple-alignment is a process for
finding good full and partial matches between SP-patterns,
described quite fully in [1, Appendix A]. As in the building
of SP-multiple-alignments, heuristic search is an important
part of the process of finding good full and partial matches
between SP-patterns. Some details with relevant calculations
are given in Appendix A.8.

As noted in Section 2.1.7, the concept of SP-multiple-
alignment may be seen to be a generalised version of ICMUP,
which encompasses all the other six variants of ICMUP
described in Section 2.1.

2.2.3. Unsupervised Learning in the SP System. Unsupervised
learning in the SP System is described in [6, Section 5] and
[1, Chapter 9]. In brief, it means searching for one or more
collections of Old SP-patterns called grammars which are
relatively good for the economical encoding of a given set of
New SP-patterns.

As with the building of SP-multiple-alignments (Sec-
tion 2.2.2) and the process of finding good full and partial
matches between SP-patterns [1, Appendix A] and many
other AI programs, unsupervised learning in the SP System
uses heuristic techniques: doing the search in stages and, at
each stage, concentrating the search in the most promising
areas and cutting out the rest.

Some of the details of relevant calculations are given in
Appendix A.7.

As mentioned in Section 2.2.4, learning in the SP System
is quite different from the popular “Hebbian” learning, often
characterised as “Cells that fire together wire together”, and
it is quite different from how deep learning systems learn.
(Hebb’s original version of his learning rule is “When an axon
of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that
A’s efficiency, as one of the cells firing B, is increased.” [9, p.
62])

2.2.4. SP-Neural. Functionality that is similar to that of the
SP System may be realised in a “neural” sister to the SP
System called SP-Neural, expressed in terms of neurons and
their interconnections [8], as illustrated in Figure 5. Although
the main elements of SP-Neural have been defined, there are

details to be filled in. As with the development of the SP
Theory itself, it is likely that many insights may be gained by
building computer models of SP-Neural.

An important point here is that SP-Neural is quite
different from the kinds of “artificial neural network” that are
popular in computer science, including those that provide the
basis for “deep learning” [10].

It is relevant to mention that Section V of [11] describes
thirteen problems with deep learning in artificial neural
networks and how, with the SP System, those problems
may be overcome. The SP System also provides a com-
prehensive solution to a fourteenth problem with deep
learning—“catastrophic forgetting”—meaning the way in
which new learning in a deep learning system wipes out old
memories.

Probably, SP-Neural’s closest relative is Donald Hebb’s
[9] concept of a “cell assembly” but, since learning in SP-
Neural is likely to be modelled on learning in the SP
System (Section 2.2.3), it will be quite different fromHebbian
learning and also quite different from learning in deep
learning systems. More loosely, SP-Neural, when it is more
fully developed, is likely to bear a superficial resemblance
to Alan Turing’s concept of an “unorganised” machine [12]
because its neural tissues would become progressively more
organised as it learns.

2.2.5. Strengths and Potential of the SP System. Largely
because of the versatility of the SP-multiple-alignment con-
struct, the SP Systemhas strengths and potential inmodelling
several aspects of HLPC, as outlined here:

(i) Versatility in aspects of intelligence. The SP System has
strengths in several aspects of human-like intelligence
including: unsupervised learning; the analysis and
production of natural language; pattern recognition
that is robust in the face of errors in data; pat-
tern recognition at multiple levels of abstraction;
computer vision; best-match and semantic kinds of
information retrieval; several kinds of reasoning (next
bullet point); planning; and problem solving.

(ii) Versatility in reasoning. Strengths of the SP System
in reasoning include: one-step “deductive” reasoning;
chains of reasoning; abductive reasoning; reasoning
with probabilistic networks and trees; reasoning with
“rules”; nonmonotonic reasoning and reasoning with
default values; Bayesian reasoning with “explaining
away” (This means “If A implies B, C implies B, and
B is true, then finding that C is true makes A less
credible. In other words, finding a second explanation
for an item of data makes the first explanation less
credible” [13, p. 7]. See also [6, Section 10.2] and
[1, Section 7.8].); causal reasoning; reasoning that is
not supported by evidence; the already-mentioned
inheritance of attributes in class hierarchies; and
inheritance of contexts in part-whole hierarchies.
There is also potential in the SP System for spatial
reasoning and for what-if reasoning. Probabilities for
inferences may be calculated in a straightforward
manner (Appendix A.6).
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Figure 5: A schematic representation of a partial SP-multiple-alignment in SP-Neural, as discussed in [8, Section 4]. Each broken-line
rectangle with rounded corners represents a pattern assembly—corresponding to an SP-pattern in the SP Theory. Each character or group
of characters enclosed in a solid-line ellipse represents a neural symbol corresponding to an SP-symbol in the SP Theory. The lines between
pattern assemblies represent nerve fibres with arrows showing the direction in which impulses travel. Neural symbols are mainly symbols
from linguistics such as “NP”meaning “noun phrase”, “D” meaning a “determiner”, “#D”meaning the end of a determiner, and “#NP”meaning
the end of a noun phrase. Reproduced with permission from Figure 3 in [8].

(iii) Versatility in the representation and processing of
knowledge. The SP System has strengths in the repre-
sentation and processing of several different kinds of
knowledge including the syntax of natural languages;
class-inclusion hierarchies (with or without cross
classification); part-whole hierarchies; discrimination
networks and trees; if-then rules; entity-relationship
structures; relational tuples; and concepts in math-
ematics, logic, and computing, such as “function”,
“variable”, “value”, “set”, and “type definition”. With
the addition of two-dimensional SP-patterns to the
SP System, there is potential to represent such things

as photographs, diagrams, structures in three dimen-
sions, and procedures that work in parallel.

(iv) Seamless integration of diverse aspects of intelligence
and diverse kinds of knowledge, in any combination.
Because the SP System’s versatility (in diverse aspects
of intelligence and in the representation of diverse
kinds of knowledge) flows from one relatively sim-
ple framework—SP-multiple-alignment—the system
has clear potential for the seamless integration of
diverse aspects of intelligence and diverse kinds of
knowledge, in any combination.That kind of seamless
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Figure 6: A schematic representation of versatility and integration in the SP System, with SP-multiple-alignment centre stage.

integration appears to be essential in modelling the
fluidity, versatility, and adaptability of the human
mind.

Figure 6 shows schematically how the SP System, with
SP-multiple-alignment centre stage, exhibits versatility and
integration.

There are more details in [6] and much more details in
[1]. Distinctive features and advantages of the SP System are
described quite fully in [11].

How absolute and relative probabilities for SP-multiple-
alignments may be calculated (for use in reasoning and other
aspects of AI) is detailed in Appendix A.6.

2.2.6. Potential Benefits and Applications of the SP System.
Apart from its strengths and potential in modelling aspects
of the humanmind, it appears that, in more humdrum terms,
the SP System has several potential benefits and applications.
These include helping to solve nine problems with big data,
helping to develop intelligence in autonomous robots, devel-
opment of an intelligent database system, medical diagnosis,
computer vision and natural vision, suggesting avenues for
investigation in neuroscience, commonsense reasoning, and

more.Details of relevant papers, with download links, may be
found on http://www.cognitionresearch.org/sp.htm.

2.3. Avoiding Too Much Dependence on Mathematics. Many
approaches to IC have a mathematical flavour (see, e.g., [14]).
Much the same is true of concepts of inference and probability
which, as outlined in Section 2.5, are closely related to IC.

In the SP programme of research, the orientation is
different. The SP Theory attempts to get below or behind the
mathematics of other approaches to IC and to concepts of
inference and probability: it attempts to focus on ICMUP,
the relatively simple, “primitive” idea that information may
be compressed by finding two or more patterns that match
each other, and merging or “unifying” them so that multiple
instances of the pattern are reduced to one.

That said, there is some mathematics associated with
ICMUP, and there is some more which is incorporated in the
SP Computer Model. They are described in Appendix A and
referenced at appropriate points throughout this paper.

There are fourmain reasons for this focus on ICMUP and
the avoidance of too much dependence on mathematics:

(i) Opening the door to nonmathematical mechanisms
for compression of information. Since ICMUP is

http://www.cognitionresearch.org/sp.htm
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relatively “concrete” and less abstract than the more
mathematical approaches to IC, it may open the door
to nonmathematical mechanisms for compression of
information which may otherwise be overlooked.
Here are two putative examples:

(a) SP-multiple-alignment. The concept of SP-
multiple-alignment (Section 2.2.2) is founded
on ICMUP and is not a recognised part of
today’s mathematics—but it has been proven to
be effective in the compression of information,
it makes possible a relatively straightforward
approach to the calculation of probabilities for
inferences (Appendix A.6), and it facilitates the
modelling of several aspects of HLPC (Sec-
tion 2.2.5, [1, 6]).

(b) ICMUP in SP-Neural. Because SP-Neural (Sec-
tion 2.2.4) is derived from the SP Theory,
ICMUP is implicit in how, when it is more fully
developed, SP-Neural is likely to work.

(ii) Do not use mathematics in describing the foundations
of mathematics. The SP Theory aims to be, amongst
other things, a theory of the foundations of math-
ematics [2], so it would not be appropriate for the
theory to be too dependent on mathematics.

(iii) The SP Theory is not founded on the concept of a
universal Turing machine. While the SP Theory has
benefitted from valuable insights gained frommathe-
matically oriented research onAlgorithmic Probability
Theory, Algorithmic Information Theory, and related
work (Section 3.2), it differs from that work in that it
is not founded on the concept of a “universal Turing
machine”.
Instead, a focus on ICMUPhas yielded a new theory of
computing and cognition, founded on ICMUP and SP-
multiple-alignment, with the generality of the univer-
sal Turing machine [1, Chapter 4] but with strengths
in the modelling of human-like intelligence which, as
Alan Turing acknowledged [12, 15], are missing from
the universal Turing machine (Section 2.2.5, [1, 6]).

(iv) ICMUP not obvious in such techniques as as wavelet
compression and arithmetic coding. At some abstract
level, it may be that all mathematically based tech-
niques for compression of information are founded
on ICMUP.And if the thesis of [2] is true, then all such
techniques will indeed have an ICMUP foundation.
But, nevertheless, techniques for the compression of
information such as wavelet compression or arith-
metic coding seem far removed from the simple idea
of finding patterns thatmatch each other andmerging
them into a single instance.

The SP System, including the concepts of SP-multiple-
alignment and ICMUP, provides a novel approach to concepts
of IC and probability (Section 2.5) which appears to have
potential as an alternative tomorewidely recognisedmethods
in these areas.

2.4. Empirical Evidence and Quantification. Although quan-
tification of empirical evidence can in some studies be
necessary or at least useful, it appears that, with most of the
evidences presented in this paper (except in Sections 15 and
16), quantification would not be feasible or useful. In any case,
attempts at quantification would be a distraction from the
main thrust of the paper: that many examples of IC in HLPC
are staring us in the face without the need for quantification.

As an example (from Section 6), a name like “New York”
is, in the manner of chunking-with-codes, a relatively brief
“code” for the enormously complex “chunk” of information
which is the structure and workings of the city itself. Similar
things can be said about most other names for things, and
also “content” words like “house”, “table”, and so forth. In
short, natural language may be seen to be a very powerful
means of compressing information via the chunking-with-
codes technique—and this is clear without the need for
quantification.

2.5. IC and Concepts of Inference and Probability. It has
been recognised for some time that there is an intimate
relation between IC and concepts of inference and probability
(Appendix A.2, [16–19]).

In case this seems obscure, it makes sense in terms of
ICMUP. A pattern that is repeated is one that invites ICMUP
but it is also one that, via inductive reasoning, suggests
possible inferences:

(i) Any repeating pattern provides a basis for predic-
tion. Any repeating pattern—such as the association
between black clouds and rain—provides a basis for
prediction: black clouds suggest that rain may be on
the way, and probabilities may be derived from the
number of repetitions.

(ii) Inferences via partial matching. With basic ICMUP
and its variants, inferences may be made when one
new pattern from the environment matches part of
a stored, unified pattern. If, for example, we see
“INFORMA”, we may guess, on the strength of the
stored pattern, “INFORMATION” (Figure 1), that the
letters “TION” are likely to follow. This idea is some-
times called “prediction by partial matching” [20]. Of
course, the pattern may be completed in a similar
way if the incoming information is “INFORMAN”,
“INMATION”, “INFRMAION”, and so on.

(iii) The SP System is designed to find partial matches
as well as exact matches. Because of the need to
make inferences like those just described and because
a prominent feature of human perception is that
we are rather good at finding good partial matches
between patterns as well as exact matches, the SP Sys-
tem, including the process for building SP-multiple-
alignments, is designed to search for redundancy in
the form of good partial matches between patterns,
as well as redundancy in the form of exact matches.
This is done with a version of dynamic programming,
described in [1, Appendix A].
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There is a lot more detail about how this works with the
SP-multiple-alignment concept in Appendix A.6 [6, Section
4.4] and [1, Section 3.7 and Chapter 7]. The SP System has
proven to be an effective alternative to Bayesian theory in
explaining such phenomena as “explaining away” ([6, Section
10.2], [1, Section 7.8]).

As indicated in Section 4, the close connection between
IC and concepts of inference and probability makes sense in
terms of biology.

2.6. The Big Picture. The credibility of the ICHLPC thesis of
this paper is strengthened by its position in a “Big Picture” of
the importance of IC in at least six areas:

(i) Evidence for IC as a unifying principle in human learn-
ing, perception, and cognition. This paper describes
relatively direct empirical evidence for IC (and more
specifically ICMUP) as a unifying principle in HLPC.

(ii) IC in the SP Theory of Intelligence. ICMUP is central
in the SP Theory of Intelligence (Section 2.2) which
itself has much empirical and analytical support,
summarised in Section 2.2.5, with pointers to where
further information may be found.

(iii) IC inNeuroscience. Because of its central role in the SP
System, IC is central in SP-Neural (Section 2.2.4) and
may thus have an important role in neuroscience.

(iv) IC and concepts of inference and probability. It is
known that there is an intimate relation between
IC and concepts of inference and probability (Sec-
tion 2.5).

(v) IC as a foundation for mathematics. The paper “Math-
ematics as information compression via the matching
and unification of patterns” [2] argues that much of
mathematics, perhaps all of it, may be understood in
terms of ICMUP.

(vi) IC as a unifying principle in science. It is widely
agreed that “Science is, at root, just the search for
compression in the world” [21, p. 247], with variations
such as “Science may be regarded as the art of data
compression” [19, p. 585], and more.

The Big Picture, as just outlined, is important for reasons
summarised here:

(i) You can’t play 20 questions with nature and win. In
his famous essay, “You can’t play 20 questions with
nature and win”, Allen Newell [22] writes about the
sterility of developing theories in narrow fields and
calls for each researcher to focus on “a genuine slab
of human behaviour” (p. 303). ( Newell’s essay and
his book Unified Theories of Cognition [23] led to
many attempts by himself and others to develop such
theories. But the difficulty of reaching agreement on
a comprehensive framework for general, human-like
AI is suggested by the following observation in [24,
Locations 43–52]: “Despite all the current enthusiasm
in AI, the technologies involved still represent no
more than advanced versions of classic statistics and

machine learning.” And what follows [24, Location
52] seems to confirm the persistence of the long-
standing fragmentation of AI: “Behind the scenes,
however, many breakthroughs are happening onmul-
tiple fronts: in unsupervised language and grammar
learning, deep-learning, generative adversarial meth-
ods, vision systems, reinforcement learning, trans-
fer learning, probabilistic programming, blockchain
integration, causal networks, and many more”.)

(ii) Ockham’s razor. Newell’s exhortation accords with
a slightly extended version of Ockham’s razor: in
developing simple theories of empirical phenomena,
we should concentrate on those with the greatest
explanatory range. Such theories will, naturally, be
more useful than those with narrow scope, but, in
addition, it seems that they are often relatively robust
in the face of new evidence.

(iii) If you can’t solve a problem, enlarge it. In a similar
vein, President Eisenhower is reputed to have said: “If
you can’t solve a problem, enlarge it”, meaning that
putting a problem in a broader context may make it
easier to solve. Good solutions to a problem may be
hard to see when the problem is viewed through a
keyhole but become visible when the door is opened.

In keeping with these three reasons, the Big Picture
is important in showing the potential of IC as a unifying
principle across a wide canvass, including the six areas
mentioned above.

Each of the six components of the Big Picture has support
via empirical and analytical evidence which is specific to that
component. In addition, the six components are mutually
supportive in the sense that the credibility of any one of
them, including the main ICHLPC thesis of this paper, is
strengthened via its position in the Big Picture.

Implications of the Big Picture include, for example, the
fact that IC should be a key part of any and all proposals
for general, human-like AI, for theories of human learning,
perception, and cognition and for theories of cognitive
neuroscience.

2.7. Volumes of Data and Speeds of Learning. As noted in
Section 2.1.1, large patterns may exceed the threshold for
redundancy at a lower frequency than small patterns. With a
complex pattern, such as an image of a person or a tree, there
can be significant redundancy in a mere 2 occurrences of the
pattern.

If redundancies can be detected via patterns that occur
only 2 or 3 times in a given sample of data, unsupervised
learning may prove to be effective with smallish amounts of
data. This may help to explain why, in contrast to the very
large amounts of data that are apparently required for success
with deep learning, children and non-deep-learning types of
learning program can do useful things with relatively tiny
amounts of data [11, Section V-E].

In this connection, neuroscientist David Cox has been
reported as saying: “To build a dog detector [with a deep
learning system], you need to show the program thousands
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of things that are dogs and thousands that aren’t dogs. My
daughter only had to see one dog” and, the report says,
she was happily pointing out puppies ever since. (“Inside
the moonshot effort to finally figure out the brain”, MIT
Technology Review, 2017-10-12, https://bit.ly/2wRxsOg.)

This issue relates to the way in which a camouflaged
animal is likely to become visible when it moves relative to
its background (Section 12). Aswith random-dot stereograms
(Section 11), only two images that are similar but not the same
are needed to reveal hidden structure.

2.8. Emotions andMotivations. Apoint that deserves empha-
sis is that while this paper is part of a programme of research
aiming for simplification and integration of observations and
ideas in HLPC and related fields, it does not aspire to be a
comprehensive view of human psychology. In particular, it
does not attempt to say anything about emotions or moti-
vations, despite their undoubted importance and relevance
to many aspects of human psychology, including cognitive
psychology. That said, it seems possible that IC might apply
to emotions or motivations in the same way that it may
be applied to sensory data and our concepts about the
world.

3. Related Research

An early example of thinking relating to IC in HLPC was the
suggestion by William of Ockham in the 14th century that
“Entities are not to be multiplied beyond necessity”. Later,
Isaac Newton wrote that “Nature is pleased with simplicity”
[25, p. 320], Albert Einstein wrote that “A theory is more
impressive the greater the simplicity of its premises, the more
different things it relates, and the more expanded its area of
application” (Quoted in [26, p. 512].) andmore. Research with
a more direct bearing on ICHLPC began in the 1950s and
1960s after the publication of Claude Shannon’s [16] “theory of
communication” (later called “information theory”) and was
partly inspired by it.

In the two subsections that follow, there is a rough
distinction between research with the main focus on issues
in HLPC and neuroscience and research that concentrates
on issues in mathematics and computing. In both sections,
research is described roughly in the order in which it was
published.

In this research, the prevailing view of information,
compression of information, and probabilities is that they are
things to be defined and analysed in mathematical terms.
This perspective has yielded some useful insights but, as
suggested in Section 2.3, there are potential advantages in
the ICMUP perspective adopted in the SP research. This
ICMUPperspective is what chiefly distinguishes the evidence
that provides the main thrust of this paper from the related
research described in this section.

3.1. Psychology-Related and Neuroscience-Related Research.
Research relating to IC and HLPC and neuroscience may be
divided roughly into two parts: early research initiated in the
1950s and 1960s by Fred Attneave, Horace Barlow and others

and then, after a relative lull in activity, later research from the
1990s onwards.

3.1.1. Early Psychology-Related and Neuroscience-Related
Research. In a paper called “Some informational aspects of
visual perception”, Fred Attneave [27] describes evidence
that visual perception may be understood in terms of the
distinction between areas in a visual image where there is
much redundancy and boundaries between those areas where
nonredundant information is concentrated: “. . . information
is concentrated along contours (i.e., regions where color
changes abruptly) and is further concentrated at those points
on a contour at which its direction changes most rapidly (i.e.,
at angles or peaks of curvature)” [27, p. 184].

For those reasons, he suggests that “Common objects
may be represented with great economy and fairly striking
fidelity by copying the points at which their contours change
directionmaximally and then connecting these points appro-
priatelywith a straight edge” [27, p. 185]. Andhe illustrates the
point with a drawing of a sleeping cat reproduced in Figure 7.

And he concludes with the suggestion that perception
may be seen as economical description: “It appears likely that
a major function of the perceptual machinery is to strip away
some of the redundancy of stimulation, to describe or encode
incoming information in a form more economical than that
in which it impinges on the receptors” [27, p. 189].

Satosi Watanabe picked up the baton in a paper called
“Information-theoretical aspects of inductive and deductive
inference” [28]. He later wrote about the role of IC in pattern
recognition [29, 30].

At about this time, Horace Barlow published a paper
called “Sensory mechanisms, the reduction of redundancy,
and intelligence” [31] in which he argued, on the strength
of the large amounts of sensory information being fed into
the [mammalian] central nervous system, that “the storage
and utilization of this enormous sensory inflow would be
made easier if the redundancy of the incoming messages
was reduced” (p. 537). And he draws attention to evidence
that, in mammals at least, each optic nerve is too small, by a
widemargin, to carry reasonable amounts of the information
impinging on the retina unless there is considerable compres-
sion of that information [31, p. 548].

In the paper, Barlow makes the interesting suggestion
that “. . . the mechanism that organises [the large size of
the sensory inflow] must play an important part in the
production of intelligent behaviour” (p. 555), and in a later
paper [32, p. 210] he writes the following:

“. . . the operations required to find a less redun-
dant code have a rather fascinating similarity to
the task of answering an intelligence test, find-
ing an appropriate scientific concept, or other
exercises in the use of inductive reasoning. Thus,
redundancy reduction may lead one towards
understanding something about the organiza-
tion of memory and intelligence, as well as
pattern recognition and discrimination”.

These prescient insights into the significance of IC for the
workings of human intelligence, with further discussion in

https://bit.ly/2wRxsOg
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Figure 7: Drawing made by abstracting 38 points of maximum curvature from the contours of a sleeping cat and connecting these points
appropriately with a straight edge. Reproduced from Figure 3 in [27], with permission.

[33], are a strand of thinking that has been carried through
into the SPTheory of Intelligence, with awealth of supporting
evidence, summarised in Section 2.2.5. (When I was an
undergraduate at Cambridge University, it was fascinating
lectures by Horace Barlow about the significance of IC in
the workings of brains and nervous systems that first got me
interested in those ideas.)

Barlow developed these and related ideas over a period of
years in several papers, some of which are referenced in this
paper. However, in [34], he adopted a new position, arguing
that

“. . . the [compression] idea was right in drawing
attention to the importance of redundancy in
sensory messages because this can often lead
to crucially important knowledge of the envi-
ronment, but it was wrong in emphasizing the
main technical use for redundancy, which is
compressive coding.The idea points to the enor-
mous importance of estimating probabilities for
almost everything the brain does, from deter-
mining what is redundant to fuelling Bayesian
calculations of near optimal courses of action in
a complicated world” (p. 242).

While there are some valid points in what Barlow says
in support of his new position, his overall conclusions
appear to be wrong. His main arguments are summarised in
Appendix B, with what I’m sorry to say are my critical com-
ments after each one. (I feel apologetic about this because, as I
mentioned, Barlow’s lectures and his earlier research relating
to IC in brains and nervous systems have been an inspiration
for me over many years.)

3.1.2. Later Psychology-Related and Neuroscience-Related
Research. Like the earlier studies, later studies relating to IC
in brains and nervous systems have little to say about ICMUP.
But they help to confirm the importance of IC in HLPC and

thus provide support for ICHLPC. A selection of publications
are described briefly here.

Ruma Falk and Clifford Konold [35] describe the results
of experiments indicating that the perceived randomness of
a sequence is better predicted by various measures of its
encoding difficulty than by its objective randomness. They
suggest that judging the extent of a sequence’s randomness
is based on an attempt to encode it mentally and that the
subjective experience of randomness may result when that
kind of attempt fails.

Jose Hernández-Orallo and Neus Minaya-Collado [36]
propose a definition of intelligence in terms of IC. At the
most abstract level, it chimes with remarks by Horace Barlow
quoted in Section 3.1.1, and indeed it is consonant with the SP
Theory itself. But the proposal shows no hint of how tomodel
the kinds of capabilities that one would expect to see in any
artificial system that aspires to human-like intelligence.

Nick Chater, with others, has conducted extensive
research on HLPC, compression of information, and con-
cepts of probability, generally with an orientation towards
Algorithmic Information Theory, Bayesian theory, and
related ideas. For example,

(i) Chater [37] discusses how “simplicity” and “likeli-
hood” principles for perceptual organisation may be
reconciled, with the conclusion that they are equiv-
alent. He suggests that “the fundamental question is
whether, or to what extent, perceptual organization
is maximizing simplicity and maximizing likelihood”
(p. 579).

(ii) Chater [38] discusses the idea that the cognitive
system imposes patterns on the world according to
a simplicity principle, meaning that it chooses the
pattern that provides the briefest representation of the
available information.Here, theword “pattern”means
essentially a theory or system of one or more rules, a
meaning which is quite different from the meaning
of “pattern” or “SP-pattern” in the SP research, which
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simply means an array of atomic symbols in one or
two dimensions. There is further discussion in [39].

(iii) Emmanuel Pothos and Nick Chater [40] present
experimental evidence in support of the idea that, in
sorting novel items into categories, people prefer the
categories that provide the simplest encoding of these
items.

(iv) Nick Chater and Paul Vitányi [41] describe how
the “simplicity principle” allows the learning of lan-
guage from positive evidence alone, given quite weak
assumptions, in contrast to results on language learn-
ability in the limit [42]. There is further discussion in
[43].

(v) Editors Nick Chater and Mike Oaksford [44] present
a variety of studies using Bayesian analysis to under-
stand probabilistic phenomena in HLPC.

(vi) Paul Vitányi and Nick Chater [45] discuss whether
it is possible to infer a probabilistic model of the
world from a sample of data from the world and,
via arguments relating to Algorithmic Information
Theory, they reach positive conclusions.

Jacob Feldman [46] describes experimental evidence
that when people are asked to learn “Boolean concepts”,
meaning categories defined by logical rules, the subjective
difficulty of learning a concept is directly proportional to its
“compressibility”, meaning the length of the shortest logically
equivalent formula.

DonDonderi [47] presents a review of concepts that relate
to the concept of “visual complexity”. These include Gestalt
psychology, Neural Circuit Theory, Algorithmic Information
Theory, and Perceptual Learning Theory. The paper includes
discussion of how these and related ideas may contribute
to an understanding of human performance with visual
displays.

Vivien Robinet and coworkers [48] describe a dynamic
hierarchical chunkingmechanism, similar to theMK10Com-
puter Model (Section 15). The theoretical orientation of this
research is towards Algorithmic Information Theory, while
the MK10 Computer Model embodies ICMUP.

From analysis and experimentation, Nicolas Gauvrit and
others [49] conclude that how people perceive complexity in
images seems to be partly shaped by the statistics of natural
scenes. In [50], a slightly different grouping with Gauvrit
as lead author describe how it is possible to overcome the
apparent shortcoming of Algorithmic Information Theory in
estimating the complexity of short strings of symbols, and
they show how the method may be applied to examples from
psychology.

In a review of research on the evolution of natural
language, Simon Kirby and others [51] describe evidence
that transmission of language from one person to another
has the effect of developing structure in language, where
“structure” may be equated with compressibility. On the
strength of further research, [52] conclude that increases
in compressibility arise from learning processes (storing
patterns in memory), whereas reproducing patterns leads to
random variations in language.

On the strength of a theoretical framework, an experi-
ment, and a simulation, Benoı̂t Lemaire and coworkers [53]
argue that the capacity of the human working memory may
be better expressed as a quantity of information rather than a
fixed number of chunks.

In related work, Fabien Mathy and Jacob Feldman [54]
redefine George Miller’s [3] concept of a “chunk” in terms
of Algorithmic Information Theory as a unit in a “maximally
compressed code”. On the strength of experimental evidence,
they suggest that the true limit on short-term memory is
about 3 or 4 distinct chunks, equivalent to about 7 uncom-
pressed items (of average compressibility), consistent with
George Miller’s famous magical number.

And Mustapha Chekaf and coworkers [55] describe
evidence that people can store more information in their
immediate memory if it is “compressible” (meaning that it
conforms to a rule such as “all numbers between 2 and 6”)
than if it is not compressible. They draw the more general
conclusion that immediate memory is the starting place for
compressive recoding of information.

In addition to these several studies, there is quite a large
body of research which relates to the concept of “efficient
coding” in brains and nervous systems. These include the
studies described in the following paragraphs.

Tiberiu Teşileanu, Bence Ölveczky, and Vijay Balasubra-
manian [56] developed a computer model of efficient two-
stage learning, which proved accurate against data for the
learning of birdsong by birds.

Ann Hermundstad and colleagues [57] found evidence in
support of the propositions that efficient coding extends to
higher-order sensory features and that more neural resources
are applied when sensory data is limited.

Vijay Balasubramanian [58] argues that the remarkable
energy efficiency of the brain is achieved in part through the
dedication of specialized circuit elements and architectures
to specific computational tasks, in a hierarchy stretching
from the scale of neurons to the scale of the entire brain,
and that these structures are learned via an evolutionary
process.

Francisco Heras and colleagues [59] provide evidence for
mechanisms promoting energy efficiency in the workings of
blowfly photoreceptors.

Biswa Sengupta and colleagues [60] investigate why the
conversion of “graded” potentials in the brain’s neural circuits
to “action” potentials in those circuits is accompanied by
substantial information loss and how this changes energy
efficiency.

Simon Laughlin and Terrence Sejnowski [61] describe
some of “the geometric, biophysical, and energy constraints
that have governed the evolution of cortical networks”, how
“nature has optimized the structure and function of cortical
networks with design principles similar to those used in
electronic networks”, and how “the brain . . . exploits the
adaptability of biological systems to reconfigure in response
to changing needs”.

Joseph Atick [62] reviews evidence relating to the prin-
ciple that efficiency of information representation may be
a design principle for sensory processing. In particular, it
appears that this principle applies to large monopolar cells in
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the fly’s visual system and retinal coding in mammals in the
spatial, temporal, and chromatic domains.

Joseph Atick and Norman Redlich [63] argue that the
goal of processing in the retina is to transform the visual
input as much as possible into a “statistically independent”
form as a first step in creating a compressed representation
in the cortex, as suggested by Horace Barlow. But the
amount of compression that can be achieved in the retina
is reduced by the need to suppress noise in the sensory
input.

Adrienne Fairhall and colleagues [64] consider evidence
relating to the optimisation of neural coding when the statis-
tics of sensory data is changing.They conclude that “the speed
with which information is optimized and ambiguities are
resolved approaches the physical limit imposed by statistical
sampling and noise”.

Naama Brenner and colleagues [65] show that the input/
output relation of a sensory system in a dynamic environment
changes with the statistical properties of the environment.
More specifically, when the dynamic range of inputs changes,
the input/output relation rescales so as to match the dynamic
range of responses to that of the inputs. And the scaling
of the input/output relation is set to maximize information
transmission for each distribution of signals.

William Bialek and colleagues [66] review progress on
the question: “Does the brain construct an efficient rep-
resentation of the sensory world?” In their answer to this
question they take account of the biological value of sensory
information, and they report preliminary evidence from
studies of the fly’s visual systemwhich appear to support their
view.

Stephanie Palmer and colleagues [67] show that efficient
predictive computation starts at the earliest stages of the
visual system and that this is true of nearly every cell in
the retina and beyond. “Efficient representation of predictive
information is a candidate principle that can be applied at
each stage of neural computation”.

Bruno Olshausen and David Field [68] discuss how
“sparse coding” (the encoding of sensory information using
a small number of active neurons at any given point in
time) may confer several advantages and that there is evi-
dence that “sparse coding could be a ubiquitous strategy
employed in several different modalities across different
organisms”.

The same two authors, in [69], discuss the problem of how
images can best be encoded and transmitted, with particular
emphasis on how the eye and brain process visual informa-
tion. They remark that “computer scientists and engineers
now focusing on the problem of image compression should
keep abreast of emerging results in neuroscience. At the same
time, neuroscientists should pay close attention to current
studies of image processing and image statistics”.

Kristin Koch and colleagues [70] consider the question:
howmuch information does the retina send to the brain and
how is it apportioned among different cell types? They con-
clude that “with approximately 106 ganglion cells, the human
retina would transmit data at roughly the rate of an Ethernet
connection”. This figure appears to be for the amount of
information that is transmitted after decompression.

3.2. Mathematics-Related and Computer-Related Research.
Other researches, with an emphasis on issues in mathematics
and computing, including artificial intelligence, can be help-
ful in the understanding of IC in brains and nervous systems.
This includes the following:

(i) Ray Solomonoff developed Algorithmic Probability
Theory showing the intimate relation between IC and
inductive inference [17, 18] (Section 2.5).

(ii) Chris Wallace with others explored the significance
of IC in classification and related areas (see, e.g., [71–
73]).

(iii) Gregory Chaitin and Andrei Kolmogorov, working
independently, developed Algorithmic Information
Theory, building on the work of Ray Solomonoff. The
main idea here is that the information content of a
string of symbols is equivalent to the length of the
shortest computer program that anyone has been able
to devise that describes the string.

(iv) Jorma Rissanen has developed related ideas in [74, 75]
and other publications.

A detailed description of these and related bodies of
research may be found in [19].

In research on deep learning in artificial neural networks,
well reviewed by Jürgen Schmidhuber [10], there is some
recognition of the importance of IC (in [10, Sections 4.2, 4.4,
and 5.6.3]), but it appears that the idea is not well developed
in deep learning systems.

Marcus Hutter, with others, [76–78] has developed the
“AIXI” model of intelligence based on Algorithmic Proba-
bility Theory and Sequential Decision Theory. He has also
initiated the “Hutter Prize”, a competition with € 50,000 of
prize money, for lossless compression of a given sample of
text. The competition is motivated by the idea that “being
able to compress well is closely related to acting intelligently,
thus reducing the slippery concept of intelligence to hard file
size numbers”. (From http://www.hutter1.net, retrieved 2017-
10-10.) This is an interesting project which may yet lead to
general, human-level AI.

4. IC and Biology

This section and those that follow (up to and including
Section 21) describe evidence that, in varying degrees, lends
support to the ICHLPC perspective. Most of this evidence
comes directly from observations of people, but some of it
comes from studies of animals—with the expectation that
similar principles would be true of people.

First, let us take an abstract view of why IC might be
important in people and other animals. In terms of biology,
IC can confer a selective advantage to any creature by allowing
it to store more information in a given storage space or use
less storage space for a given amount of information and by
speeding up the transmission of any given volume of infor-
mation along nerve fibres—thus speeding up reactions—or
reducing the bandwidth needed for the transmission of the
same volume of information in a given time.

http://www.hutter1.net
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Perhaps more important than the impact of IC on the
storage or transmission of information is the close con-
nection, outlined in Section 2.5, between IC and concepts
of inference and probability. Compression of information
provides a means of predicting the future from the past and
estimating probabilities so that, for example, an animal may
learn to predict where foodmay be found or where there may
be dangers.

As mentioned in Section 2.5, the close connection
between IC and concepts of inference and probability makes
sense in terms of ICMUP: any repeating pattern can be a basis
for inferences, and the probabilities of such inferences may be
derived from the number of repetitions of the given pattern.

Being able to make inferences and estimate probabilities
canmean large savings in the use of energy and other benefits
in terms of survival.

5. Sensory Inflow, Redundancy, and the
Transmission and Storage of Information

As mentioned in Section 3.1.1, Fred Attneave [27] describes
how visual perception may be understood in terms of the
distinction between areas in a visual image where there is
much redundancy and boundaries between those areas where
nonredundant information is concentrated. And he suggests
that visual perception may be understood, at least in part, as
the economical description of sensory input.

Also mentioned in the same section is Horace Barlow’s
[31] argument that compression of sensory information is
needed to cope with the large volumes of such information
and, more specifically, his recognition that, without compres-
sion of the information falling on the retina, each optic nerve
would be too small to transmit reasonable amounts of that
information to the brain [31, p. 548].

6. Chunking-with-Codes

ICMUP is so much embedded in our thinking and seems so
natural and obvious that it is easily overlooked. This section,
with Sections 7 and 8, describes some examples.

In the sameway that “TFEU”may be a convenient code or
shorthand for the rather cumbersome expression “Treaty on
the Functioning of the European Union” (Appendix C.1.2), a
name like “New York” is, as previously noted in Section 2.4, a
compact way of referring to the many things and activities
in that renowned city and likewise for the many other
names that we use: “NelsonMandela”, “George Washington”,
“Mount Everest”, and so on.

The “chunking-with-codes” variant of ICMUP (Sec-
tion 2.1.2) permeates our use of natural language, both in its
surface forms and in the way in which surface forms relate
to meanings. (Although natural language provides a very
effective means of compressing information about the world,
it is not free of redundancy. And redundancy has a useful role
to play in, for example, enabling us to understand speech in
noisy conditions and in learning the structure of language.
How this apparent inconsistency may be resolved is discussed
in Appendix C.2.)

Because of its prominence in natural language and
because of its intrinsic power, chunking-with-codes is proba-
bly important in nonverbal aspects of our thinking, as may
be inferred from empirical support for the SP System and
its strengths in several aspects of intelligence (Section 2.2.5).
(Contrary to the view which is sometimes expressed that
thinking is not possible without language, there is evidence
in [79] for nonverbal thinking by congenitally deaf people
without knowledge of written or spoken natural language,
and there is another evidence in [80] for nonverbal thinking
in people and in animals.)

Ever since George Miller’s influential paper [3], the
concept of a “chunk” has been the subject of much research
in psychology and related disciplines (see, e.g., [81–84]).

Principles outlined in this section are likely to apply also
to variants of ICMUP discussed in Sections 7 and 8 below.

7. Class-Inclusion Hierarchies

As with chunking-with-codes, class-inclusion hierarchies,
with variations such as cross-classification, are prominent in
our use of language and in our thinking. Benefits arise from
economies in the storage of information and in inferences
via inheritance of attributes, in accordance with the “class-
inclusion hierarchies” variant of ICMUP (Section 2.1.5).

As with chunking-with-codes, names for classes of things
provide for great economies in our use of language: most
“content” words (nouns, verbs, adjectives, and adverbs) in our
everyday language stand for classes of things and, as such, are
powerful aids to economical description.

Imagine how cumbersome things would be if, on each
occasion that we wanted to refer to a “table”, we had to
say something like “A horizontal platform, often made of
wood, used as a support for things like food, normally with
four legs but sometimes three, . . .”, like the slow Entish
language of the Ents in Tolkien’s The Lord of the Rings. (J. R.
R. Tolkien, The Lord of the Rings, London: HarperCollins,
2005, Kindle edition. For a description of Entish, see, e.g.,
page 480. See also, pages 465, 468, 473, 477, 478, 486, and
565.) Similar things may be said for verbs like “speak” or
“dance”, adjectives like “artistic” or “exuberant”, and adverbs
like “quickly” or “carefully”.

Classes and categories have been the subject of much
research in psychology and related disciplines over several
decades (see, e.g., [85–87]).

8. Schema-Plus-Correction, Run-Length
Coding, and Part-Whole Hierarchies

As with chunking-with-codes and class-inclusion hierar-
chies, it seems natural to conceptualise things in terms of
other techniques described in Section 2.1. In all cases, there is
clear potential for substantial economies in how knowledge
is represented and for the making of useful inferences.

8.1. Schema-Plus-Correction. As mentioned in Section 2.1.3,
a menu in a restaurant or café is an obvious example of the
schema-plus-correction device in everyday thinking. Other
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Figure 8: A schematic view of how, if we close our eyes for a moment and open them again, we normally merge the before and after views to
make one. The landscape here and in Figure 9 is fromWallpapers Buzz (https://www.wallpapersbuzz.com), reproduced with permission.

examples are the uses of forms to gather information about
candidates for a job, the features of a house for sale, a check-
list for repairs on a car, and so on. And knowledge of almost
any skill such as baking a cake, gardening, or woodwork
may be seen as a schema that may be tailored for a specific
task—such as baking a coffee-and-walnut cake—by plugging
in values for that task.

An interesting example of schema-plus-correction in
everyday life is the UK shipping forecast which leaves out
most of the schema and gives only the corrections to the
schema. So, for example, “good, becoming moderate or
poor” refers to visibility without mentioning that word;
“moderate or rough” refers to the state of the sea, without
mentioning that expression; figures for wind speed are given
without mentioning that they refer to the Beaufort wind
force scale; a word like “later” means a time that is more
than 12 hours from the time the forecast was issued; and so
on.

8.2. Run-Length Coding. If anything is repeated, especially if
it is repeated a large number of times, it seems natural and
obvious to describe the repetition with a form of run-length
coding. For example, an instruction to walk fromone place to
anothermay be “From the old oak tree keep walking until you
see the river”. Here, “the old oak tree” marks the start of the
repetition, “keep walking” describes the repeated operation
of putting one foot in front of the other, and “until you see
the river” marks the end of the repetition.

8.3. Part-Whole Hierarchies. As with class-inclusion hierar-
chies, part-whole hierarchies are prominent in our language
and in our thinking. In describing anything that is more
complex than “very simple”, such as a house or a car, it
seems natural and obvious to divide it into parts and subparts
through as many levels as are needed, thus promoting
economies and the making of inferences as described in
Section 2.1.6.

9. Merging Multiple Views to Make One

Here is another example of something that is so familiar that
we are normally not aware that it is part of our perceptions
and thinking.

If, when we are looking at something, we close our
eyes for a moment and open them again, what do we
see? Normally, it is the same as what we saw before. But
creating a single view out of the before and after views
means unifying the two patterns to make one and thus
compressing the information, as shown schematically in
Figure 8. (It is true that people may, on occasion, not detect
large changes to objects and scenes (“change blindness”) [88]
and that, without attention, we may not even perceive objects
(“inattentional blindness”) [89], but it is also true that we can
detect differences between pairs of images that are similar
but not identical—which means that we can also detect the
similarities between such pairs of images. That ability to
detect similarities, together with our ordinary experience that
we normally merge multiple views to make one, as described
in the main text, implies that compression of information is
an important part of visual perception.)

It seems so simple and obvious that if we are looking at a
landscape like the one in the figure, there is just one landscape
even though we may look at it two, three, or more times.
But if we did not unify successive views we would be like
an old-style cine camera that simply records a sequence of
frames, without any kind of analysis or understanding that,
very often, successive frames are identical or nearly so.

10. Recognition

With the kind of merging of views just described, we do not
bother to give it a name. But if the interval between one view
and the next is hours, months, or years, it seems appropriate
to call it “recognition”. In cases like that, it is more obvious
that we are relying on memory, as shown schematically in
Figure 9. Notwithstanding the undoubted complexities and

https://www.wallpapersbuzz.com
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Figure 9: Schematic representation of how, in recognition, incoming visual information may bematched and unified with stored knowledge.

Figure 10: A random-dot stereogram from [91, Figure 2.4-1], reproduced with permission of Alcatel-Lucent/Bell Labs.

subtleties in howwe recognise things, the processmay be seen
in broad terms as ICMUP: matching incoming information
with stored knowledge, merging or unifying patterns that are
the same, and thus compressing the information.

If we did not compress information in that way, our brains
would quickly become cluttered with millions of copies of
things that we see around us—people, furniture, cups, trees,
and so on—and likewise for sounds and other sensory inputs.

As mentioned earlier, Satosi Watanabe has explored the
relationship between pattern recognition and IC [29, 30].

11. Binocular Vision

ICMUP may also be seen at work in binocular vision:
“In an animal inwhich the visual fields of the two
eyes overlap extensively, as in the cat, monkey,
and man, one obvious type of redundancy in the
messages reaching the brain is the very nearly
exact reduplication of one eye’s message by the
other eye.” [32, p. 213].

In viewing a scene with two eyes, we normally see one
view and not two. This suggests that there is a matching and
unification of patterns, with a corresponding compression of
information. A sceptic might say, somewhat implausibly, that

the one view that we see comes from only one eye. But that
sceptical view is undermined by the fact that, normally, the
one view gives us a vivid impression of depth that comes from
merging the two slightly different views from both eyes.

Strong evidence that, in stereoscopic vision, we do indeed
merge the views from both eyes comes from a demonstration
with “random-dot stereograms”, as described in [90, Section
5.1] (see also Appendix A.3).

In brief, each of the two images shown in Figure 10 is a
random array of black and white pixels, with no discernable
structure, but they are related to each other as shown in
Figure 11: both images are the same except that a square area
near the middle of the left image is further to the left in the
right image.

When the images in Figure 10 are viewed with a stereo-
scope, projecting the left image to the left eye and the right
image to the right eye, the central square appears gradually as
a discrete object suspended above the background.

Although this illustrates depth perception in stereoscopic
vision—a subject of some interest in its own right—the main
interest here is on how we see the central square as a discrete
object. There is no such object in either of the two images
individually. It exists purely in the relationship between the
two images, and seeing it means matching one image with
the other and unifying the parts which are the same.
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Figure 11: Diagram to show the relationship between the left and right images in Figure 10. Reproduced from [91, Figure 2.4-3], with
permission of Alcatel-Lucent/Bell Labs.

This example shows that, although the matching and
unification of patterns is a usefully simple idea, there are
interesting subtleties and complexities that arise in finding
a good match when the two patterns are similar but not
identical.

11.1. Finding a Good Match. Seeing the central object in
a random-dot stereogram means finding a good match
between relevant pixels in the central area of the left and right
images and likewise for the background. Here, a good match
is one that yields a relatively high level of IC. Since there
is normally an astronomically large number of alternative
ways in which combinations of pixels in one image may be
aligned with combinations of pixels in the other image, it is
not normally feasible to search through all the possibilities
exhaustively.

11.2.The Best Is the Enemy of the Good. As with the SP System
(Sections 2.2.1 to 2.2.3) and many problems in artificial
intelligence, the best is the enemy of the good. Instead of
looking for the perfect solution—which may lead to outright
failure—we can do better, achieving something useful on
most occasions by looking for solutions that are good enough
for practical purposes. With this kind of problem, acceptably
good solutions can often be found in a reasonable time
with heuristic search. One such method for the analysis of
random-dot stereograms has been described by Marr and
Poggio [92].

12. Abstracting Object Concepts via Motion

It seems likely that the kinds of processes that enable us to see
a hiddenobject in a random-dot stereogramalso apply to how
we see discrete objects in the world.The contrast between the
relatively stable configuration of features in an object such as a
car, compared with the variety of its surroundings as it travels

around, seems to be an important part of what leads us to
conceptualise the object as an object [90, Section 5.2].

Any creature that depends on camouflage for protec-
tion—by blending with its background—must normally stay
still. As soon as itmoves relative to its surroundings, it is likely
to stand out as a discrete object ([90, Section 5.2], see also
Section 2.7).

The idea that IC may provide a means of discovering
“natural” structures in the world—such as the many objects
in our visual world—has been dubbed the “DONSVIC”
principle: the discovery of natural structures via information
compression [6, Section 5.2]. Of course, the word “natural” is
not precise, but it has enough precision to be a meaningful
name for the process of learning the kinds of concepts which
are the bread-and-butter of our everyday thinking.

Similar principles may account for how young children
come to understand that their first language (or languages) is
composed of words (Section 15).

13. Adaptation in the Eye of Limulus and
Run-Length Coding

IC may also be seen down in the works of vision. Figure 12
shows a recording from a single sensory cell (ommatidium)
in the eye of a horseshoe crab (Limulus polyphemus), first
when the background illumination is low, then when a
light is switched on and kept on for a while, and later
switched off—shown by the step function at the bottom of
the figure.

Perhaps contrary to what one might expect—a low rate of
firing when illumination is low—the ommatidium fires at a
moderate “background” rate of about 20 impulses per second
when the illumination is low (shown at the left of the figure).
When the light is switched on, the rate of firing increases
sharply but instead of staying high while the light is on (as
one might expect), it drops back almost immediately to the
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Figure 12: Variation in the rate of firing of a single ommatidium of the eye of a horseshoe crab in response to changing levels of illumination.
Reproduced from [93, Figure 16], with permission from the Optical Society of America.

background rate. The rate of firing remains at that level until
the light is switched off, at which point it drops sharply and
then returns to the background level, a mirror image of what
happened when the light was switched on.

In connection with the main theme of this paper, a point
of interest is that the positive spike when the light is switched
on and the negative spike when the light is switched off have
the effect of marking boundaries, first between dark and light
and later between light and dark. In effect, this is a form of
run-length coding (Section 2.1.4). At the first boundary, the
positive spikemarks the fact of the light coming on.As long as
the light stays on, there is no need for that information to be
constantly repeated, so there is no need for the rate of firing
to remain at a high level. Likewise, when the light is switched
off, the negative spikemarks the transition to darkness and, as
before, there is no need for constant repetition of information
about the new low level of illumination. (It is recognised
that this kind of adaptation in eyes is a likely reason for
small eye movements when we are looking at something,
including sudden small shifts in position (“microsaccades”),
drift in the direction of gaze, and tremor [94]. Without those
movements, there would be an unvarying image on the retina
so that, via adaptation, what we are looking at would soon
disappear!)

Another point of interest is that this pattern of respond-
ing—adaptation to constant stimulation—can be explained
via the action of inhibitory nerve fibres that bring the rate of
firing back to the background rate when there is little or no
variation in the sensory input [95].

Inhibitory mechanisms are widespread in the brain [96,
p. 45] and it appears that, in general, their role is to reduce

or eliminate redundancies in information ([8, Section 9]), in
keeping with the main theme of this paper.

14. Other Examples of Adaptation

Adaptation is also evident at the level of conscious awareness.
If, for example, a fan starts working nearby, wemay notice the
hum at first but then adapt to the sound and cease to be aware
of it. But when the fan stops, we are likely to notice the new
quietness at first but adapt again and stop noticing it.

Another example is the contrast between how we become
aware if something or someone touches us but we are mostly
unaware of how our clothes touch us in many places all day
long. We are sensitive to something new and different and we
are relatively insensitive to things that are repeated.

As with adaptation in the eye of Limulus, these other
kinds of adaptationmay be seen as examples of the run-length
coding technique for compression of information.

15. Discovering the Segmental
Structure of Language

There is evidence that much of the segmental structure
of language—words and phrases—may be discovered via
ICMUP, as described in the following two subsections. To the
extent that these mechanisms model aspects of HLPC, they
provide evidence for ICHLPC.

With regard to Section 2.4, about the possible role of
quantification in empirical evidence for ICHLPC, the MK10
Computer Model, designed for the discovery of segmental
structure in language and outlined below, assigns a central
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Figure 13: Waveform for the spoken phrase “On our website” with an alphabetic transcription above the waveform and a phonetic
transcription below it. With thanks to Sidney Wood of SWPhonetics (swphonetics.com) for the figure and for permission to reproduce
it.

role to the quantification of frequencies with which basic
symbols such as letters, or sequences of symbols, occur in any
given sample of language.

15.1.TheWord Structure of Natural Language. As can be seen
in Figure 13, people normally speak in “ribbons” of sound,
without gaps between words or other consistent markers of
the boundaries between words. In the figure—the waveform
for a recording of the spoken phrase “on our website”—it is
not obvious where the word “on” ends and the word “our”
begins and likewise for the words “our” and “website”. Just
to confuse matters, there are three places within the word
“website” which look as if they might be word boundaries.

Given that words are not clearlymarked in the speech that
young children hear, how do they get to know that language
is composed of words? Learning to read could provide an
answer but it appears that young children develop an under-
standing that language is composed of words well before the
age when, normally, they are introduced to reading. Perhaps
more to the point is that there are still, regrettably, many
children throughout the world that are never introduced to
reading but, in learning to talk and to understand speech,
they inevitably develop a knowledge of the structure of
language, including words. (It has been recognised for some
time that skilled speakers of any language have an ability
to create or recognise sentences that are grammatical but
new to the world. Chomsky’s well-known example of such
a sentence is Colorless green ideas sleep furiously. [97, p.
15], which, when it was first published, was undoubtedly
novel. This ability to create or recognise grammatical but
novel sentences implies that knowledge of a language means
knowledge of words as discrete entities that can form novel
combinations.)

In keeping with the main theme of this paper, ICMUP
provides an answer [98, p. 193] which works largely via
ICMUP and can reveal much of the word structure in an
English-language text fromwhich all spaces and punctuation
have been removed [6, Section 5.2]. It is true that there are
added complications with speech but it seems likely that
similar principles apply.

This discovery of word structure by the MK10 program,
illustrated in Figure 14, is achieved without the aid of any
kind of externally supplied dictionary or other information
about the structure of English. The program builds its
own dictionary via “unsupervised” learning using only the
unsegmented sample of English with which it is supplied. It
learns without the assistance of any kind of “teacher”, or data
that is marked as “wrong”, or the grading of samples from
simple to complex (cf. [42]).

Statistical tests show that the correspondence between the
computer-assigned word structure and the original (human)
division into words is significantly better than chance.

Two aspects of the MK10 model strengthen its position
as a model of what children do in learning the segmental
structure of language [98, p. 200]: the growth in the lengths
of words learned by the program corresponds quite well with
the same measure for children; and the pattern of changing
numbers of new words that are learned by the program at
different stages corresponds quite well with the equivalent
pattern for children.

Discovering the word structure of language via ICMUP
is another example of the DONSVIC principle, mentioned
in Section 12—because words are the kinds of “natural”
structure which are the subject of the DONSVIC principle
and because ICMUP provides a key to how they may be
discovered.

15.2. The Phrase Structure of Natural Language. In addi-
tion to its achievements in learning the word structure of
natural language, the MK10 Computer Model, featured in
Section 15.1, does quite a good job at discovering the phrase
structure of unsegmented text in which each word has been
replaced by a symbol representing the grammatical class of
the word [98, p. 194]. An example is shown in Figure 15. As
before, the program works without any prior knowledge of
the structure of English and, apart from the initial assignment
of word classes, it works in unsupervised mode without the
assistance of any kind of “teacher” or anything equivalent.
As before, statistical tests show that the correspondence
between computer-assigned and human-assigned structures

https://swphonetics.com/
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Figure 14: Part of a parsing created by the MK10 Computer Model from a 10,000-letter sample of English (book 8A of the Ladybird Reading
Series) with all spaces and punctuation removed. The program derived this parsing from the sample alone, without any prior dictionary or
other knowledge of the structure of English. Reproduced from Figure 7.3 in [98], with permission.

HAIRY CHEST. AND SHE NEVER LEARNED TO TAKE A SIMPLE PLEASURE IN HER OWN ABILITIES.
A N C R B Y Z V D A N P D A N

Figure 15: One sentence from a 7600-word sample from the book Jerusalem the Golden (by Margaret Drabble) showing (above the text) a
surface structure analysis and (below the text) the parsing developed by the MK10 ComputerModel at a late stage of processing. Reproduced
from Figure 7.4 in [98], with permission.
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is statistically significant. (Thanks to Dr. Isabel Forbes, a
person qualified in theoretical linguistics, for the assignment
of grammatical class symbols to words in the given text and
for phrase-structure analyses of the text.)

Since ICMUP is central in the workings of the MK10
Computer Model, this result suggests that ICMUP may have
a role to play notmerely in discovering the phrase structure of
language but more generally in discovering the grammatical
structure of language.

16. Grammatical Inference

Regarding the last point from the previous section, it seems
likely that learning the grammar of a language may also
be understood in terms of ICMUP. Evidence in support of
that expectation comes from research with two programs
designed for grammatical inference:

(i) The SNPR Computer Model. The SNPR Computer
Model, which was developed from the MK10 Com-
puter Model, can discover plausible grammars from
samples of English-like artificial languages [98, pp.
181–185]. This includes the discovery of segmental
structures, classes of structure, and abstract patterns.
ICMUP is central in how the program works.

(ii) The SP Computer Model. The SP Computer Model,
one of the main products of the SP programme of
research, achieves results at a similar level to that
of SNPR. As before, ICMUP is central in how the
program works. With the solution of some residual
problems, outlined in [6, Section 3.3], there seems
to be a real possibility that the SP System will be
able to discover plausible grammars from samples
of natural language. Also, it is anticipated that, with
further development, the program may be applied to
the learning of nonsyntactic “semantic” knowledge
and the learning of grammars in which syntax and
semantics are integrated.

What was the point of developing the SP Computer
Model when it does no better at grammatical inference than
the SNPR Computer Model? The reason is that the SNPR
Computer Model, which was designed for the discovery of
syntactic structures and worked mainly via the building of
hierarchical structures, was not compatible with the new and
much more ambitious goal of the SP programme of research:
to simplify and integrate observations and concepts across
artificial intelligence, mainstream computing, mathematics,
and HLPC.What was needed was a new organising principle
that would accommodate hierarchical structures and several
other kinds of structure as well.

It turns out that the SP-multiple-alignment concept is
much more versatile than the hierarchical organising prin-
ciple in the SNPR program, providing for several aspects of
intelligence and the representation and processing of a variety
of knowledge structures of which hierarchical structures
is only one (Section 2.2.5). It appears that the SP System
provides a much firmer foundation for the development of

human-level intelligence than the SNPR Computer Model or
indeed deep learning models, as discussed in [11, Section V].

With regard to Section 2.4 about the possible role of
quantification in empirical evidence for ICHLPC, the SNPR
ComputerModel and the SP Computer Model, like theMK10
Computer Model (Section 15), both have a central role for
quantification of the frequencies with which basic symbols
such as letters, or contiguous or broken patterns of symbols,
occur in any given sample of data.

17. Generalisation, the Correction of Wrong
Generalisations, and (Dirty Data)

Issues relating to generalisation in learning are best described
with reference to the Venn diagram shown in Figure 16.
That figure relates to the unsupervised learning of a natural
language but it appears that generalisation issues in other
areas of learning are much the same.

The evidence to be described derives largely from the
SNPR Computer Model and the SP Computer Model. Since
both models are founded on ICMUP, evidence that they
have human-like capabilities with generalisation and related
phenomena may be seen as evidence in support of ICHLPC.

In the figure, the smallest envelope shows the finite but
large sample of “utterances” from which a young child learns
his or her native language (which we shall call L)—where an
“utterance” is a speech sound of any kind, and the speakers
from which a young child learns are adults or older children
(To keep things simple in this discussion we shall assume
that each child learns only one first language, although many
children learn two or more first languages.). The middle-
sized envelope shows the (infinite) set of utterances in L, and
the largest envelope shows the (infinite) set of all possible
utterances, including those that are in L and those which are
not. “Dirty data” are the many “ungrammatical” utterances
that children normally hear—outside the envelope for L but
inside the envelope representing the utterances from which a
young child learns.

The child generalises “correctly” when he or she infers
L, and only L, from the finite sample he or she has heard,
including dirty data. Anything that spills over into the outer
envelope, like “mouses” as the plural of “mouse” or “buyed” as
the past tense of “buy”, is an overgeneralisation, while failure
to learn the whole of L represents undergeneralisation.

In connection with the foregoing summary of concepts
relating to generalisation, there are three main problems:

(i) Generalisation without overgeneralisation. How can
we generalise our knowledge without overgenerali-
sation and this in the face of evidence that children
can learn their first language or languages without
the correction of errors by parents or teachers or
anything equivalent? (Evidence comes chiefly from
children who learned language without the possibility
that anyone might correct their errors. Christy Brown
was a cerebral-palsied child who not only lacked any
ability to speak but whose bodily handicap was so
severe that for much of his childhood he was unable
to demonstrate that he had normal comprehension
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Figure 16: Categories of utterances involved in the learning of a first language, L. In ascending order size, they are the finite sample of
utterances from which a child learns, the (infinite) set of utterances in L, and the (infinite) set of all possible utterances. Adapted from Figure
7.1 in [98], with permission.

of speech and nonverbal forms of communication
[99]. Hence, his learning of language must have been
achieved without the possibility that anyone might
correct errors in his spoken language.)

(ii) Generalisation without undergeneralisation. How can
we generalise our knowledge without undergenerali-
sation? As before, there is evidence that learning of a
language can be achieved without explicit teaching.

(iii) Dirty data. How can we learn correct knowledge
despite errors in the examples we hear? Again, it
appears that this can be done without correction of
errors.

These things are discussed quite fully in [1, Section 9.5.3]
and [6, Section 5.3]. There is also relevant discussion in [11,
Section V-H and XI-C].

In brief, IC provides an answer to all three problems like
this: for a given body of raw data, I, compress it thoroughly
via unsupervised learning; the resulting compressed version
of Imay be split into two parts, a grammar and an encoding of
I in terms of the grammar; normally, the grammar generalises
correctly without over- or undergeneralisation, and errors in
I are weeded out; the encoding may be discarded.

This scheme is admirably simple, but, so far, the evidence
in support of it is only informal, derived largely from informal
experiments with English-like artificial languages with the

SNPRComputerModel of language learning [98, pp. 181–185]
and the SP Computer Model [1, Section 9.5.3].

The weeding out of errors via this scheme may seem
puzzling, but errors, by their nature, are rare. The grammar
retains the repeating parts of I (which are relatively com-
mon), while the encoding contains the nonrepeating parts
includingmost of the errors. “Errors” that are not rare acquire
the status of “dialect” and cease to be regarded as errors.

A problem with research in this area is that the iden-
tification of any over- or undergeneralisations produced by
the above scheme or any other model depends largely on
human intuitions. But this is not so very different from the
long-established practice in research on linguistics of using
human judgements of grammaticality to establish what any
given person knows about a particular language.

The problem of generalising our learning without over-
or undergeneralisation applies to the learning of a natural
language and also to the learning of such things as visual
images. It appears that the solution outlined here has distinct
advantages compared with, for example, what appear to be
largely ad hoc solutions that have been proposed for deep
learning in artificial neural networks [11, Section V-H].

As noted above, evidence for human-like generalisation
with the SNPR and SP computer models, without either over-
or undergeneralisation, may be seen as evidence in support of
ICMUP as a unifying principle in HLPC.
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18. Perceptual Constancies

It has long been recognised that our perceptions are governed
by constancies:

(i) Size constancy. To a large extent, we judge the size of
an object to be constant despite wide variations in the
size of its image on the retina [100, pp. 40-41].

(ii) Lightness constancy. We judge the lightness of an
object to be constant despite wide variations in the
intensity of its illumination [100, p. 376].

(iii) Colour constancy. We judge the colour of an object to
be constant despite wide variations in the colour of its
illumination [100, p. 402].

These kinds of constancy, and others such as shape
constancy and location constancy, may each be seen as a
means of encoding information economically: it is simpler
to remember that a particular person is “about my height”
than many different judgements of size, depending on how
far away that person is. In a similar way, it is simpler to
remember that a particular object is “black” or “red” than all
the complexity of how its lightness or its colour changes in
different lighting conditions.

By filtering out variations due to viewing distance or the
intensity or colour of incident light, we can facilitate ICMUP
and thus, for example, in watching a football match, simplify
the process of establishing that there is (normally) just one
ball on the pitch and not many different balls depending on
viewing distances, whether the ball is in a bright or shaded
part of the pitch, and so on.

19. Kinds of Redundancy That People Find
Difficult or Impossible to Detect

Although the matching and unification of patterns is often
effective in the detection and reduction of redundancy in
information, there are kinds of redundancy that are not easily
revealed via ICMUP. It seems that those kinds of redundancy
are also ones that people find difficult or impossible to
detect. A well-known example is the decimal representation
of 𝜋, which appears to most people to be entirely random,
but which can be created by a simple program so that, in
terms of Algorithmic Information Theory, it contains much
redundancy.

At first sight, this observation seems to contradict the
main thesis of this paper that much of HLPC may be may be
understood as IC. But there is nothing in the ICHLPC thesis
to say that people can or should be able to detect all kinds
of redundancy via ICMUP. And the apparent randomness of
the decimal representation of 𝜋 suggests that any natural or
artificial system that works via ICMUP would fail to detect
the redundancy in data of that kind.

In short, what appears at first sight to be evidence
against ICHLPC turns out to be evidence in support of that
thesis: the failure of most people to detect the redundancy
in the decimal representation of 𝜋 may be explained via
the ICHLPC thesis, together with the apparent weakness of
ICMUP in discovering and reducing that kind of redundancy.

20. Mathematics

A discussion of mathematics may seem out of place in a
paper about ICHLPC but mathematics is relevant because
it has been developed over many years as an aid to human
thinking. For that reason, in the spirit of George Boole’s An
investigation of the laws of thought [101], a consideration of
the organisation and workings of mathematics is relevant to
ICHLPC (Another book with the suggestion in its title is
that it is relevant to human thinking is William Thomson’s
“Outline of the Laws of Thought” [102], although his orien-
tation is more towards concepts in logic than concepts in
mathematics.).

In [2] it is argued that much of mathematics, perhaps all
of it, may be seen as a set of techniques for the compression of
information via the matching and unification of patterns and
their application. In case this seems implausible, we have the
following:

(i) An equation as a compressed representation of data. An
equation like Albert Einstein’s 𝐸 = 𝑚𝑐2 may be seen
as a very compressed representation of what may be a
very large set of data points relating energy (𝐸) and
mass (𝑚), with the speed of light (𝑐) as a constant.
Similar things may be said about such well-known
equations as 𝑠 = (𝑔𝑡2)/2 (derived from Newton’s
second law of motion), 𝑎2 + 𝑏2 = 𝑐2 (Pythagoras’s
equation), 𝑃𝑉 = 𝑘 (Boyle’s law), and 𝐹 = 𝑞(𝐸 + V × 𝐵)
(the charged-particle equation).

(ii) Variants of ICMUP may be seen at work in mathe-
matical notations. The second, third, and fourth of
the variants of ICMUP outlined in Section 2.1 may be
seen at work in mathematical notations. For example,
multiplication as repeated addition may be seen as an
example of run-length coding.

Owing to the close connections between logic and math-
ematics and between computing and mathematics, it seems
likely that similar principles apply in logic and in computing
[2, Section 4].

Although in this research it has seemednecessary to avoid
too much dependence on mathematics (for reasons outlined
in Section 2.3), there is now the interesting possibility that the
scope of mathematics may be greatly extended by incorpo-
rating within it such concepts as SP-multiple-alignment and
other elements of the SPTheory [2, Section 7].

21. Evidence for ICHLPC via the SP System

Another strand of empirical evidence for ICHLPC is via the
SP System and the central role within it of SP-multiple-
alignment (Section 2.2.2), a variant of ICMUP which, as
described in Section 2.1.7, encompasses the six others de-
scribed in Section 2.1.

The evidence for ICHLPC via the SP System derives
largely from the strengths of the SP System in modelling
several aspects of HLPC, summarised in Section 2.2.5 and
described in more detail in [6] and in [1].
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22. Some Apparent Contradictions and
How They May Be Resolved

The idea that IC is fundamental in HLPC, and also in the SP
Theory as a theory of HLPC, seems to be contradicted by the
following:

(i) The ways in which people may create redundant
copies of information as well as how they may
compress information

(ii) The fact that redundancy in information is often
useful in detecting and correcting errors and in the
storage and processing of information

(iii) A less direct challenge to ICHLPC, and the SPTheory
as a theory ofHLPC, is persuasive evidence, described
by Gary Marcus [103], that in many respects, the
human mind is a kluge, meaning “a clumsy or
inelegant—yet surprisingly effective—solution to a
problem” (p 2)

These apparent contradictions and how they may be
resolved are discussed in Appendix C.

23. Conclusion

This paper presents evidence for the idea that much of
human learning, perception, and cognition (HLPC) may be
understood as IC, often via the matching and unification of
patterns.

The paper is part of a programme of research devel-
oping the SP Theory of Intelligence and its realisation in
the SP Computer Model—a theory which aims to sim-
plify and integrate observations and concepts across artifi-
cial intelligence, mainstream computing, mathematics, and
HLPC.

Since IC is central in the SP Theory, evidence for IC in
HLPC, presented in this paper in Sections 4 to 20 inclusive
(but excluding Section 21), strengthens empirical support for
the SPTheory, viewed as a theory of HLPC.

More direct empirical evidence for the SP Theory as a
theory of HLPC—summarised in Section 2.2.5—provides
evidence for the IC in HLPC thesis which is additional to that
in Sections 4 to 20 inclusive.

Four possible objections to the IC in HLPC thesis, and
the SPTheory, are described in Appendix C, with answers to
those objections.

The ideas developed in this research may be seen to be
part of a “Big Picture” of the importance of IC in at least six
areas, outlined in Section 2.6.

Appendix

A. Mathematics Associated with ICMUP and
Mathematics Incorporated in the SP System

As mentioned in Section 2.3, this appendix details some
mathematics associated with ICMUP and some of the math-
ematics incorporated in the SP System.

A.1. Searching for Repeating Patterns. At first sight, the
process of searching for repeating patterns (Sections 2.1.1
and 2.2.2) is simply a matter of comparing one pattern with
another to see whether they match each other or not. But
there are, typically, many alternative ways in which patterns
within a given body of information, I, may be compared—and
some are better than others.We are interested in finding those
matches between patterns that, via unification, yield most
compression—and a little reflection shows that this is not a
trivial problem [1, Section 2.2.8.4].

Maximising the amount of redundancy found means
maximising 𝑅 where

𝑅 = 𝑖=𝑛∑
𝑖=1

(𝑓𝑖 − 1) ⋅ 𝑠𝑖, (A.1)

𝑓𝑖 is the frequency of the 𝑖th member of a set of 𝑛 patterns,
and 𝑠 is its size in bits. Patterns that are both big and frequent
are best. This equation applies irrespective of whether the
patterns are coherent substrings or patterns that are discon-
tinuous within I.

Maximising 𝑅 means searching the space of possible
unifications for the set of big, frequent patterns which gives
the best value. For a sequence containing 𝑁 symbols, the
number of possible subsequences (including single symbols
and all composite patterns, both coherent and fragmented) is

𝑃 = 2𝑁 − 1. (A.2)

The number of possible comparisons is the number of
possible pairings of subsequences which is

𝐶 = 𝑃 (𝑃 − 1)2 . (A.3)

For all except the very smallest values of 𝑁, the value
of 𝑃 is very large and the corresponding value of 𝐶 is huge.
In short, the abstract space of possible comparisons between
patterns and thus the space of possible unifications is, in the
great majority of cases, astronomically large.

Since the space is normally so large, it is not feasible to
search it exhaustively. For that reason, we cannot normally
guarantee to find the theoretically ideal answer, and normally
we cannot know whether or not we have found the theoreti-
cally ideal answer.

In general, we need to use heuristic methods in search-
ing—conducting the search in stages and discarding all but
the best results at the end of each stage—and we must be
content with answers that are “reasonably good”.

A.2. Information, Compression of Information, Inductive Infer-
ence, and Probabilities. Solomonoff [17] seems to have been
one of the first people to recognise the close connection that
exists between IC and inductive inference (Section 2.5): pre-
dicting the future from the past and calculating probabilities
for such inferences. The connection between them—which
may at first sight seem obscure—lies in the redundancy-
as-repetition-of-patterns view of redundancy and how that
relates to IC (Section 2.1, [1, Section 2.2.11]):
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(i) Patterns that repeat within I represent redundancy
in I, and IC can be achieved by reducing multiple
instances of any pattern to one.

(ii) When we make inductive predictions about the
future, we do so on the basis of repeating patterns.
For example, the repeating pattern “Spring, Summer,
Autumn, Winter” enables us to predict that, if it is
Spring time now, Summer will follow.

Thus IC and inductive inference are closely related to
concepts of frequency and probability. Here are some of the
ways in which these concepts are related:

(i) Probability has a key role in Shannon’s concept of
information. In that perspective, the average quantity
of information conveyed by one symbol in a sequence
is

𝐻 = −𝑖=𝑛∑
𝑖=1

𝑝𝑖 log𝑝𝑖, (A.4)

where 𝑝𝑖 is the probability of the 𝑖th type in the
alphabet of 𝑛 available alphabetic symbol types. If the
base for the logarithm is 2, then the information is
measured in “bits”.

(ii) Measures of frequency or probability are central
in techniques for economical coding such as the
Huffman method [4, Section 5.6] or the Shannon-
Fano-Elias method [4, Section 5.9].

(iii) In the redundancy-as-repetition-of-patterns view of
redundancy and IC, the frequencies of occurrence
of patterns in I are a main factor (with the sizes of
patterns) that determines howmuch compression can
be achieved.

(iv) Given a body of (binary) data that has been “fully”
compressed (so that it may be regarded as random or
nearly so), its absolute probability may be calculated
as 𝑝𝐴𝐵𝑆 = 2−𝐿, where 𝐿 is the length (in bits) of the
compressed data.

Probability and IC may be regarded as two sides of the
same coin. That said, they provide different perspectives on a
range of problems. In this research, the IC perspective—with
redundancy-as-repetition-of-patterns—seems to be more
fruitful than viewing the same problems through the lens of
probability. In the first case, one can see relatively clearly how
compression may be achieved by the primitive operation of
unifying patterns, whereas these ideas are obscured when the
focus is on probabilities.

A.3. Random-Dot Stereograms. A particularly clear example
of the kind of search described in Appendix A.1 is what the
brain has to do to enable one to see the figure in the kinds of
random-dot stereogram described in Section 11.

In this case, assuming that the left image has the same
number of pixels as the right image, the size of the search
space is

𝑆 = 𝑃22 (A.5)

where 𝑃 is the number of possible patterns in each image,
calculated in the same way as was described in Appendix A.1.
The fact that the images are two-dimensional needs no
special provision because the original equations cover all
combinations of atomic symbols.

For any stereogram with a realistic number of pixels, this
space is very large indeed. Even with the very large processing
power represented by the 1011 neurons in the brain, it is
inconceivable that this space can be searched in a few seconds
and to such good effect without the use of heuristic methods.

David Marr [104, Chapter 3] describes two algorithms
that solve this problem. In line with what has just been
said, both algorithms rely on constraints on the search space
and both may be seen as incremental search guided by
redundancy-related metrics.

A.4. Coding and the Evaluation of SP-Multiple-Alignments in
Terms of IC. Given an SP-multiple-alignment like one of the
two shown in Figure 4 (Section 2.2.2), one can derive a code
SP-pattern from the SP-multiple-alignment in the following
way:

(1) Scan the SP-multiple-alignment from left to right
looking for columns that contain an SP-symbol by
itself, not aligned with any other symbol.

(2) Copy these SP-symbols into a code pattern in the
same order that they appear in the SP-multiple-
alignment.

The code SP-pattern derived in this way from
the SP-multiple-alignment shown in Figure 4 is
“S 0 2 4 3 7 6 1 #S”. This is, in effect, a compressed
representation of those symbols in the New pattern which
form hits with Old symbols in the SP-multiple-alignment.

Given a code SP-pattern derived in this way, we may
calculate a “compression difference” as

𝐶𝐷 = 𝐵𝑁 − 𝐵𝐸 (A.6)

or a “compression ratio” as

𝐶𝑅 = 𝐵𝑁𝐵𝐸 , (A.7)

where 𝐵𝑁 is the total number of bits in those symbols in
the New pattern which form hits with Old symbols in the
SP-multiple-alignment and 𝐵𝐸 is the total number of bits in
the code SP-pattern (the “encoding”) which has been derived
from the SP-multiple-alignment as described above.

In each of these equations, 𝐵𝑁 is calculated as

𝐵𝑁 = ℎ∑
𝑖=1

𝐶𝑖, (A.8)

where 𝐶𝑖 is the size of the code for 𝑖th symbol in a sequence,𝐻1 ⋅ ⋅ ⋅ 𝐻ℎ, comprising those symbols within the New pattern
which form hits with Old symbols within the SP-multiple-
alignment (Appendix A.5).



28 Complexity

𝐵𝐸 is calculated as

𝐵𝐸 = 𝑠∑
𝑖=1

𝐶𝑖, (A.9)

where 𝐶𝑖 is the size of the code for 𝑖th symbol in the
sequence of 𝑠 symbols in the code pattern derived from the
SP-multiple-alignment (Appendix A.5).

A.5. Encoding Individual Symbols. The simplest way to
encode individual symbols in the New pattern and the
set of Old patterns in an SP-multiple-alignment is with a
“block” code using a fixed number of bits for each symbol.
But the SP Computer Model uses variable-length codes for
symbols, assigned in accordance with the Shannon-Fano-
Elias coding scheme [4, Section 5.9], so that the shortest
codes represent the most frequent alphabetic symbol types
and vice versa. Although this scheme is slightly less efficient
than the well-known Huffman scheme, it has been adopted
because it avoids some anomalous results that can arise with
the Huffman scheme.

For the Shannon-Fano-Elias calculation, the frequency of
each alphabetic symbol type (𝑓𝑠𝑡) is calculated as

𝑓𝑠𝑡 = 𝑃∑
𝑖=1

(𝑓𝑖 × 𝑜𝑖) (A.10)

where 𝑓𝑖 is the (notional) frequency of the 𝑖th pattern in
the collection of Old SP-patterns (the grammar) used in the
creation of the given SP-multiple-alignment, 𝑜𝑖 is the number
of occurrences of the given symbol in the 𝑖th SP-pattern in the
grammar, and𝑃 is the number of SP-patterns in the grammar.

A.6. Calculation of Probabilities Associated with anyGiven SP-
Multiple-Alignment. As may be seen in [1, Chapter 7], the
formation of SP-multiple-alignments in the SP framework
supports a variety of kinds of probabilistic reasoning. The
core idea is that any Old symbol in a SP-multiple-alignment
that is not aligned with a New symbol represents an inference
that may be drawn from the SP-multiple-alignment. This
section describes how absolute and relative probabilities for
such inferences may be calculated.

A.6.1. Absolute Probabilities. Any sequence of 𝐿 symbols,
drawn from an alphabet of |𝐴| alphabetic types, represents
one point in a set of𝑁 points where𝑁 is calculated as

𝑁 = |𝐴|𝐿 . (A.11)

If we assume that the sequence is random or nearly so, which
means that the 𝑁 points are equi-probable or nearly so, the
probability of any one point (which represents a sequence of
length 𝐿) is close to

𝑝𝐴𝐵𝑆 = |𝐴|−𝐿 . (A.12)

In the SP Computer Model, the value of |𝐴| is 2.
This equation may be used to calculate the absolute

probability of the code, 𝐶, derived from the SP-multiple-
alignment as described in Appendix A.4. 𝑝𝐴𝐵𝑆 may also be

regarded as the absolute probability of any inferences that
may be drawn from the SP-multiple-alignment as described
in [1, Section 7.2.2].

A.6.2. Relative Probabilities. The absolute probabilities of SP-
multiple-alignments, calculated as described in the last sub-
section, are normally very small and not very interesting in
themselves. From the standpoint of practical applications, we
are normally interested in the relative values of probabilities,
not their absolute values.

The procedure for calculating relative values for probabil-
ities (𝑝𝑅𝐸𝐿) is as follows:

(1) For the SP-multiple-alignment which has the highest𝐶𝐷 (which we shall call the reference SP-multiple-
alignment), identify the symbols fromNew which are
encoded by the SP-multiple-alignment. We will call
these symbols the reference set of symbols in New.

(2) Compile a reference set of SP-multiple-alignments
which includes the SP-multiple-alignment with the
highest 𝐶𝐷 and all other SP-multiple-alignments (if
any) which encode exactly the reference set of symbols
from New, neither more nor less.

(3) The SP-multiple-alignments in the reference set are
examined to find and remove any rows which are
redundant in the sense that all the symbols appearing
in a given row also appear in another row in the same
order. (If Old is well compressed, this kind of redun-
dancy amongst the rows of a SP-multiple-alignment
should not appear very often.) Any SP-multiple-
alignment which, after editing, matches another SP-
multiple-alignment in the set is removed from the set.

(4) Calculate the sum of the values for 𝑝𝐴𝐵𝑆 in the
reference set of SP-multiple-alignments:

𝑝𝐴 𝑆𝑈𝑀 = 𝑖=𝑅∑
𝑖=1

𝑝𝐴𝐵𝑆𝑖 (A.13)

where 𝑅 is the size of the reference set of SP-multiple-
alignments and 𝑝𝐴𝐵𝑆𝑖 is the value of 𝑝𝐴𝐵𝑆 for the 𝑖th
SP-multiple-alignment in the reference set.

(5) For each SP-multiple-alignment in the reference set,
calculate its relative probability as

𝑝𝑅𝐸𝐿 𝑖 = 𝑝𝐴𝐵𝑆𝑖𝑝𝐴 𝑆𝑈𝑀 . (A.14)

The values of 𝑝𝑅𝐸𝐿 calculated as just described seem to
provide an effective means of comparing the SP-multiple-
alignments in the reference set. Normally, this will be those
SP-multiple-alignments which encode the same set of sym-
bols from New as the SP-multiple-alignment which has the
best overall 𝐶𝐷.

A.7. Sifting and Sorting of SP-Patterns in Unsupervised Learn-
ing in the SP System. In the process of unsupervised learning
in the SP System (Section 2.2.3, [1, Chapter 9]), which starts
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with a set of New SP-patterns, there is a process of sifting
and sorting Old SP-patterns that are created by the SP System
to develop one or more alternative collections of Old SP-
patterns (grammars), each one of which scores well in terms
of its capacity for the economical encoding of the given set of
New SP-patterns.

When all the New SP-patterns have been processed in
this way, there is a set 𝐴 of full SP-multiple-alignments,
divided into 𝑏1 ⋅ ⋅ ⋅ 𝑏𝑚 disjoint subsets, one for each SP-pattern
from the given set of New SP-patterns. From these SP-
multiple-alignments, the program computes the frequency of
occurrence of each of the 𝑝1 ⋅ ⋅ ⋅ 𝑝𝑛 Old SP-patterns as

𝑓𝑖 = 𝑗=𝑚∑
𝑗=1

max (𝑝𝑖, 𝑏𝑗) (A.15)

where max(𝑝𝑖, 𝑏𝑗) is the maximum number of times that𝑝𝑖 appears in any one of the SP-multiple-alignments in the
subset 𝑏𝑗.

The program also compiles an alphabet of the alphabetic
symbol types, 𝑠1 ⋅ ⋅ ⋅ 𝑠𝑟, in the Old SP-patterns and, following
the principles just described, computes the frequency of
occurrence of each alphabetic symbol type as

𝐹𝑖 = 𝑗=𝑚∑
𝑗=1

max (𝑠𝑖, 𝑏𝑗) (A.16)

where max(𝑠𝑖, 𝑏𝑗) is the maximum number of times that 𝑠𝑖
appears in any one SP-multiple-alignment in subset 𝑏𝑗. From
these values, the encoding cost of each alphabetic symbol type
is computed using the Shannon-Fano-Elias method as before
[4, Section 5.9].

In the process of building alternative grammars, the tree
of such alternatives is pruned periodically to keep it within
reasonable bounds. Values for 𝐺, 𝐸, and (𝐺 + 𝐸) (which we
will refer to as𝑇) are calculated for each grammar and, at each
stage, grammars with high values for 𝑇 are eliminated.

For a given grammar comprising SP-patterns 𝑝1 ⋅ ⋅ ⋅ 𝑝𝑔,
the value of 𝐺 is calculated as

𝐺 = 𝑖=𝑔∑
𝑖=1

(𝑗=𝐿 𝑖∑
𝑗=1

𝑠𝑗) (A.17)

where𝐿 𝑖 is the number of symbols in the 𝑖th SP-pattern and 𝑠𝑗
is the encoding cost of the 𝑗th SP-symbol in that SP-pattern.

Given that each grammar is derived from a set 𝑎1 ⋅ ⋅ ⋅ 𝑎𝑛
of SP-multiple-alignments (one SP-multiple-alignment for
each pattern from New), the value of 𝐸 for the grammar is
calculated as

𝐸 = 𝑖=𝑛∑
𝑖=1

𝑒𝑖 (A.18)

where 𝑒𝑖 is the size, in bits, of the code SP-pattern derived
from the 𝑖th SP-multiple-alignment.

A.8. FindingGoodMatches betweenTwo Sequences of Symbols.
At the heart of the SP Computer Model is a process for

finding good matches between two sequences of symbols,
mentioned in Section 2.2.2 and described quite fully in [1,
Appendix A]. What has been developed is a version of
dynamic programmingwith the advantage that it can find two
or more good matches between sequences, not just one good
match.

The search process uses a measure of probability, 𝑝𝑛, as
its metric.This metric provides a means of guiding the search
which is effective in practice and appears to have a sound
theoretical basis. To define 𝑝𝑛 and to justify it theoretically,
it is necessary first to define the terms and variables on which
it is based:

(i) A sequence of matches between two sequences,
sequence1 and sequence2, is called a “hit sequence”.

(ii) For each hit sequence ℎ1 ⋅ ⋅ ⋅ ℎ𝑛, there is a correspond-
ing series of gaps, 𝑔1 ⋅ ⋅ ⋅ 𝑔𝑛. For any one hit, the
corresponding gap is 𝑔 = 𝑔𝑞 + 𝑔𝑑, where 𝑔𝑞 is
the number of unmatched characters in the query
between the query character for the given hit in the
series and the query character for the immediately
preceding hit; and 𝑔𝑑 is the equivalent gap in the
database; 𝑔1 is taken to be 0.

(iii) 𝐴 is the size of the alphabet of symbol types used in
sequence1 and sequence2.

(iv) 𝑝1 is the probability of a match between any one sym-
bol in sequence1 and any one symbol in sequence2 on
the null hypothesis that all hits are equally probable at
all locations. Its value is calculated as 𝑝1 = 1/𝐴.

Using these definitions, the probability of any hit se-
quence of length 𝑛 is calculated as

𝑝𝑛 = 𝑖=𝑛∏
𝑖=1

(1 − (1 − 𝑝1)𝑔𝑖+1) , 𝑔1 = 0. (A.19)

With this equation, it is relatively easy to calculate the
probability of the hit sequence up to and including any hit by
using the stored value of the hit sequence up to and including
the immediately preceding hit.

B. Barlow’s Change of View about the
Significance of IC in Mammalian Learning,
Perception, and Cognition, with Comments

As noted in Section 3.1.1, Horace Barlow [34, p. 242] argued
that “. . . the [compression] idea was right in drawing atten-
tion to the importance of redundancy in sensory messages. . . but it was wrong in emphasizing the main technical use
for redundancy, which is compressive coding.” His main
arguments follow, with my comments after each one, flagged
with “JGW”.

B.1. “Redundancy Is Not Something Useless That Can Be
Stripped off and Ignored”

“It is important to realize that redundancy is
not something useless that can be stripped off
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and ignored. An animal must identify what is
redundant in its sensory messages, for this can
tell it about structure and statistical regularity in
its environment that are important for its sur-
vival.” [34, p. 243], and “It is . . . knowledge and
recognition of . . . redundancy, not its reduction,
that matters.” [34, p. 244].

JGW: Barlow is right to say that knowledge of and
recognition of redundancy is important “for this can tell
[an animal] about structure and statistical regularity in its
environment that are important for its survival”. In keeping
with that remark, knowledge of the frequency of occurrence
of any pattern may serve in the calculation of absolute and
relative probabilities ([1, Section 3.7], [6, Section 4.4]) and it
can be the key to the correction of errors, as Barlowmentions
in the quote from him in the heading of Appendix B.2.

But, in the SP System, redundancy is not treated as
“something useless that can be stripped off and ignored”.
Patterns that repeat are reduced to a single instance and the
frequency of occurrence of that single instance is recorded.
The existence of single instances like that, each with a record
of its frequency of occurrence, is very important, both in the
way that the SP System builds its model of the world and also
in theway that itmakes inferences and calculates probabilities
of those inferences.

As noted in Section 10, if we did not compress sen-
sory information, “our brains would quickly become clut-
tered with millions of copies of things that we see around
us—people, furniture, cups, trees, and so on—and likewise
for sounds and other sensory inputs”. And, as noted in Sec-
tion 3.1.1, Barlow himself has pointed out that the mismatch
between the relatively large amounts of information falling
on the retina and the relatively small transmission capacity of
the optic nerve suggests that sensory information is likely to
be compressed [31, p. 548]. And he has also pointed out that,
in animals like cats, monkeys, and humans, “one obvious type
of redundancy in the messages reaching the brain is the very
nearly exact reduplication of one eye’s message by the other
eye” [32, p. 213], and because we normally see one view, not
two, the duplication implies that the two views are merged
and thus compressed. In general, the evidence presented in
Sections 4 to 21 points strongly to IC as a prominent feature
of HLPC.

B.2. “Redundancy Is Mainly Useful for Error Avoidance and
Correction”. JGW: The heading above, from [34, p. 244],
implies that compression of information via the reduction
of redundancy is relatively unimportant, in keeping with the
quotes from Barlow in the previous subsection.

Redundancy can certainly be useful in the avoidance of
or correction of errors (Appendix C.2). But experience in
the development and application of the SP Computer Model
has shown that compression of information via the reduction
of redundancy is also needed for such tasks as the parsing
of natural language, pattern recognition, and grammatical
inference. And compression of information may on occasion
be intimately related to the correction of errors of omission,
commission, and substitution, as described in Appendix C.2

and illustrated in Figure 19 (see also [6, Section 4.2.2] and [1,
Section 6.2]).

B.3. “There Are Very Many More Neurons at Higher Levels in
the Brain” and “Compressed, Non-Redundant, Representation
Would Not Be at All Suitable for the Kinds of TaskThat Brains
Have to Perform”. Following the remark that “This is the
point on which my own opinion has changed most, partly in
response to criticism and partly in response to new facts that
have emerged.” [34, p. 244], Barlow writes:

“Originally both Attneave and I strongly empha-
sized the economy that could be achieved by
recoding sensory messages to take advantage of
their redundancy, but two points have become
clear since those early days. First, anatomical
evidence shows that there are very many more
neurons at higher levels in the brain, suggesting
that redundancy does not decrease, but actually
increases. Second, the obvious forms of com-
pressed, non-redundant, representation would
not be at all suitable for the kinds of task that
brains have to perform with the information
represented; . . .” [34, pp. 244–245].

and

“I think one has to recognize that the infor-
mation capacity of the higher representations
is likely to be greater than that of the repre-
sentation in the retina or optic nerve. If this
is so, redundancy must increase, not decrease,
because information cannot be created.” [34, p.
245].

JGW:There seem to be two problems here:

(i) The likelihood that there are “very many more neu-
rons at higher levels in the brain [than at the sensory
levels]” and that “the information capacity of the
higher representations is likely to be greater than that
of the representation in the retina or optic nerve”
need not invalidate ICHLPC. It seems likely that
many of the neurons at higher levels are concerned
with the storage of one’s accumulated knowledge over
the period from one’s birth to one’s current age ([1,
Chapter 11], [8, Section 4]). By contrast, neurons at
the sensory level would be concerned only with the
processing of sensory information at any one time.
Although knowledge in one’s long-term memory
stores is likely to be highly compressed and only a
partial record of one’s experiences, it is likely, for most
of one’s life except early childhood, to be very much
larger than the sensory information one is processing
at any one time. Hence, it should be no surprise to
find many more neurons at higher levels than at the
sensory level.

(ii) For reasons given inAppendix B.4, next, there are rea-
sons for doubting the proposition that “the obvious
forms of compressed, nonredundant, representation
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void oranges and lemons(int x){
printf("Oranges and lemons, Say the bells of St. Clement's; ");

if (x > 1) oranges and lemons(x - 1);} .
Algorithm 1: A simple recursive function showing how, via computing, it is possible to create repeated (redundant) copies of “Oranges and
lemons, Say the bells of St. Clement’s;”.

would not be at all suitable for the kinds of task
that brains have to perform with the information
represented”.

B.4. “Compressed Representations Are Unsuitable for the
Brain”. Under the heading above, Barlow writes:

“The typical result of a redundancy-reducing
code would be to produce a distributed rep-
resentation of the sensory input with a high
activity ratio, in which many neurons are active
simultaneously, and with high and nearly equal
frequencies. It can be shown that, for one of
the operations that is most essential in order
to perform brain-like tasks, such high activity-
ratio distributed representations are not only
inconvenient, but also grossly inefficient from a
statistical viewpoint . . .” [34, p. 245].

JGW: With regard to these points,

(i) It is not clear why Barlow should assume that a
redundancy-reducing code would, typically, produce
a distributed representation or that compressed repre-
sentations are unsuitable for the brain. The SP System
is dedicated to the creation of nondistributed com-
pressed representations which work very well in sev-
eral aspects of intelligence as outlined in Section 2.2.5
with pointers to where fuller information may be
found. And in [8] it is argued that, in SP-Neural,
such representations can be mapped on to plausible
structures of neurons and their interconnections that
are quite similar to Donald Hebb’s [9] concept of a
“cell assembly”.

(ii) With regard to efficiency,

(a) It is true that deep learning in artificial neural
networks [10], with their distributed representa-
tions, is often hungry for computing resources,
with the implication that they are inefficient. But
otherwise they are quite successful with certain
kinds of task, and there appears to be scope for
increasing their efficiencies [105].

(b) The SP System demonstrates that the com-
pressed localist representations in the system are
efficient and effective in a variety of kinds of
task, as outlined in Section 2.2.5 with pointers
to where fuller information may be found.

C. Some Apparent Contradictions of
ICHLPC and the SP Theory, and How
They May Be Resolved

The apparent contradictions of ICHLPC, and the SP Theory
as a theory of HLPC that were mentioned in Section 22, are
discussed in the following three subsections, with suggested
answers to those apparent contradictions.

C.1. Redundancy May Be Created by Human Brains and via
Mathematics and Computing. Any person may create redun-
dancy by simply repeating any action, including any portion
of speech or writing. Although this seems to contradict
the ICHLPC thesis, the contradiction may be resolved as
described in the following subsections.

C.1.1. Creating Redundancy via IC. With a computer, it is
very easy to create information containing large amounts of
redundancy and to do it by a process whichmay itself be seen
to entail the compression of information.

We can, for example, make a “call” to the func-
tion defined in Algorithm 1, using the pattern “oranges
and lemons(100)”. The effect of that call is to print
out a highly redundant sequence containing 100 copies of
the expression “Oranges and lemons, Say the bells of St.
Clement’s;”.

Taking things step by step, this works as follows:

(1) The pattern “oranges and lemons(100)” is
matched with the pattern “void oranges and
lemons(int x)” in the first line of the function.

(2) The two instances of “oranges and lemons” are
unified and the value 100 is assigned to the variable𝑥. The assignment may also be understood in terms
of the matching and unification of patterns but the
details would be a distraction from the main point
here.

(3) The instruction “printf("Oranges and lemons,
Say the bells of St.Clement"s; ");” in the
function has the effect of printing out “Oranges and
lemons, Say the bells of St.
Clement"s; ”.

(4) Then if 𝑥 > 1, the instruction “oranges and
lemons(x - 1)” has the effect of calling the func-
tion again but this time with 99 as the value of𝑥 (because of the instruction 𝑥 − 1 in the pattern
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Figure 17: Two SP-multiple-alignments, produced by the SP Computer Model, showing how the program may achieve decompression of
information as well as compression of information, as described in the text.

“oranges and lemons(x - 1)”, meaning that 1 is
to be subtracted from the current value of 𝑥).

(5) Much as with the first call to the function
(item 1, above), the pattern “oranges and
lemons(99)” is matched with the pattern “void
oranges and lemons(int x)” in the first line of
the function.

(6) Much as before, the two instances of “oranges
and lemons” are unified and the value 98 is assigned
to the variable 𝑥.

(7) This cycle continues until the value of 𝑥 is 0.

Where does compression of information come in? It
happens mainly when one copy of “oranges and lemons”
is matched and unified with another copy so that, in effect,
two copies are reduced to one.

There is more about recursion in Appendix C.1.4 below.

C.1.2. A Simple Example of “Decompression by Compression”.
In the retrieval of compressed information, the chunking-
with-codes idea outlined in Section 2.1.2 provides a simple
example of decompression by compression:

(i) Compression of information. If, for example, a doc-
ument contains many instances of the expression
“Treaty on the Functioning of the European Union”,
wemay shorten it by giving that expression a relatively
short name or code like “TFEU” and then replacing
all but one instances of the long expression with its
shorter code. This achieves compression of informa-
tion because, in effect, multiple instances of “Treaty
on the Functioning of the EuropeanUnion” have been
reduced to one via matching and unification.

(ii) Retrieval of compressed information. We can reverse
the process and thus decompress the document by
searching for instances of “TFEU” and replacing each
one with “Treaty on the Functioning of the European
Union”. But to achieve that result, the search pattern
“TFEU” needs to be matched and unified with each
instance of “TFEU” in the document. And that
process of matching and unification is itself a process
of compressing information. Hence, decompression
of information has been achieved via IC!

C.1.3. How the SP System May Achieve Decompression by
Compression. How the SP System may, with appropriate
input, achieve decompression by compression is described
in [1, Section 3.8] and [6, Section 4.5]. There are two key
points: (1) decompression of a body of information I may
be achieved by a process which is exactly the same as the
process that achieved the original compression of I—there
is no modification to the program of any kind; (2) all that
is needed to achieve decompression is to ensure that there is
some residual redundancy in the compressed version of I, so
that the program has something to work on.

Figure 17 shows a simple example. Here, the SP-multiple-
alignment shown in Figure 17(a), the very simple sentence
“j o h n r u n s”, in row 0 of the SP-multiple-alignment,
has been recognised as a sentence comprising a noun fol-
lowed by a verb.

A “code” for this analysis may be obtained by scanning
the SP-multiple-alignment from left to right, picking out
the SP-symbols that have not been aligned with any other
symbol ([6, Section 4.1], [1, Section 3.5]). The result in this
case is the SP-pattern “S s0 n1 v0 #S”. Without worrying
about the details of how many bits are required for each



Complexity 33

1

2

3

4

5

0

1

1

1

1

1 2

3

4

5

00

0 #X

#X #X

#X #X

#X #X

#X #XX X

X X

X X

X X

X

b

b

b

b

a

Figure 18: One of many SP-multiple-alignments produced by the SP Computer Model with a New SP-pattern, “0”, and a repository of user-
supplied Old SP-patterns: “X b X #X 1 #X”. Reproduced with permission from Figure 4.4(a) in [1].

SP-symbol (which has nothing to do with the textual size of
each SP-symbol—see [6, Section 4.1] and [1, Section 3.5.2.1]),
we can see that there has been a moderate compression of
information because 8 SP-symbols in the sentence have been
encoded with 5 other SP-symbols.

In Figure 17(b), the process is reversed. Now the code SP-
pattern “S s0 n1 v0 #S” is supplied to the program as a New
SP-pattern. Each of the SP-symbols in that SP-pattern are
given extra bits of information to ensure that the program has
some redundancy to work on, as mentioned above. The best
SP-multiple-alignment that is created in this case contains
“j o h n” followed by “r u n s”, which is of course the
original sentence, recreated via its code SP-symbols.

In general, the SP Computer Model, which is devoted
to the compression of information, can reverse the process
without any modification. It achieves “decompression by
compression” without any paradox or contradiction.

C.1.4. How the SP System May Create Redundancy via Recur-
sion. The SP Computer Model may also create redundancy
via recursion, as illustrated in Figure 18.

In this example, the SP Computer Model is sup-
plied with two Old SP-patterns—”X b X #X 1 #X” and
“X a 0 #X”—and a one-symbol New SP-pattern: “0”. The
program processes this information like this:

(1) The SP-symbol “0” in the New SP-pattern is matched
with, and implicitly unified with, the same SP-symbol
in the Old SP-pattern “X a 0 #X”, as shown in rows 0
and 1 in the figure.

(2) The SP-symbols “X” and “#X” at the beginning and
end of “X a 0 #X” are matched and unified with the
same two symbols at the third and fourth positions in
the SP-pattern “X b X #X 1 #X”, as shown in rows 1
and 2 in the figure.

(3) The SP-symbols “X” and “#X” at the beginning and
end of “X b X #X 1 #X” are matched and unified
with the same two symbols at the third and fourth
positions in that same SP-pattern, as shown in rows
2 and 3 in the figure.

(4) After that, the process in step 3 repeats, as shown in
rows 3 and 4 and rows 4 and 5 of the figure—and it

may carry on like this, producing many SP-multiple-
alignments, until the operator stops it, or computer
memory is exhausted.

If the matching symbols in Figure 18 are all
unified (merging each matching pair into a single
symbol), the result is a single sequence like this:
“X b X b X b X b X a 0 #X 1 #X 1 #X 1 #X 1 #X”, and
likewise for all the many other SP-multiple-alignments that
the program may produce. With all but the simplest of
those SP-multiple-alignments, there would be redundancy
in the repetition of the symbol “1” and likewise for other
symbols in the figure. Hence, the SP Computer Model has
created redundancy by a process which is devoted to the
compression of information.

C.2. Redundancy Is Often Useful in the Detection and Correc-
tion of Errors and in the Storage and Processing of Information.
The fact that redundancy—repetition of information—is
often useful in the detection and correction of errors and in
the storage and processing of information, and the fact that
these things are true in biological systems as well as artificial
systems, is the second apparent contradiction to ICHLPC and
the SPTheory as a theory of HLPC. Here are some examples:

(i) Backup copies. With any kind of database, it is normal
practice to maintain one or more backup copies as a
safeguard against catastrophic loss of the data. Each
backup copy represents redundancy in the system.

(ii) Mirror copies. With information on the Internet, it
is common practice to maintain two or more mirror
copies in different places to minimise transmission
times and to spread processing loads across two or
more sites, thus reducing the chance of overload
at any one site. Again, each mirror copy represents
redundancy in the system.

(iii) Redundancies as an aid to the correction of errors.
Redundancies in natural language can be a very
useful aid to the comprehension of speech in noisy
conditions.

(iv) Redundancies in electronic messages. It is normal
practice to add redundancies to electronic messages,
in the form of additional bits of information together
with checksums and also by repeating the trans-
mission of any part of a message that has become
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Figure 19: (a) The best SP-multiple-alignment created by the SP model with a store of Old SP-patterns like those in rows 1 to 8, representing
grammatical structures, including words, and a New SP-pattern in row 0, representing a sentence to be parsed. (b) As in (a) but with errors
of omission, commission, and substitution in the New SP-pattern and with same set of Old SP-patterns as before.

corrupted. These things help to safeguard messages
against accidental errors caused by such things as
birds flying across transmission beams or electronic
noise in the system and so on.

In information processing systems of any kind, uses of
redundancy of the kind just described may coexist with
ICMUP. For example, “. . . it is entirely possible for a database
to be designed to minimise internal redundancies and, at the
same time, for redundancies to be used in backup copies or
mirror copies of the database . . . Paradoxical as it may sound,
knowledge can be compressed and redundant at the same
time” [1, Section 2.3.7].

As noted in Appendix C.1.3, the SP System, which is
dedicated to the compression of information, will not work
properly with totally random information containing no
redundancy. It needs redundancy in its “New” data in order
to achieve such things as the parsing of natural language,
pattern recognition, and grammatical inference. Also, for
the correction of errors in any incoming batch of New SP-
patterns, it needs a repository of Old patterns that represent
patterns of redundancy in a previously processed body of
New information.

Figure 19 shows two SP-multiple-alignments that illus-
trate error correction by the SPComputerModel. Figure 19(a)

shows, as a reference standard, a parsing of the sentence
“t w o k i t t e n s p l a y” in row 0 where that New
SP-pattern is free of errors. For comparison, Figure 19(b)
shows a parsing in which the New SP-pattern in row 0
contains an error of omission (“t w o” is changed to “t o”),
an error of substitution (“k i t t e n s” is changed to
“k i t t e m s”), and an error of addition (“p l a y” is
changed to “p l a x y”). Despite these three errors, the best
SP-multiple-alignment created by the SP Computer Model is
what would normally be regarded as correct.

This example illustrates the point, mentioned in
Appendix B.2, that the exploitation of redundancy for the
correction of errors may on occasion be intimately related
to the exploitation of redundancy for the compression of
information.

C.3. The Human Mind as a Kluge. As mentioned in Sec-
tion 22, Gary Marcus has described persuasive evidence that,
in many respects, the human mind is a kluge. To illustrate the
point, here is a sample of what Marcus says:

“Our memory is both spectacular and a con-
stant source of disappointment: we recognize
photos fromour high school year-books decades
later—yet find it impossible to remember what
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we had for breakfast yesterday. Our memory is
also prone to distortion, conflation, and simple
failure. We can know a word but not be able to
remember it when we need it . . . or we can learn
something valuable and promptly forget it. The
average high school student spends four years
memorising dates, names, and places, drill after
drill, and yet a significant number of teenagers
can’t even identify the century in which World
War I took place” [103, p. 18, emphasis as in the
original].

Clearly, human memory is, in some respects, much less
effective than a computer disk drive or even a book. And
it seems likely that at least part of the reason for this and
other shortcomings of the humanmind is that “Evolution [by
natural selection] tends to work with what is already in place,
making modifications rather than starting from scratch” and
“piling new systems on top of old ones” [103, p. 12].

The evidence that Marcus presents is persuasive: it is
difficult to deny that, in certain respects, the human mind
is a kluge. And evolution by natural selection provides a
plausible explanation for anomalies and inconsistencies in the
workings of the human mind.

Broadly in keeping with these ideas, Marvin Minsky has
suggested that “each [human] mind is made of many smaller
processes” called agents, each one of which “can only do
some simple thing that needs no mind or thought at all. Yet
whenwe join these agents in societies—in certain very special
ways—this leads to true intelligence” [106, p. 17]. Perhaps
errors here and there in a society of agents might explain
the anomalies and inconsistencies in human thinking that
Marcus has described.

Superficially, evidence and arguments presented by Mar-
cus and Minsky seem to undermine the idea that there is
some grand unifying principle—such as IC via SP-multiple-
alignment—that governs the organisation and workings of
the human mind. But those conclusions are entirely compat-
ible with ICHLPC and the SP Theory as a theory of mind.
As Marcus says, “I don’t mean to chuck the baby along with
its bath—or even to suggest that kluges outnumber more
beneficial adaptations. The biologist Leslie Orgel once wrote
that “Mother Nature is smarter than you are,” and most
of the time it is” [103, p. 16], although Marcus warns that
in comparisons between artificial systems and natural ones,
nature does not always come out on top.

In general, it seems that, despite the evidence for kluges in
the humanmind, there can be powerful organising principles
too. Since ICHLPC and the SP Theory are well supported
by evidence, they are likely to provide useful insights into
the nature of human intelligence, alongside an understanding
that there are likely to be kluge-related anomalies and
inconsistencies too.

Minsky’s counsel of despair—“The power of intelligence
stems from our vast diversity, not from any single, perfect
principle” [106, p. 308]—is probably too strong. It is likely
that there is at least one unifying principle for human-level
intelligence, and there may bemore. And it is likely that, with
people, any such principle or principles operate alongside

the somewhat haphazard influences of evolution by natural
selection.
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