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Noisefree stochastic multiresonance near chaotic crises
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We report on the phenomenon of noisefree stochastic multiresonance that appears in a natural way in
systems where the threshold crossing probability has a nonmonotonous derivative with respect to the control
parameter. In particular, we consider periodically driven chaotic dynamical systems above crisis threshold
where the nonmonotonicity is caused by the fractal structure of precritical attractors and, possibly, their basins
of attraction. The spectral power amplification as a function of the control parameter can be easily obtained
from the postcritical average transient times, and the heights of its multiple maxima can be estimated on the
basis of simple geometric models.
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Stochastic resonand@R) [1-3] appears in periodically P,=P’q,/2, 2)
driven systems with noise. Noisefree $R5] is a related
phenomenon observed in chaotic systems where the internahere P’ =[P(qy+0;) — P(do—d4)1/(2q,). This approxi-
chaotic dynamics plays the role of noise. The essence ahation, although simple, provides a useful intuition about
these phenomena is that the transmission of a periodic signgle shape of the SPA and yields a good quantitative assess-
through the system is optimum for nonzero intensity of thement as well. Typically the probability?(q)=0 for suffi-
stochastic or internal noise, respectively. It has also beesiently smallq (no nois¢ and grows monotonically witly
noticed that in some systems the signal transmission is maxjwith monotonic derivativethat can lead to only one maxi-
mized for several different noise levels; this phenomenon hagium of P’ and the corresponding single maximum @f
recently been given a name stochastic multiresoné®®ER)  However, if the derivative fluctuates “at the scale @f’
[6]. In this paper we show that in a large class of systemsnultiple maxima of the SPAi.e., multiresonandecan be
SMR appears as a natural consequence of their dynamicakpected.
properties. Here we focus on noisefree SR in dynamical systems in
Among systems with SR the threshold crossili§@) sys-  the vicinity of chaotic crise§8]. In such systems below the
tems form an important clas®,7]. We consider the case of critical valueq, of a control parameteq there exists a cha-
discrete dynamics with a control parametemodulated by  otic attractor, above it the attractor converts to a chaotic
the input signalg(n) =qo+d;cosgn), wheren is the itera-  saddle as a consequence of a collision with the border of its
tion number. The parametep controls the average level of basin of attractiortin other words, with the basin of escape
internal noise. The output signal is defined as 1 when a seand chaotic transients can be observed. The system bounces
lected system variable crosses a given threshold, and 0 otaround the saddle for some time, and then rapidly escapes to
erwise. As a measure of SR we take the spectral power ansome other part of the phase space. The escape probability,
plification (SPA) o=| Pllzlqi, whereP, is the first Fourier j.e., the inverse of the average transient time obeys the power
component of the output signal. In the adiabatic approximascaling law
tion P, can be derivedl7] from the modulated TC probabil-
ity P P(@)=C(d—dc)” )

To-1 where C is a constant and/=1/2 is the scaling exponent

_T-1 . (henceforth, without loss of generality, we assuipe 0). It
P1=To nzo Pldo*+dz coswon) Jexp(—iwon), (1) g known, however, that the scaling la(8) gives only a
rough trend of the functiof(qg), and sometimes quite large
_ ) ) ) oscillations around it can appef8,9]. They are caused by
where the integelo=27/wo>1 is the modulation period. fractal structures of the attractor and, possibly, basin of es-
The SPA at a pointjo can be thus considered as a functionalcape colliding in crisis. In the following we investigate SR in
of the TC probability on the intervelgo—a;,a0+d1]. If  such systems with periodically modulated control parameter.
P(q) is smooth and differentiable, then fqf small enough, The escape events can be treated as TC edisthat
in the linear approximatiorP;=(q,/2)(dP/dq)[q. How-  produce one-step long pulses in the, otherwise zero, output
ever, as will be shown belov(q) can be a complicated and signal. It is shown that the oscillations &f(q) lead to the
nondifferentiable function. Then it is better to replace theSMR.
derivative at a single poirdg by its average, i.e., the differ- Let us begin with an example of the ren map:x,, ,
ence quotient on the intervpljo—q4,90+q;]. Thus we get = p—xﬁ—Jyn, Yni+1=Xp With J=—0.3 that shows a bound-
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PP, height of the first maximum decreases with as o ax
000020000 00001 00002 00008 00004 00005 0.0006 «q3?" 2. However, similarly as Eq(3), this scaling law
gives only a general trend for a sufficiently large ranggpf
0.00061. because of the fractal-induced oscillations.
All the other maxima in the SPA in Fig.(i) are a con-
2 0.0004] sequence of seemingly tiny oscillations®fp). In order to
ié assesP(p) and o(pg) we use a simple geometric model
00002l valid for two-dimensional mapg9,11]. Assume that at the
crisis pointp— p.=q=0 the attractor is locally a set ) of
0.0000 weighted parabolas accumulating at the point of collision
30 . with the basin of escape that is modeled by the half-plane
i y>0:
&, I
25| ,'; | K
& N "*‘ & .A(k): U AiUAk+l! (5)
© 1.0 h iy . i=0
I { ll ‘.\
R i -
A — WA A where
N
0.0LL . A .
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 i
. Ai={(xy):y=—x*~ad'+q},
FIG. 1. The escape probabilitg) and the SPAb) for the crisis A 1={(x,y):y=—x*+q},

in Henon map: thick solid lines — direct numerical simulations,

thin solid line in(b) — the SPA obtained from the numerical escapethe relative measure distributiom(A4,)=(1—17)7' and

probability using Eq.(2), dqtted lines — the plain_ power scaling w(Asqp) = nk+l, and the parameters, e (0,1), a>0.

law (3) and the corresponding SPA’deaSh'dOttEd lines — mddlel  Taking a largek means to take a finer approximation of the

curves. The parameters ape=2x10 °, To=1024,y=0.858.a  nfinjte fractal set. The probability of the escape event is

=0.158, #=0.517, C(i)zo'?’.%‘ {=0.554, anda=0.65. The dots .y rional to the measure of the attractor overlapping the

denote the maximar,}, estimated from Eq(7) Wlth (from left) k basin of escape(q) = ¢ x(q), ¢=const. The functio(q)

=5 andk=4, and the square — the first maximum from &4 o, 04 ,ce5 the power law treii@) with regular oscillations
superimposed on it. The parameters », and vy can be

derived from the eigenvalues of the periodic orbit mediating

in the crisis and the relatiop=In 7/In a+1/2[9]. Similarly,

a;[]can be obtained fron€ and the other model parameters.

ary crisis atp,=1.4269211 . . . :there is a strange attractor
for p<p. and divergence to infinity fop>p.. After every
escape event the trajectory is reinjected on the precritic
attractor. F!gure 1 shows the T.C probabllﬁ(p) and Fhe The model curve can be fitted to numerical dgay. 1(a)]
corresponding curves(py) obtained by replacingy with by choosing properly the parametr

P(n) =po+ P1C0Skun) [p— P, Po—Pe. andp, correspond Using the model (5) with the modulatedq(n)=q

toq, qo anc_iql_ in Egs. (3) and (1), respectively. Roughly + gy COSq), Whereqo=po— Pe. 0= Py, the curvea(qog)
regular osglllatmnsboP(q) - tg thﬁ fr%th)aAl strhucture . lthel can be evaluated analytically. The theoretical curve in Fig.
attra_ctor[ ] can be S(;en :n the SPA shows dmutlp e1(b) deviates from the numerical one for large+ p.; this
maxima. It is apparent that the approximati@ reproduces is connected with the corresponding deviation of the curves

the actual SPA from the escape probability very well. P(p) in Fig. 1(a). The derivative of the model cur(q)

To make a comparison, the plain power |48} and the fluctuates: it is infinite at the beginning of every oscillation
corresponding SPA have been plotted in Figddtted lines. RN igl g Y
g=ac' and decreases fa—aca' " ". It follows that forqg

In this case only the first maximum is recovered. It occurs

since forq<0 there isP(q)=0 so the difference quotient >0, we can, in general, ob_serve a series of maxima in t_he
P’ increases monotonically for g, <go<d;, and then for corresponding SPA to the right of the first maximum origi-

. . . nating from the power scaling lav8). All the smaller scale
Go=01 decreases. ify<1 or further increases if>1. So oscillations ofP(q) yield only some modulation of the rising
when y<1 a maximum of the curver vs q, appears at|g

=(4, While wheny>1 there is no maximum at all, at least slope of the first maximum.
—HL , . . k) .
within the region where Eq3) holds true. In our example Let us estimate the heighty;, of the maxima of the SPA

y=0.858 and the first maximum in Fig() results from the appearing approximately af,,=aa*+d; whenk fulfils
power law alone. From Eq$2) and (3) its height is

the conditionaa®~1>2q,. The top of the parabolic segment
A, touches then the basin boundary exactly once per modu-
OTmax= (27Cq) " Y4)2. (4 lation period. Peaks of this kind dominate in FigblL The
TC probability at the intervale[aa®,aa*" 1] can be ap-
Using the value of fitted from the log-log plot oP(p) we  Proximated ag9]
obtain o,,,x Whose value agrees well with the height of the
first maximum in Fig. 1b). From Eq.(4) it follows that the P(q)= 7" 1g+ 75(1- ) Jg—aaX]. (6)
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Replacingg with q(n) in Eq. (6), expanding the first root in B-B,
the Taylor series arounqg%ax up to the first-order term in 0.000 0001 0.002 0.003 0.004

g;, and evaluating the Fourier transform of E§) in the
continuous time approximation we get

(k) 577k 2 7 8(1- 77) 2
Omax— T INGEE + 3 o
qO,max ™ ql

A similar formula follows from inserting Eq6) into Eq.(2).

0.03} (a)

2 0.02}

(7) &
[a

Let us now consider the case when not only the attractor 0%

but also the basin of escape is a fractal set. This happens, o8 ®)
e.g., for crises in the kicked spin m@p2]. The model de- eol. 1 A
scribes the motion of a classical magnetic monisptn) S, ! *

. . L . . i A}
|§ =S, in the field of uniaxial anisotropy and impulse trans- wl A
versal magnetic fiel®(t)=BX=”_,5(t—n7) given by the ° Unt
HamiltonianH = — A(S,)2—B(t)S,, whereA>0 is the an- 201 ‘! N
isotropy constant. The time evolution is determined by the Lol . i i ’\‘
Landau-Lifschitz equation with damping,S=SX By U ey o
—(N/S)SX (SX Bgfs), Where Bgss=—dH/dS and A>0 is B-B
the damping parameter. The equation can be integrated and o
denoting byS, the spin vector just after theth field pulse FIG. 2. As in Fig. 1 for the crisis in the spin map; the dash-
one finds a two-dimensional ma@, . 1=T[S,] whose ex- dotted lines result now from combined modé® and (8). The
plicit form is given in Ref.[12]. parameters ar@,;=3x10 4, T;=1024, y=0.707, «=0.002 34,

At S=1, A=1, 7=2m, and\=0.1437002-- the spin  7=0.285, =0.124,bg=3.27, C=0.715,{=1.90,a=1.05, and
map exhibits attractor merging crisis Bf=1.2: for B<B,  b=4.022. The dots denote the maximf,) estimated from Eq(7)
two separate symmetric chaotic attractors corresponding toith (from left) (k,1)=(2,4), (2,3), (1,4), (1,3), the triangles de-
the spin “up” (S,>0) and “down” (S,<0) states coexist, note the maximas{,) estimated from Eq(9) with (from left)
whereas forB> B, the attractors merge and the spin jumps(k,!)=(2,4) and (1,4), and the square — the first maximum from
between these two states. The borders of the basins of escap@ (4)-
are fractal[9] and the TC probability?(B), i.e., the prob-
ability of jump between the two spin orientations, exhibits ~ Strong maxima of the SPA resulting from the overlap of
complicated oscillations originating from the overlap of thethe two fractal structures again appear to the right of the first
fractal structures of precritical attractors and their basingnaximum in Fig. 2b). There are maxima connected either
[Fig. 2@]. In order to study noisefree SR the pulse ampli-with entering the stripes;, [positive slope ofP(B)] or the
tude is modulated3— B(n) = By + B, coswgn), whereB(n) “hole” between stripes3, and B,_; [negative slope of
denotes theth pulse amplitude. The resulting curveéB,) P(q)] by the attractor branchd,. These maxima appear
exhibiting multiple maxima are shown in Fig(. Note that ~ approximately atyfiih,=aa*+b’g'+q;, whereb’=b or
although the curv&(B) is very complicated the SPA is still b’=b—bg in the two above-mentioned cases, respectively;
predicted very well using the approximatid®). As in the the top of the parabolic segmeH, touches the lower border
former case the first maximum follows from the tre(®  of the stripe or hole again once per modulation period. The
while all the others are the consequence of the complicatedeight of the maxima can be estimated as in the previous
shape of the TC probability. example, using the approximatias) for the attractor and

In order to study this case analytically1], apart from the considering only one stripB, of the basin. In the first case,
model of the fractal attractofs) the model of the fractal under the assumptiorsa*~1>2q;, B'bg>2q;, the height
basin is assumel®] as a se3(" of stripes accumulating at of the maximumo'X!) can be obtained from Eq7) after

the point of collisiony=0: substitutingg ks for qg‘%ax In the second case, provided
| thatae*~1>2q,, B'~}(b—bg)— B'b>2q;, the height can
BW= U BUB,, ) be estimated as
J 1
j=0
~wny_[€n 7 7
where B, ={(x,y): 8'(b—bg)<y=p'b}, B 1={(x,y)0=y R NI NPT G N 2
<,8'+1b} and 0<8<1, b>bg>0. The model curvé(q), Omax Omax™
whereq=B— BC, can be fitted to the numerical ddtgig. 1— 7 8(1—7) [2 2
2(a)] by choosing properly the parameterandb. The other Q) | - —
parameters can be evaluated either as in the case of the \/%,ﬁqax_b B —aa
Henon map, or from the magnified plots of the collision re-
gion of the fractal attractor and basin of esc@pg Comparison between the theoretical and numerical results in
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Fig. 2(b) shows that the agreement is not as good as in Figtors and, possibly, of their basins. This fractal structure is
1(a). Nevertheless, the shape of the cuwéB,) and the well reflected in the SPA; thus SR seems to be a subtle tool
order of magnitude of the maxima are qualitatively pre-for the investigation of such structures. The SPA, in turn, can
dicted. be obtained easily and with high accuracy from the TC prob-
Note that in both above-mentioned cases the cl{®) ability using the modified linear approximati@®). It should

has a self-similar structure. Maxima of the SPA can be det)e stressed that SMR near crises appear natura”y as a con-
scribed by the introduced models fgp of orderq;. The  sequence of the dynamical properties of the system, and not
effect of the smaller scale structure®{q) is typically hid-  of an arbitrarily introduced potential with some invariance
den in the rising slope of the first maximum. F@®q, our  properties[6]. We believe that similar kind of mechanism
simple models do not recover the smaller scale OSCI||{:I.tIOI’IﬁeadS to SMR also in other systems where the probability of
of P(q) that are, however, present and lead to a series ohe event determining SRe.g., escape rate from potential

virtually random sharp maxima af(qpo). well in bistable systemshas a nonmonotonous derivative
To conclude, in this paper we showed that TC systemgct [4]).

with a nonmonotonous derivative of the TC probability as a

function of the control parameter are a generic class of mod- S.M. and J.H. were partly supported by special funds of
els in which SMR appears. In particular, we considered théFG, SFB 555 Komplexe Nichtlineare Prozesse. S.M. was
neighborhood of chaotic crises where noisefree SMR occuralso supported by the SOCRATES program of the European
as a consequence of the fractal structure of precritical attraccommunity.
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