Keywords: Web Debugging, Web Programming, Functional Programming

Abstract: Debugging Web applications is difficult because of their distributed nature but also because of the programming languages and tools commonly used to develop them. Taking benefit of the multitier aspect of the Hop programming language, we have built a new debugger for Web applications that copes with the server-side and the client-side of the executions. Its advantage over most debuggers for the Web is that it reports the full stack trace containing all the server-side and client-side frames that have conducted to an error. An error is reported on its actual position on the source code, wherever it occurs on the server or on the client. To help detecting errors as early as possible, the Hop debugger is accompanied with a debugging execution mode where types are checked before data structures are accessed, argument numbers are verified before functions are called, and array bounds are checked before vectors are accessed. Combining the debugger and the debugging mode makes errors of Web applications easier to understand and easier to localize. Hopefully they also become easier to fix.

1 INTRODUCTION

The distributed nature of Web applications makes debugging difficult. The programming languages and tools commonly used make it even more complex. Generally the server-side and the client-side are implemented in different settings and the debugging is treated as two separated tasks: on the one hand, the debugging of the server, on the other hand, the debugging of the client. Most studies and tools focus on this latter aspect. They concentrate on the debugging of JavaScript in the browser. Although useful, this only addresses one half of the problem. Considering the debugging of Web applications as a whole raises the following difficulties:

- As the server-side and the client-side are generally implemented in different languages, debuggers for the Web do not capture the whole execution of the application. Programming the server and the client in the same language helps but is not sufficient to let the debugger expose a coherent view of the whole execution as this also demands a runtime environment that enforces consistent representations of data structures and execution traces.
- The JavaScript tolerant semantics tends to defer errors raising. For instance, calling a function with an insufficient number of arguments may lead to filling a data structure with the unexpected `undefined` value which, in turn, may raise a type error when accessed. The distance between the error and its actual cause may be arbitrarily long, which can make the relation between the two difficult to establish.
- The JavaScript event loop used for the GUI splits the execution into unrelated callback procedures which get called upon event receipts. When an error occurs, the active stack trace only contains elements relative to the current callback invocation. It is oblivious of the context of the callback. Understanding the cause of the error is then uneasy.

Pursuing our research on multitier programming for the Web, we have built a programming environment that eliminates most of these problems.

- When an error is raised, the full stack trace is reported. This stack trace may contain server stack frames, client stack frames, or both. We call this a multitier stack trace.
- When an error occurs, either on the client or on the server, its source location is reported by the debugger.
- In debugging mode, types, arities, and array bounds, are strictly enforced on the server and on
the client. Hence, when the execution of the program deviates from the formal semantics of the language, an error is raised immediately.

This paper presents this debugger and exposes the salient aspects of its implementation.

1.1 Debugging Web Applications

Most studies of the debugging of Web applications consider the client-side of the applications. Beside an early debugger for CGI applications by Vckovski (Vckovski, 1998), most efforts concentrate on creating JavaScript debuggers for the Web browsers. Feldman and Sharma have both developed a remote debugger for WebKit (Feldman, 2011; Sharma, 2012). Mickens has developed a browser-agnostic JavaScript debugger (Mickens, 2012). These tools offer facilities for inspecting the JavaScript stack frame and for breakpointing. They do not address the problem of debugging Web applications globally. These studies are complementary with our effort as Hop can use them to step inside the client side execution, provided they support the source map specification (Lenz and Fitzgerald, 2011).

A previous study by E. Schrock (Schrock, 2009) has identified many difficulties posed by JavaScript when debugging Web applications. “In the early days, the [JavaScript]’s ability to handle failure silently was seen as a benefit. If an image rollover failed, it was better to preserve a seamless Web experience than to present the user with unsightly error dialogs.

This tolerance of failure has become a central design principle of modern browsers, where errors are silently logged to a hidden error console... Now, at best, script execution failure results in an awkward experience. At worst, the application ceases to work or corrupts server-side state. Tactily accepting script errors is no longer appropriate, nor is a one-line number and message sufficient to identify a failure in a complex AJAX application. Accordingly, the lack of robust error messages and native stack traces has become one of the major difficulties with AJAX development today... Ideally, we would like to be able to obtain a complete dump of the JavaScript execution context[.]” This is exactly what Hop brings. In addition to offering multtier execution stacks that reflect the states of the server and the client, the Hop-to-JavaScript compiler (Loitsch and Serrano, 2007) generates codes which enable early error detection. It also generates ECMAScript\-262\-5 strict mode (ECMA, 2009) code which helps detecting undeclared variables and functions that can be located inside JavaScript code linked against Hop applications.

1.2 The Hop Programming Language

Hop has been presented in several publications (Serrano et al., 2006; Boudol et al., 2012; Serrano and Berry, 2012). We only remind its essential aspects and show some examples that should be sufficient to understand the rest of the paper.

Hop is a Scheme-based multtier functional language. The application server-side and client-side are both implemented within a single Hop program. Client code is distinguished from server code by prefixing it with the syntactic annotation ‘\~’. Server-side values can be injected inside a client-side expression using a second syntactic annotation: the ‘\$’ mark. On the server, the client-side code is extracted, compiled on-the-fly into standard JavaScript, and shipped to the client. This enables Hop clients to be executed by unmodified Web browsers.

Except for multtier programming, the standard Web programming model is used by Hop. A server-side Hop program builds an HTML tree that creates the GUI and embeds client-side code into scripts, then ships it to the client. AJAX-like service-based programming is made available by service definitions, a service being a server-side function associated with a URL. The with-hop form triggers execution of a service. Communication between clients and servers is automatically performed by the Hop runtime system, with no additional user code needed.

The Hop Web application fib\-html below consists of a server-built Web page displaying a threerows table whose cells enumerate positive integers. When a cell is clicked, the corresponding Fibonacci value is computed on the client and displayed in a popup window. Note the ‘\~’ signs used in lines 3, 8, 9, and 10 which mark client-side expressions.

1: \(\text{define-service (fib\-html)}\)
2: (\<HTML\>)
3: "\text{define (fib n) ;\ client code}\n4: \; (if (< x 2) \n5: \; 1 \n6: \; (+ (fib (- x 1)) (fib (- x 2)))))\n7: (\<TABLE\>)
8: (\<TR\> \<TD\> "fib(1)" ;onclick "(alert (fib 1))"
9: (\<TR\> \<TD\> "fib(2)" ;onclick "(alert (fib 2))"
10: (\<TR\> \<TD\> "fib(3)" ;onclick "(alert (fib 3)))"))\n11:

Let us modify the example to illustrate some Hop niceties. Instead of building the rows by hand, we let Hop compute them. The new Hop program uses the (\text{if} x) expression (line 9) that evaluates to the list (1, 2, 3) and the map functional operator that applies a function to all the elements of a list. The \text{if} expression (line 8) denotes the value of \text{if} on the server at HTML document elaboration time.
Before delivery to a client, the server-side document is compiled on the server into regular HTML and JavaScript. This produces the following document:

```html
<!DOCTYPE HTML>
<html>
<head>
  <meta ...
  <script src='/usr/local/share/hop/hop.s.js'></script>
</head>
<script>
  function fib(x) {if(x<2) return 1; else ...
</script>
<table>
<tr><td onclick="alert(fib(1))">fib(1)</td></tr>
<tr><td onclick="alert(fib(2))">fib(2)</td></tr>
<tr><td onclick="alert(fib(3))">fib(3)</td></tr>
</table>
</html>
```

This program can then be executed by all standard browsers.

If for some reason, the programmer wants the `fib` calls to be evaluated on the server, three modifications are needed: i) a service must be defined as the client cannot access directly server-side functions, ii) the definition of the `fib` function must be migrated to the server, and iii) a `with-hop` remote call must be introduced:

```hop
(define-service (fib-html)
  (define (fib x) ...
  (map (lambda [i]
    (td onclick "(with-hop (fib-svc $i))")
    (iota 3)))))
```

These examples illustrate the flavor of Web programming with Hop. Many more are available on the Hop web site.

In debugging mode, Hop generates JavaScript code that enforces types consistency, arity correctness, and array bounds. In this mode, all functions must be called with a number of arguments compatible with their declaration, all accesses to the data structures and to the arrays are verified by the runtime system. By experience, we have found strict checking an effective method for correcting errors that are otherwise difficult to understand. Since preventing runtime errors has a cost, Hop also supports a production mode where types, arities, and bounds are not enforced at runtime. This yields faster but unsafe executions. In production mode, executions are not guaranteed to comply with the Hop’s formal semantics (Boudol et al., 2012).

1.3 Organization of the paper

The paper is organized as follows. Section 2 presents some debugging scenarios. Section 3 sketches the implementation of the debugger and the debugging mode. A comparison of the performance between the debugging and production modes is then presented. Section 4 presents the related work.

2 DEBUGGING SCENARIOS

In this section we show the error reports produced by the Hop debugging mode in typical erroneous situations. The reports are accessible on the client, i.e., the Web browser, and on the server, which prints them on its console.

2.1 Client-side error

Let us first consider a type error that involves client-side and server-side computations. The server-side program elaborates a single-button Web page which invokes the client-side function `my-callback` when clicked (line 10).

```hop
(define-service (fib-html)
  (define (fib x) ...
  (map (lambda [i]
    (td onclick "(with-hop (fib-svc $i))")
    (iota 3)))))
```

Some generated programs have been manually modified to fit the paper layout constraints.

1. Some generated programs have been manually modified to fit the paper layout constraints.
2. http://hop.inria.fr
The client-side function \texttt{my-callback} (line 5) calls the server service \texttt{bug1-svc}. When the service completes, the execution resumes on the client by invoking the function \texttt{my-type-error}. This function is called with the vector its receives from the service. This is wrong because it wants a pair. The vector/list type mismatch is reported as:

```plaintext
File "bug1.scm", line 10, character 3:
# (car l))
# ˆ
*** CLIENT ERROR: http://localhost:8888/hop/bug1, car:
Type "pair" expected, "vector" provided -- #((11 12)
1. `\texttt{my-type-error}@bug1 client, bug1.scm:9
2. `\texttt{my-type-error}@bug1 client, bug1.scm:5
3. `\texttt{my-type-error}@bug1 client, bug1.scm:3
4. `\texttt{my-type-error}@bug1 client, bug1.scm:1

The error report shows the position in the source file of the error and the complete stack trace. Client-side frames are prefixed with the \texttt{`} sign. (Here, all stack frames are client frames.) When the type error is raised in the client-side function \texttt{my-type-error} the active stack trace only contains one frame denoting the invocation of the function \texttt{my-type-error}. However, the report also shows the context from which \texttt{my-type-error} has been called. It shows that a click on the button defined line 9 of \texttt{bug1-server} module has called the client-side function \texttt{my-callback Which}, in turn, has invoked the remote service \texttt{bug1-svc}.

The call trace makes explicit the whole execution flow which has conducted to the error on the client. It also makes explicit the network traversal (frame #2) that took place before \texttt{my-type-error} is called, it is easier to understand which actual computation conducted to the type error.

This scenario also illustrates an important difference between Hop and JavaScript. In JavaScript a function equivalent to \texttt{my-type-error} would silently return the \texttt{undefined}, value. In Hop \texttt{debugging mode}, the type error is signaled as soon as the illegal access gets executed.

### 2.2 Server-side error

Let us modify the definition of the previous service to introduce a server-side error:

```plaintext
13: `\texttt{define-service} (bug2-svc a b)
14: (vector (car a) b))
```

This is wrong as the service \texttt{bug2-svc} is passed an integer for the argument \texttt{a} while it expects a pair. The new error report is as follows:

```plaintext
File "bug2.hop", line 14, character 301:
(vector (car a) b))
ˆ
*** SERVER ERROR:car
Type "pair" expected, "int" provided -- 11
1. `\texttt{\textbackslash bug2-svc}, bug2.hop:13
2. `\texttt{\textbackslash pool-scheduler1965}, bug2.hop:13
With-Hop trace:
3. `\texttt{with-hop (bug2-svc...)} \textldots{}, bug2.scm:6
4. `\texttt{\textbackslash my-callback@bug2 client, bug2.scm:5
5. `\texttt{\textbackslash button\#my-button.onclick, bug2.hop:10
```

The report locates the error inside the \texttt{bug2-svc} service (services are prefixed with \texttt{\textbackslash} to distinguish them from regular functions). The stack trace shows server-side stack frames and the client-side context that has yielded the service invocation. This time again the error is easy to follow and to understand as the complete trace before the error is exposed. The computation started with a user click on the client. The click action has been followed by a service invocation, which has raised the server-side error.

### 2.3 Putting together

The Hop debugger keeps track of all the callbacks of the client-side program. Let the callback be associated with a service invocation as seen before, with a \texttt{GUI} event (mouse move, key press, \ldots), with a server side event (a high level facility supported by Hop built on top of websockets), or with a timer, Hop generates a dedicated entry in the stack trace. Callback traces can be combined without restriction. For instance, suppose a service call wrapped in an \texttt{after} expression (a mere JavaScript \texttt{setInterval} wrapper) as follows:

```plaintext
5: `\texttt{define} (my-callback)
6: (after 1000
7: (lambda ()
8: (with-hop (\textbackslash bug2-svc 11 12)
9: (my-type-error)))
```

The new error trace shows a \texttt{with-hop} trace preceded by an \texttt{after} trace:
A Hop stack trace may also contain JavaScript frames as JavaScript functions are treated as Hop functions. This can be observed in the previous stack trace with the after function (frame #5) which is a plain JavaScript function implemented in the Hop standard client library (the file hop-s.js).

Beside full stack traces, the Hop debugger also supports stepping. In the current version, the server-side stepper and client-side stepper work separately and only the client-side stepper is fully operational. The server-side is in progress, being developed using the techniques presented in (Kellomäki, 1993). The implementation of the client-side stepper is briefly discussed in Section 3.1.

3 IMPLEMENTATION

The Hop debugger relies on three elements: i) stepper, ii) construction the stack traces, and iii) debugging mode where types, array bounds, and function arities are verified at runtime. These are presented in this section.

3.1 Implementing the stepper

The server-side stepper is currently being developed using the techniques established for Lisp-like languages (Kellomäki, 1993). The client-side stepper reuses the native stepper available in modern browsers. The Hop-to-JavaScript compiler produces Source Map tables (Lenz and Fitzgerald, 2011) that let browsers step in the client side code using the original Hop source code instead of the generated JavaScript one. Figure 2 shows a screenshot of Chrome being used to step the example of Section 2.1.

3.2 Constructing stack traces

Hop client-side programs are compiled into natural JavaScript programs, namely, Hop functions are mapped into JavaScript functions, and Hop variables are mapped into JavaScript variables. Hence, obtaining the client-side part of the Hop stack frames is similar to obtaining a plain JavaScript stack frames, whose technique is well known (Schrock, 2009; Mickens, 2012; Sharma, 2012). It relies on two observations: first, JavaScript exception objects contain stack information; second, there are four different contexts in which codes get executed:

1. the global context while loading the page;
2. event listeners (GUI or server events);
3. timeouts and intervals;
4. remote service callbacks (XmlHTTPRequest).

To obtain a stack trace, the runtime environment installs exception handlers on these four contexts, it intercepts exceptions, and extracts their stack information. Older techniques based on the two special JavaScript variables caller and callee are now impractical as JavaScript strict mode used by Hop does not support these variables.

3.2.1 Constructing multitier stack traces

The multitier stack trace describes the current computation and the context in which it has been initiated. Contexts are computed as follows:

1. The context of a global top-level JavaScript evaluation is empty.
2. The context of a DOM listener specified as an attribute of an HTML node consists of a description of the node and a description of the event the listener is attached to.
3. The context of an event listener dynamically attached to a DOM event consists of a description of the DOM node plus the stack trace active at the moment the listener is attached.
4. The context of a timeout consists of the concatenation of the context and the stack trace active when the callback is registered, and a description of the timeout itself.
5. The context of a service call (with-hop) consists of the concatenation of the context and the stack trace active when the remote call is spawned and a description of the called service.

Hop stores the active context in the JavaScript global variable hop_current_stack_context, which is updated each time a new callback is registered. This approach is correct because JavaScript execution is single-threaded and because callbacks always run up to completion (i.e., they are never preempted).

Let us illustrate the construction of the multitier stack trace on two actual examples. First, let us show
the compilation of an HTML button declaration as found in the examples of section 2.1.

```html
<button id='my-button' onclick='(my-callback)
"click me to raise the error"
</button>
```

The production mode compilation merely consists in mangling the Hop identifier to map it into the JavaScript identifiers space:

```javascript
function hop_callback(proc, ctx) {
 return function() {
 try {
 return proc.apply(this, arguments);
 } catch(e) {
 hop_callback_handler(e, ctx);
 }
 }
}
```

To show how contexts are accumulated, let us study the implementation of the Hop after function. It works similarly to with-hop but it is simpler to understand as with-hop carries its own complexity independently of stack contexts. The base implementation of after is as follows:

```javascript
function after(timeout, proc) {
 if(!sc_typeError("after"); timeout, 1);
 if(!sc_typeError("after"); procedure, proc, 1);
 try {
 throw new Error("after");
 } catch(e) {
 var ctx = sc_cons("After trace:",
 hop_append_context;
 hop_get_exception_stack(e),
 hop_current_stack_context);
 proc = hop_callback(hoparity_check(proc, 0), ctx);
 }
}
```

First, initial type tests (lines 2 and 4) are executed. Then, before calling the setInterval JavaScript function, an exception is raised to capture the current execution trace (the function hop_get_exception_stack). This stack trace is concatenated to the context active when the function after is called. Line J3, the call to the function hoparity_check checks if the callback provided on the call site has a correct arity. If not, it throws an exception.

The proposed implementation of after breaks tail recursions. Programming patterns as:

```javascript
let loop ()
 after delay
 (lambda () ... (loop)))
```

blow the memory because the contextual stack is augmented each time a new iteration of the loop is executed. Several ad-hoc solutions are possible to workaround this problem. The one implemented in Hop consists in checking the top of the contextual stack. If it is already an after frame, nothing is pushed on the stack. Otherwise a new frame is pushed as already described. Although simplistic, we have found
this solution sufficient and convenient to debug tail-
recursive programs. If needed in the future, smarter
solutions will be envisioned.

Handling the context stack on the server is sim-
pplier. When a client invokes a service, it serializes
the context stack and ships it along the service argu-
ments. The server protects the execution of its service
with a handler that appends the execution trace of the
exception to the client-side context. This augmented
context is returned to the client if a server-side error
occurs.

3.2.2 Pretty-printing the stack trace

Pretty printing stack traces requires the debugger to
identify correctly Hop stack frames and to map the
actual locations of the generated JavaScript file into
the user source codes. In this process, a stack frame
such as:

```
at BGl
0x0 myzd2callbackzd2zzbug1
0x0 clientz00 (bug1.js:4:60)
```

is translated into:

```
at my-callback@bug1
client, bug1.scm:10
```

The mapping of identifiers is straightforward. It
merely uses the standard Hop functions for man-
gling/demangling identifiers. The Hop mangling is
also used to separate stack frames corresponding to
Hop function calls and to JavaScript function calls.

Actual source locations are reconstructed by the
Hop client runtime system using the extra informa-
tions produced by the Hop-to-JavaScript compiler. It
relies on the source map tables (Lenz and Fitzger-
ald, 2011) the compiler generates for the JavaScript
steppers. These tables contain all the informations
needed to map JavaScript source positions into Hop
source positions. To make the source tables explic-
tly available from standard JavaScript code, the Hop-to-
JavaScript compiler generates the extra call at the end
of each generated file:

```
hop
source
mapping
url("bug1.js", "bug1.js.map");
```

Checking the types and the array bounds is a dif-
frent matter as in general actual types and array
bounds are unknown at compile-time. Hence, be-
fore accessing any data structure or any array, a check
must be executed. To avoid code size expansion of the
generated JavaScript codes, Hop instruments the get-
ters and setters defined in its standard library instead
of adding extra tests in the user code it generates.

Checking types at runtime slows down the execu-
tion for two reasons. First, it requires to fetch the dy-
namic types of the objects and compare them against
global values. Second, it prevents the compiler from inlining operators which contain type tests as it would enlarge generated code size too much.

Fortunately, these costs can be significantly reduced using JavaScript dynamic properties which are available since ECMAScript 5. A dynamic property is syntactically used as a regular property but the actual access goes through a user defined function. Let us illustrate how Hop uses this feature with pairs objects which are used to represent list elements. In production mode, pairs are defined as:

```javascript
function scPair(car, cdr) {
 this._hop_car = car;
 this._hop_cdr = cdr;
}
```

In debugging mode, the implementation is changed for:

```javascript
function scPair(car, cdr) {
 this.safe_hop_car = car;
 this.safe_hop_cdr = cdr;
}
Object.defineProperty(Object.prototype, "_hop", {
 get: function() {typeError("car", "pair", this);},
 set: function(v) {typeError("set-car!", "pair", this);}
});
Object.defineProperty(scPair.prototype, "_hop", {
 get: function() {return this.safe_hop_car; },
 set: function(v) {this.safe_hop_car = v; } }
);
```

Using JavaScript getters lets the compiler generate the same inlined code for accessing the first and second elements of pairs. In debugging mode, these accesses now go through the JavaScript getters and setters which transparently enforce type consistency. This technique has several advantages over inserting extra type checks in the generated code. First, the code of the compiler is unchanged. Second, the generated code is no larger in debug mode than in production mode. Third, even pairs accessed from JavaScript are type checked.

We have evaluated the performance of this technique on four browsers: Firefox 23, Chromium 29, Safari 7, and IE11. Firefox and Chromium have been executed on the GNU-Linux 3.10.10 running on an Intel Xeon E5-1660, 3.3GHz. Safari has been executed on a 2.6GHz core i7 running MacOS 10.9.1, and IE on a core 2.7GHz i5 running Windows 7. We have compared the performance of unsafe access, explicitly type check, and property verified access.

<table>
<thead>
<tr>
<th></th>
<th>unsafe</th>
<th>check</th>
<th>property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium</td>
<td>44ms</td>
<td>209ms</td>
<td>44ms</td>
</tr>
<tr>
<td>Firefox</td>
<td>45ms</td>
<td>177ms</td>
<td>296ms</td>
</tr>
<tr>
<td>Safari</td>
<td>39ms</td>
<td>665ms</td>
<td>4678ms</td>
</tr>
<tr>
<td>IE</td>
<td>91ms</td>
<td>458ms</td>
<td>1305ms</td>
</tr>
</tbody>
</table>

This experiment shows a contradictory result. On the one hand, there is a huge benefit in using dynamic properties instead of using explicit type checks on Chromium. On the other hand, there is a drawback in using them on other browsers. As the techniques for implementing properties efficiently is now well known because published (Schneider, 2012), we foresee that all browsers will implement them efficiently too in a close future. Since properties have the advantages of their own mentioned earlier we have opted for using them, although they currently penalize non V8-based browsers.

Type checking numerical operators is also required in debugging mode as JavaScript replaces silently all non numeral values with 0 or NaN. For that, a prelude is added to each operation which enforces the types of the arguments. For instance, the ‘-’ function is defined as:

```javascript
function sc_minux2(x, y) {
 if(typeof x !== "number")
 sc_typeError("-", "number", x, 3);
 if(typeof y !== "number")
 sc_typeError("-", "number", y, 3);
 return x - y;
}
```

This slows down dramatically the performance because it adds two extra tests and it disables inlining for avoiding code size explosion. We have tried to improved the implementation by testing only the result of the operation as:

```javascript
function sc_minux2(x, y) {
 var res = x - y;
 if(isNaN(res)) {
 if(typeof x !== "number")
 sc_typeError("-", "number", x, 3);
 else
 sc_typeError("-", "number", y, 3);
 }
 return res;
}
```

The JavaScript function isNaN is a property of the global object. It is then difficult for a compiler, to implement it as efficiently as a simple operator. As suggested by the ECMA-262-5 specification (ECMA, 2009) (see Section 15.1.2.4), calling isNaN(v) can be replaced with the more efficient expression v!==v.

We have compared the three methods on the fib benchmark which uses extentivly additions, subtractions, and integer comparisons.
times. To make performance evaluation even more consis-
tent in measuring the user observable execution sys-
tem information. The only possibility we have is the
JavaScript library lacks accesses to the own. Meas-
uring the CPU or system time is impossible as they
introduce a bias of their tools are unusable as they in-
roduce a bias of their.
Increasing the performance of browser-hosted
JavaScript would be impacted if it was supporting an
explicit type checking approach on both browsers, even if it exe-
cutes more tests at runtime.

3.4 Global Performance Evaluation

For constructing the contextual stack, an exception is
raised each time a callback is registered. Whatever
the speed of raising and catching JavaScript excep-
tions, this has a minor impact on the overall perfor-
mance as callbacks are installed when pure JavaScript
performance does not matter: the network times dom-
inate the preparation of the evaluation of a with-hop
call; the setup time of a timeout is unimportant as its
purpose is to slow down the execution or to yield the
processor. The parsing of the string denoting the exe-
cution stack and the mapping the JavaScript source lo-
dation to the actual Hop source locations would have
a much significant impact as it allocates many tempo-
rary data structures. This takes time and this exercises
the garbage collector. Hopefully it can be delayed un-
til a stack must be actually displayed. In the fast path
where no error is raised, the parsing of the stack is
never executed.

Performance of arity checking and type checking is a
different matter as these require extra tests that get
executed frequently. We have measured their impact on
a set of representative benchmarks. As we have al-
ready established that the performances of Hop client-
side programs is on par with similar hand-written
JavaScript programs (Loitsch and Serrano, 2007), the
results presented here also give an intuition of how
JavaScript would be impacted if it was supporting an
equivalent debug mode.

For each benchmark, we have measured the raw
speed obtain in production mode, the speed of the in-
strumented version where only the arity is checked,
and the fully instrumented version where types are
also systematically checked. The results of this ex-
periment are presented Figure 1.

Measuring the performance of browser-hosted
JavaScript execution engines is not easy. Profiling
tools are unusable as they introduce a bias of their
own. Measuring the CPU or system time is possible as
the JavaScript library lacks accesses to the system in-
formation. The only possibility we have consists in
measuring the user observable execution times. To make performance evaluation even more
complex, JavaScript usually stops programs that run
more than 5 seconds. We then have to measure short
lasting executions, which is subject to a lot of varia-
tions depending on the system state (cache, JIT infor-
mation, etc.). In this context, we have found relevant
to run a benchmark several times, collecting all the
execution times. When the sum of these times reaches
or exceeds 10 seconds, the benchmark is stopped and
the mean time is reported. This methodology is not
totally accurate but it gives a decently correct idea of
the actual raw speed of a benchmark.

The first observation is that degradation varies
significantly from one benchmark to another but on
Chromium and Firefox, the two most popular port-
able browsers, we deem it acceptable. In general,
Chromium is the least impacted browser. This proba-
bly is a consequence of its dynamic properties imple-
mentation observed in Section 3.3 that lets it enforce
types efficiently.

The second observation is that degradations seem
totally accurate but it gives a decently correct idea of
the two benchmarks Beval and Conform. These two
benchmarks use higher order functions extensively. This
programming style imposes arity verification at runtime. The overhead is then ex-
pected.

4 RELATED WORK

Multitier programming for the Web has been pio-
nereed by GWT from Google, Links from the Univer-
sity of Edinburgh (Cooper et al., 2006), and Hop. The
three languages have appeared almost simultaneously
in 2006. Other languages have then followed such as
Ocigen (Vouillon and Balat, 2013), iTask3, or Opa
(Binsztok et al., 2013). Among the Hop competitors,
only GWT considers the problem of debugging Web
applications. GWT supports debugging of multitier
applications but cannot debug JavaScript components.
GWT has nothing similar to the Hop multitier stack.

Nodejs is a platform built on top of V8, the
JavaScript runtime used by Chrome. Nodejs is used
for building fast, scalable network applications, such
as Web servers. Nodejs is an effective way of support-
ing JavaScript on both ends of the application. How-

<table>
<thead>
<tr>
<th>type-based</th>
<th>isNaN-based</th>
<th>!==-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium</td>
<td>71ms</td>
<td>101ms</td>
</tr>
<tr>
<td>Firefox</td>
<td>19ms</td>
<td>101ms</td>
</tr>
<tr>
<td>Safari</td>
<td>48ms</td>
<td>100ms</td>
</tr>
<tr>
<td>IE</td>
<td>129ms</td>
<td>261ms</td>
</tr>
</tbody>
</table>

This experiment has contradicted our intuition as it
clearly shows the benefit of using the explicit type
checking approach on all browsers, even if it executes
more tests at runtime.
ever a Nodejs Web application is still conceived as
two separated software components and debugging is
also separated.

The following example mimics the server error
example of Section 2.2.

```javascript
var http = require("http");
var url = require("url");

http.createServer(function(request, response) {
 var urlParts = url.parse(request.url, true);
 var query = urlParts.query;

 response.writeHead(200, {"Content-Type": "text/html"});
 response.write("<html>"+query["x"]["car"]+"</html>");
 response.end();
}).listen(8888);
```

When executed, it produces the following trace.

```
node.js:10
+ query["x"]["car"]

TypeError: Cannot read property 'car' of undefined
at Server.<anonymous> (node1.js:10:40)
at Server.EventEmitter.emit (events.js:98:17)
at HTTPParser.parser.onIncoming (http.js:2056:12)
at HTTPParser.parser.onHeadersComplete (http.js:120:23)
at Socket.socket.ondata (http.js:1946:22)
at TCP.onread (net.js:525:27)
```

The error is correctly located in the server source
file but the stack trace is oblivious of the client-side
execution that has preceded the server computation.
It merely reports that the error as occurred in the con-
text of answering an HTTP request but without much
details. Running Nodejs in debug mode could give
access to extra informations about the nature of the
HTTP request but it will still lack informations about
the client state. The techniques proposed in this paper
could improve this situation.

Popular modern JavaScript frameworks raise the
abstraction level of client-side programs by offering
facilities for generating client-side programs at run-
time and for communicating with the server more eas-
ily. This makes developing applications easier but
as of the current versions, it also makes debugging
more difficult because the code automatically gener-
ated by the runtime system shows up when an error is
raised. Let us illustrates this with the Google’s Angu-
larjs framework (Google, 2013). Let us consider the
tutorial available on the framework Web page which
illustrates Ajax programming with the following ex-
ample:

```javascript
var catApp = angular.module('catApp', []);
catApp.controller('PhoneListCtrl', ['$scope', '$http',
 function ($scope, $http) {
 $http.get('phones.json').success(function(data) {
 $scope.phones = data;
 });
 $scope.orderProp = 'age';
 });
```

Figure 1: This experiment reports about the impact of debugging on client-side speed. For each benchmark and for each
browser, the optimized speed is used as a base value for that benchmark. The experiment presents the slowdowns imposed by
the debugging mode. For instance, on the Bague benchmark, arity checking incurs no performance penalty to Chromium and
Firefox but type checking slows down Chromium by a factor of 3 and Firefox by a factor of 5.
Introducing a syntax error in `phones.json` produces:

```
SyntaxError: Unexpected token }
 at Object.parse (native)
 at fromJson (angular.js:1035:14)
 at $routeProvider.defaults.defaults.transformResponse
 (angular.js:6926:18)
 at angular.js:6901:12
 at Array.forEach (native)
 at transformData (angular.js:6900:3)
 at transformResponse (angular.js:7570:17)
 at wrappedCallback (angular.js:10905:81)
 at angular.js:10991:26
```

As it can be seen, the whole execution trace is only populated with Angularjs entries which none is explicitly mentioned in the user program. Even more important, the stack trace it totally silent about the controller’s code and the HTTP request. The techniques presented in this paper could help presenting less obscure stack traces to the programmer.

The tolerant semantics of JavaScript makes it inconvenient to be used as the target of the compiler of another programming language. The checks executed at runtime by JavaScript are likely to be either insufficient if the source language is safe, or superfluous if the source language is unsafe. In Hop debugging mode, each access is double-checked. Once by Hop and once by JavaScript which ensures that the execution does not corrupt the memory. Of course, this double checking slows down executions. In this respect, the asm.js endeavor (Herman et al., 2013) is promising. It could become an interesting target for the Hop client-side compiler.

There is a whole line of research which consists in typing JavaScript. Some focus on inferring static types of JavaScript programs (Jensen et al., 2009), some such as TypeScript (Microsoft, 2013) extend the language to support type annotations. The shared objective is to enable JavaScript error detection at compile-time. This is orthogonal to our effort as our purpose is to detect unexpected behaviors at runtime.

5 CONCLUSION & PERSPECTIVES

The lack of complete debugging information is acknowledged as a major difficulty when developing Web applications (Schorck, 2009). Using the Hop multitier setting we have solved this problem by creating a debugger which reports full stack traces. When an error is raised, the programmer is presented with the complete execution trace composed of server-side and client-side frames that have conducted to the error. The Hop runtime environment supports a debugging mode where types, arity, and bounds are strictly enforced. Combining the debugger and the debug mode makes error easier to localize and to understand.

The presented debugger exposes a unified execution stack that reflects both ends of the application but it uses two separate steppers that cannot collaborate. In a further step, we will create a global stepper that will be able to traverse the network. Stepping forward seems easy to obtain because it will just require the implementation of a collaboration layer between two existing tools. Inspecting the execution stack backward is more hypothetical since it requires to save execution traces potentially infinitely.

The presented techniques rely on the multitier paradigm to expose a global and coherent view of the execution between the server and the client. They also rely on code generation to instrument the code actually executed on the browser. In Hop this is implemented in a single runtime environment whose main element is a custom bootstrapped web server embedding compilers for generating HTML and JavaScript on-the-fly. In addition to supporting better debugging, this approach also enables fast dynamic HTTP responses servers (Serrano, 2009). This approach also has drawbacks: as it is does not rely on mainstream tools and techniques, it attracts few developers. In consequence, Hop offers less libraries and support than popular languages. Our response to this problem consists in supporting a deep compatibility between Hop and the standard Web technologies in order to make HTML, CSS, third party JavaScript programs, and Web services as easy to use in Hop as they are in JavaScript, PHP, or any other standard tool (Serrano and Berry, 2012). It remains that Hop relying on the Scheme programming language, an academic programming language, is unlikely to get massive adoption. As this is our objective, we now consider a radical evolution. We are then considering transposing the Hop principles to JavaScript. The recent evolutions of JavaScript such as the EcmaScript 6 quasi-literal extensions (ECMA, 2013) that offers a standard mean for expressing client- and server-side code within a single JavaScript source file and the fast V8-based server-side environments are paving the road to new Web development environments for which the contributions presented in this paper might be useful.

REFERENCES


Microsoft (2013). TypeScript, Language Specification, version 0.9.5.


6 APPENDIX

Figure 2: The Chrome stepper stopped at a breakpoint before a type error is raised. The breakpoints are correctly sets using the actual Hop source file. Unfortunately, as of 2013 summer, the stepper is not able to use the identifier provided in the source map table nor it supports a user settings for pretty printing the execution trace.