
Theranostics 2020, Vol. 10, Issue 14 
 

 
http://www.thno.org 

6261 

Theranostics 
2020; 10(14): 6261-6277. doi: 10.7150/thno.42523 

Review 

Epigenetics and metabolism at the crossroads of 
stress-induced plasticity, stemness and therapeutic 
resistance in cancer 
Dinoop Ravindran Menon1*, Heinz Hammerlindl2*, Joachim Torrano2, Helmut Schaider2, Mayumi 
Fujita1,3,4 

1. Department of Dermatology, University of Colorado School of Medicine, Aurora, CO, USA 
2. The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, OLD, Australia 
3. Eastern Colorado VA Health Care System, Aurora CO, USA 
4. Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA 

*These authors contributed equally to the study  

 Corresponding authors: Mayumi Fujita, University of Colorado School of Medicine, 12801 E.17th Ave, MS 8127, RC-1S, Rm L18-4124, Aurora, CO 80045. 
Phone: 303-724-4045; Fax: 303-724-4048; E-mail: mayumi.fujita@cuanschutz.edu. Helmut Schaider, The University of Queensland Diamantina Institute, The 
University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba QLD 4102, Australia. T 61 7 3443 7395; F 61 7 3443 7799; E-mail: 
h.schaider@uq.edu.au 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2019.12.27; Accepted: 2020.02.13; Published: 2020.05.15 

Abstract 

Despite the recent advances in the treatment of cancers, acquired drug resistance remains a major 
challenge in cancer management. While earlier studies suggest Darwinian factors driving acquired drug 
resistance, recent studies point to a more dynamic process involving phenotypic plasticity and tumor 
heterogeneity in the evolution of acquired drug resistance. Chronic stress after drug treatment induces 
intrinsic cellular reprogramming and cancer stemness through a slow-cycling persister state, which 
subsequently drives cancer progression. Both epigenetic and metabolic mechanisms play an important 
role in this dynamic process. In this review, we discuss how epigenetic and metabolic reprogramming 
leads to stress-induced phenotypic plasticity and acquired drug resistance, and how the two 
reprogramming mechanisms crosstalk with each other. 
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Introduction 
Acquired drug resistance is one of the major 

causes of mortality in cancer. This phenomenon is 
wide spread for distinct kind of treatment strategies 
which include standard chemotherapy, targeted 
therapy and immune therapy. Multiple mechanisms 
have been implicated in the development of drug 
resistance, which include reactivation of targeted 
pathways, activation of parallel pathways, drug 
efflux, and immune evasive mechanisms [1] . While 
earlier studies have suggested a Darwinian model of 
evolution with a rigid non-reversible phenotype 
caused by genetic alterations and natural selection, 
others have shown a reversible resistance phenotypic 
state and the involvement of non-Darwinian factors 

[2-6]. The latter model points to a more dynamic 
process that involves tumor microenvironment, 
cellular heterogeneity and phenotypic plasticity, all of 
which play an important role in the evolution of 
acquired drug resistance [7, 8]. These non-Darwinian 
factors may be distinct, but are often interconnected 
with phenotypic plasticity. This process of phenotypic 
plasticity has many similarities to genetic 
accommodation or “organic selection”, a term coined 
by Baldwin [9], except that some of these adaptations 
are heritable in cancer cells, which could be explained 
by the process of epigenetic imprinting. Phenotypic 
plasticity provides cancer cells an initial survival 
advantage that allows them to accumulate genetic 
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changes or imprint epigenetic memory, leading to a 
resistant phenotype. The initial underlying 
mechanisms aiding this process could be our own 
pre-existing cellular programs that allow our body to 
cope with a stressful or unfavorable 
microenvironment, which is adapted by cancer cells 
to acclimate to natural or drug-induced challenges 
[10]. 

This process of cellular plasticity is not only the 
privilege of cancer cells but also shared by 
non-cancerous cells. While differentiation and 
heterogeneity of human stem cells were initially 
thought to be unidirectional with embryonic stem 
cells differentiating into adult stem cells and 
differentiated tissues, growing evidence suggests that 
each of these phenotypes is semi-stable and 
interchangeable [11]. Accordingly, differentiated cells 
from normal tissue can acquire distinct phenotypes, 
as shown by trans-differentiation experiments where 
distinct cell types are inter-convertible without 
reprogramming into an adult stem cell or embryonic 
stem cell phenotype [12]. Similarly, cancer cells  could 
be in diverse semi-stable epigenetic states with more 
intrinsic plasticity, allowing them to switch between 
phenotypes, depending on fitness landscape or 
mutation-selection balance [13-17].  

Whether it is a cancer or non-cancerous cell, the 
primary factor that defines a metastable (stable states 
of a dynamic system) or differentiated state is the 
pattern of gene expression. Hence, epigenetic memory 
plays an important role in stabilizing each state or 
transitioning from one state to another. Metabolic 
factors also trigger and support the transition. Both 
processes of epigenetic memory and metabolic 
changes are mutually regulated in nature rather than 
unidirectionally controlled [18]. These two 
mechanisms are also important in developing and 
maintaining cancer subpopulation with stem-like 
characters, such as high tumor growth potential, drug 
resistance and tumor heterogeneity [19, 20]. In this 
review, we will discuss how epigenetic and metabolic 
factors drive phenotypic plasticity in cancer, and 
highlight their importance in cancer stemness, disease 
progression and drug resistance.  

Cancer Stemness, Cellular Stress and 
Senescence  

Stem cells are classically defined by two basic 
principles; the ability to self-propagate and the 
potency to differentiate into multiple cell types [21]. 
Similarly, cancer stem cells (CSCs) are historically 
defined by two fundamental stem cell properties; 
self-propagation and restoration of the original tumor 
with phenotypic heterogeneity [22, 23]. Another 
feature of CSCs is their resilience to unfavorable 

microenvironments and drugs, which allows them to 
survive in disadvantageous conditions and 
re-establish the tumor [24]. The initial CSC model of a 
unidirectional hierarchical system was established 
from the studies of hematological cancers where rare 
cell populations propagated after serial 
transplantations [25]. Accordingly, a variety of 
markers were identified in each cancer type that met 
the defining criteria for CSCs [23]. However, recent 
studies have provided evidence for a dynamic, 
non-hierarchical cancer stemness model in multiple 
cancer types including glioblastoma, breast cancer, 
pancreatic cancer and melanoma by accommodating 
the concept of phenotypic plasticity [26-31]. Therefore, 
subpopulations with rapid tumor-initiating potency 
can rise from stochastic switching of cancer cell 
populations [31]. While it is clear that subpopulations 
of cells have growth advantage or drug resistance 
capability when compared to the bulk of tumor cells, 
it is likely that these populations are in flux through 
constantly switching phenotypes. 

These studies also raise another interesting 
question about cancer stemness. Can a particular 
phenotype qualify as stemness or can the process of 
plasticity itself better explain the stemness? While 
some of these phenotypes have a growth or survival 
advantage in certain conditions, this advantage could 
be rather contextual, entailing cells to switch between 
these states to grow and thrive. Often, cells in a 
slow-cycling or semi-quiescent phenotype are 
resistant to a wide variety of treatments and described 
as cancer persister cells [32]. They are also reported to 
have an advantage in tumor growth and 
tumor-initiating potential [33]. This observation is 
rather counterintuitive as it is difficult to directly 
explain how a slow-cycling population can lead to 
higher tumorigenicity. A possible explanation would 
be that these cells enter a state that is more tolerant to 
a wide variety of stressful conditions, which allow 
their initial successful engraftment and subsequent 
swift switch into a proliferative state once the 
environment becomes favorable. On the other hand, 
cells already in a proliferative state may need to 
switch into a slow-cycling state to allow their 
engraftment and then switch back to a proliferative 
state for tumor growth. This explanation points to a 
general mechanism whereby a slow-cycling state, 
described as a pseudo-senescent or quiescent 
phenotype, can be associated with cancer stemness.  

Cellular senescence is broadly classified into 
three types: replicative senescence, embryonic 
senescence and stress-induced premature senescence 
(SIPS) [34]. Replicative senescence is characterized by 
shortening of telomeres due to cellular replication, a 
closely regulated process to ensure tissue homeostasis 
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[35]. Embryonic senescence, on the other hand, plays a 
central role in early embryonic development. While 
embryonic senescence was thought to be terminal, 
recent studies suggest it is temporal in nature and 
cells exit out of senescence at later stages [36]. SIPS, as 
the name suggests, is a stress-induced premature 
senescence phenotype that does not affect telomere 
function [37]. SIPS is induced by cellular stress from 
extrinsic and intrinsic factors such as oncogenic stress, 
chemotherapeutic agents, ionizing radiation and 
nutrient starvation [38-40]. Hence, SIPS have 
characteristics that resemble the senescent-like 
phenotype observed in cancer cells that arise due to 
oncogenic stress or treatment with therapeutic agents. 

The underlying process relating these seemingly 
paradoxical phenotypes of senescence and cancer 
stemness had remained elusive. However, a recent 
study illustrated that the process of therapy-induced 
senescence promoted cancer stemness by 
reprogramming cells and enhancing canonical WNT 
signaling [41]. This phenotypic shift from senescence 
into a stem-like state could be a universal 
phenomenon not exclusive to cancer cells, since even 
‘Yamanaka factors’ [42] induces an initial transition of 
primary cells into senescence that is required for 
efficient reprogramming [43, 44]. Because cancer cells 
are heterogeneous in their efficacy to switch between 

slow-cycling persisters and proliferative states, the 
cells that are highly dynamic and switch effortlessly 
between these states could have growth and survival 
advantages over others. 

In line with these observations, we have shown 
that acute stress-induced phenotypic switching of 
distinct melanoma subpopulations into a slow-cycling 
state [45]. This switching led to the upregulation of 
multiple melanoma stem cell markers including nerve 
growth factor receptor (NGFR) [46], ATP-binding 
cassette sub-family B member 5 (ABCB5) [47] and 
aldehyde dehydrogenase (ALDH) activity [48]. 
However, this process did not involve direct 
reprogramming, and the slow-cycling cells reverted 
back to their respective phenotype once the stress was 
removed, suggesting that the cancer persister cells 
serve as a reservoir for many distinct subpopulations, 
thereby maintaining tumor heterogeneity (Figure 1, 
left). We have also shown that this switching into 
persister cells provided stem-like characteristics such 
as high tumorigenic potential and drug resistance 
[45]. Therefore, the markers of a slow-cycling state 
fulfill the definitions of the hierarchical CSC model 
except lineage hierarchy (Figure 1, right). This concept 
is supported by many studies, which show that 
unfavorable conditions, such as hypoxia, drug 
treatment and nutrient starvation, induce phenotypic 

 

 
Figure 1: A schematic representation describing how distinct subpopulations of cancer cells transiently shift into a persister state (star-shaped red cells) under stress and 
maintain tumor heterogeneity. The short-term stress exposure causes a shift of multiple subpopulations into persister phenotype both in vitro and in vivo. The efficiency of 
transition could vary depending on the stress-inducing conditions and sensitivity of subpopulations to the stress. When the factor inducing stress is removed, the surviving 
persisters would reverse back to their original phenotypes and proliferate to reconstitute their subpopulations (left). When persister populations are sorted using persister 
markers and reseeded in vitro or implanted in vivo, each of the populations reverse back to the original phenotype, resulting in the restoration of phenotypic heterogeneity, 
which could be misperceived as pluripotency or multipotency of cancer cells, because it looks as if the persister cells differentiate into multiple phenotypes (right). 
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plasticity that leads to the induction of a stem-like 
state in cancer cells [45, 49-54]. The transition into a 
slow-cycling state is also closely associated with an 
epithelial-mesenchymal transition (EMT) that leads to 
drug resistance and metastasis [55-57]. Drug holiday 
studies have shown that the slow-cycling populations 
swiftly switch back into a proliferative state in the 
absence of drug and display phenotypes 
corresponding to cancer stemness [2, 3, 45, 55, 58, 59]. 
Accordingly, CSCs are often reported to be in a 
slow-cycling state, providing them with drug 
resistance and tumor growth advantage [60].  

Markers Identifying Cancer Persisters 
The slow-cycling, drug-resistant persister 

population has been detected in multiple cancer types 
and often shares previously described markers of 
cancer stem cells. However, it is unclear whether 
these markers are related with the persister 
phenotype. Below, we will discuss some of the 
markers that have been shown to identify cancer 
persisters. Members of the jumonji AT-rich interactive 
domain-1 (JARID1) family, particularly lysine-specific 
demethylase 5A (KDM5A) and lysine-specific 
demethylase 5B (KDM5B) [2, 3, 45, 58, 59, 61], 
demethylate histone 3 lysine 4 trimethylation 
(H3K4me3). KDM5A and KDM5B expression 
correlates with the expression of stem cell markers in 
various cancer types [2, 45, 62]. Many of these studies 
explain the rise of a slow-cycling population as an 
outcome of random stochastic switching within the 
population [2, 3]. However, we have shown that 
chronic stress and drug treatments induce the 
upregulation of KDM5A and KDM5B in multiple 
cancer types [45, 63]. KDM5 gene is shown to 
modulate oxidative stress response in a Drosophila 
model, therefore its upregulation would illustrate an 
evolutionarily conserved mechanism for coping with 
stress [64]. Indeed, KDM5A plays an important role in 
hypoxia-induced chromatin reprogramming [65] 
while hypoxia-inducible factor HIF1α is a direct 
transcriptional regulator of KDM5B [66]. In line with 
the correlation of KDM5 with a slow-cycling state, 
H3K4me3 demethylation by KDM5A and KDM5B is 
associated with cellular senescence [67], indicating a 
conserved mechanism for KDM5 to cope with 
stressful environments. However, KDM5B was also 
shown to prevent terminal differentiation of 
embryonic bodies [68]. Therefore, KDM5 could be a 
double-edged sword, acting initially as tumor 
suppressor and senescence inducer but later driving 
cancer progression.  

Another key marker is NGFR, which was shown 
to be associated with stemness in melanoma [46, 69], 
breast cancer [70], colon cancer [71] and squamous cell 

carcinoma [72, 73]. NGFR expression is transient [45, 
74], similar to that of KDM5A and KDM5B, and 
represents a slow-cycling phenotype in multiple 
cancer types including melanoma [45], breast cancer 
[75], lung cancer [63] and squamous cell carcinoma 
[73]. The induction of NGFR by interferon gamma 
(IFN-γ) in cancer cells [76] suggests a generic 
stress-induced phenotype. We have shown that 
NGFR expression is indeed induced by multiple stress 
factors such as drug exposure, hypoxia and glucose 
starvation in multiple cancer types [45, 63] and 
correlates with KDM5A/B expression. In many 
cancers, NGFR expression correlates with ALDH 
activity [45, 70, 77], which is upregulated in cancer 
persisters [78, 79]. However, since ALDH activity is 
regulated by a family of ALDH genes [80], its 
applicability to consistently identify persister 
population needs further testing. NGFR inhibits p53 
activity [81] and protects cells from reactive oxygen 
species [82], which would account for the drug 
resistant mechanism of NGFR. NGFR expression is 
associated with resistance to MAPK inhibitors 
(MAPKi) in melanoma [45, 83] and chemotherapy in 
multiple cancer types [81, 84]. NGFR expression is 
also associated with downregulation of melanoma 
antigens, suppression of cytotoxic T cell responses 
[76] and resistance to adoptive T cell transfer therapy 
in melanoma patients [85] and mouse models [86]. 
Taken together, these studies indicate that a 
stress-induced shift to a slow-cycling state of cells 
expressing KDM5 and NGFR serves as a crucial step 
for cancer progression and therapy resistance. We will 
further discuss how the stress-induced expression of 
these factors contribute to disease progression 
through epigenetic reprogramming in the section 
below. 

Role of stress-induced epigenetic 
reprogramming in cellular plasticity and 
drug resistance. 

Epigenetics modifies genes via several 
mechanisms including DNA methylation and histone 
modifications. Epigenetic modulation plays a central 
role in phenotypic plasticity, and determines cell fate 
in many processes such as senescence induction and 
maintenance, important steps for slow-cycling cancer 
cells. The stress-induced, slow-cycling subpopulation 
of cancer cells carries a resemblance to a SIPS 
phenotype of non-cancerous cells. SIPS is regulated 
through temporal histone modifications rather than 
DNA methylation processes [40, 87], whereas 
replicative senescence is controlled by heritable DNA 
methylation changes such as global hypomethylation 
[88] of DNA and focal DNA hypermethylation [89]. 
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The modifications in SIPS include a loss of 
transcriptional activator mark, H3K4me3 [67, 90], and 
a gain of transcriptional repressor mark, histone 3 
lysine 9 trimethylation (H3K9me3) [91, 92], both of 
which result in repressive chromatin formation and 
gene silencing. H3K9me3 plays an important role in 
the formation of senescence-associated 
heterochromatin foci in replicative senescence, 
embryonic senescence and SIPS [92-94], suggesting 
their generic role in multiple senescent phenotypes. 
Accordingly, a shift to a slow-cycling stem-like state 
in cancer cells is accompanied by a loss of [2, 45, 58, 
63]. The H3K4me3 demethylation is carried out by 
KDM5A and KDM5B [2, 45, 58], whereas the 
modification of H3K9me3 is achieved by two histone 
methyltransferases, SET domain bifurcated histone 
lysine methyltransferase 1 (SETDB1) and SET domain 
bifurcated histone lysine methyltransferase 2 
(SETDB2) [63, 90]. SETDB1 is involved in cellular 
senescence through formation of heterochromatin 
structures, which then leads to alternative 
lengthening of telomeres and cancer cell immortality 
[95]. In line with this, SETDB1 has been shown to 
contribute to melanoma progression and therapy 
resistance [96]. On the other hand, the role and 
function of SETDB2 in the process of senescence and 
slow-cycling cancer cells remain largely unknown. In 
addition, despite the above-mentioned important 
roles for histone modifications in a slow-cycling 
stem-like state in cancer cells, no correlation exists 
between DNA methylation patterns and gene 
expression in these slow-cycling cancer cells nor are 
the DNA methylation patterns associated with this 
shift [63]. This is not surprising, as changes in DNA 
methylation patterns are considered to be more stable 
and heritable than histone modifications, which 
would explain the transient and reversible phenotype 
of a slow-cycling state. Subsequently, the H3K4me3 
and H3K9me3 epigenetic patterns are reversible when 
the stress exerted on the cells is released. Furthermore, 
while epigenetic phenotypes of low H3K4me3 and 
high H3K9me3 are commonly observed in various 
cancer types, the gene expression profiles altered by 
the shared epigenetic patterns are cancer type-specific 
rather than universal [63]. This is expected, as 
different cancer types need to upregulate or 
downregulate a unique set of genes to switch into a 
slow-cycling cancer persister state. 

When cancer cells are treated with drugs 
continuously, the slow-cycling phase leads to an 
acquired drug-resistant state that is phenotypically 
stable compared to the transient, slow-cycling state [4, 
45, 83]. This observation suggests that the 
slow-cycling state is important for two distinct 
functions: The first being its role in ensuring survival 

of the cell population after acute stress and the second 
being its capacity to develop a stable drug resistant 
phenotype. This could happen either through the gain 
of genetic changes or epigenetic cellular 
reprogramming in the slow-cycling state. Recent 
studies have demonstrated the involvement of the 
latter process in the development of acquired drug 
resistance that is phenotypically stable. For example, 
when melanoma cells were treated with MAPKi for a 
long period, they underwent global epigenetic 
reprogramming and upregulated the expression of 
drug resistant genes such as APC down-regulated 1 
(APCDD1), epidermal growth factor receptor (EGFR), 
platelet-derived growth factor receptor beta 
(PDGFRB) and neuregulin 1 (NRG1). This process was 
gradual and dependent on the continuous exposure to 
the drug, resulting in a shift from a transient 
transcriptional state to a stable resistant state [83]. 
Accordingly, escape of cancer cells from 
drug-induced senescence was associated with a gain 
of specific H3K4me3 peaks that lead to CSC gene 
activation [41], which could aid global epigenetic 
reprogramming. The involvement of transcriptional 
reprogramming in the escape of cancer cells from a 
slow-cycling state to a stable resistant state was also 
reported in other melanoma studies [97, 98], one of 
which shows an association of this reprogramming 
with histone 3 lysine 27 (H3K27) acetylation and a 
mesenchymal phenotype [97]. H3K27 acetylation is a 
transcriptional activator and negatively correlates 
with DNA-methylated CpG islands that correspond 
to gene inactivation [99]. These studies suggest that 
even though transient subpopulations of preexisting 
cells have an advantage against inhibitors during the 
initial selection process, they further undergo a 
time-dependent epigenetic reprogramming to acquire 
a stable resistant state. Interestingly, while the stable 
resistant phenotype showed substantial changes in 
the global access to chromatin, the epigenetic changes 
in transient resistant cells were only marginal in 
comparison to untreated cells, suggesting its gradual 
shift over the course of treatment [83]. These 
observations indicate that multiple interconnected 
epigenetic mechanisms could be involved in global 
epigenetic remodeling. They also suggest that DNA 
methylation could have a decisive role in determining 
stable resistant phenotypes, even though its 
involvement is limited in a transient resistance 
mechanism. Non-genetic progressive transformations 
leading to drug resistance were also reported in lung 
cancer patients who underwent EGFR inhibitor 
therapy [100, 101]. The underlying mechanism that 
leads to epigenetic reprogramming is not known. 
Furthermore, while the early transient phenotype is 
well documented in certain cancer types, whether this 
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early phenotype directly contributes to acquired 
stable resistance is still a topic under investigation 
[102]. 

When cancer cells are treated with drugs 
continuously until they acquire drug resistance, 
stopping the drugs thereafter can lead to sudden 
hyperactivation of pathways and fitness deficit in the 
resistant populations [4, 5, 103, 104]. However, this 
growth disadvantage of resistant cancer cells could be 
overcome by epigenetic or transcriptional 
remodeling, resulting in the development of a stable 
drug-resistant phenotype and tumor progression. For 
example, dual specificity phosphatase 5 (DUSP5) is 
required for recalibrating MAPK activation in cancer 
cells that have accrued B-Raf proto-oncogene, 
serine/threonine kinase (BRAF) mutations [105]. 
Similarly, SHOC2 scaffold protein is needed for NRAS 
Q61K-induced resistance to BRAF inhibitors [106]. 
These observations suggest that epigenetic 
reprogramming is utilized by resistant cancer cells to 
negate the fitness deficit induced by genetic changes, 
which, cells gradually evolve to defeat through factors 
that help them to recalibrate the activation of 
signaling pathways. Therefore, in order to control 
drug-resistant cancer cells that have acquired resistant 
genetic changes, the strategy to administer drugs 
intermittently would be effective, because ‘drug 
holidays’ would result in the loss of fitness in the 
resistant cells and subsequent outgrowth of 
drug-sensitive parental cells [4]. These mechanisms 
attribute to the success of ‘drug holidays’ in MAPKi 
resistance in melanoma and EGFRi resistance in lung 
cancer patients [4, 5, 103, 104, 107]. Furthermore, 
‘drug holidays’ could prevent transiently resistant 
cancer cells from acquiring a stable resistant 
phenotype, as stable epigenetic/transcriptional 
reprogramming is usually achieved through 
continuous drug exposure [83, 108].  

 In addition to the resistance to signaling 
inhibitors, stress-induced phenotypic plasticity may 
be involved in resistance to PD-1 checkpoint 
inhibition. Melanoma tumors that acquire 
BRAF/MEK inhibitor resistance are shown to display 
a mesenchymal phenotype and an 
immunologically-cold, M2 macrophage signature 
with decreased infiltration of cytotoxic CD8 T cells 
compared to the pre-treatment tumor [109, 110]. 
Accordingly, BRAF/MEK inhibitor resistance 
signatures correspond with an innate resistance to 
anti-PD-1 therapy signature, and share many factors 
that induce immune escape, including AXL receptor 
tyrosine kinase (AXL) [111], vascular endothelial 
growth factor (VEGF) [112], IL8 [113] and C-C motif 
chemokine ligand 2 (CCL2) [114, 115]. These 
observations could explain why patients who 

progress under BRAF/MEK inhibitors respond 
poorly to immune checkpoint inhibition [116-118]. In 
line with these reports, the expression of KDM5B in 
cancer cells, corresponding to the slow-cycling 
phenotype, leads to the suppression of anti-tumor 
immune responses by inducing EMT, suppressing 
interferon response signaling pathways and 
downregulating cancer testis antigen expression, all of 
which are important for immune surveillance [119, 
120].   

Taken together, these studies suggest a central 
role of stress-induced phenotypic plasticity that 
contributes to acquired drug resistance (Figure 2). 
This could be achieved through slow-cycling persister 
cells either gaining mutations (Figure 2; A and B) or 
undergoing epigenetic reprogramming (Figure 2; C). 
When cancer cells receive a short-term drug 
treatment, ‘drug holidays’ induce persister cells to 
differentiate back to the parental tumor phenotype 
and outgrow the cancer cells that acquired 
drug-resistant genetic changes, because the latter cells 
lose fitness and will acquire a persister phenotype in 
the absence of the drug (Figure 2; A). However, when 
cancer cells receive a long-term treatment, the fitness 
deficit induced by ‘drug holidays’ would be overcome 
by epigenetic modelling, and cancer cells regain 
cellular homeostasis (Figure 2; B). In addition, 
long-term exposure of drugs would induce 
phenotypic plasticity and stable drug resistance in 
cancer cells without genetic changes (Figure 2; C). 
Overall, a ubiquitous stress-induced epigenetic 
plasticity plays a critical role in the evolution of cancer 
drug resistance and disease progression. The 
mechanisms driving this important shift still remains 
to be elucidated.  

Metabolic remodeling during phenotypic 
plasticity and therapy resistance 

Metabolic adaption is a hallmark of cancer 
development [121] and significantly contributes to 
stem cell reprogramming and epigenetic regulation 
[122-124]. The importance of metabolism for cellular 
plasticity is evident by the vastly different metabolic 
states of embryonic stem cells (ESCs) compared to 
most differentiated cells. ESCs rely on high rates of 
glycolysis and have poorly developed, highly 
fragmented mitochondria that mature during 
differentiation, coinciding with a switch from 
glycolysis to oxidative phosphorylation [125]. The 
critical role of metabolism in ESCs is also evident in 
stemness transcription factor-induced cellular 
reprogramming [126]. In fact, the generation of 
induced pluripotent stem cell (iPSC) is accompanied 
by mitochondrial remodeling, resulting in immature 
spherical and cristae-poor structures and a 
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glycolysis-dependent metabolic phenotype [126] that 
is, at least in part, regulated by de novo fatty acid 
synthesis to facilitate mitochondria fission [127].  

Despite the morphologic evidence that suggests 
underdeveloped mitochondria in stem cells, human 
pluripotent stem cells (hPSC) mitochondria are 
capable of respiration at maximal capacity, with the 
mitochondria uncoupling protein UCP2 preventing 
glucose-derived pyruvate oxidation [128]. Moreover, 
glutamine oxidation is crucial for the maintenance of 
TCA cycle intermediates and ultimately hPSC 
survival [129]. Overall, hPSC show a substantial 
plasticity in their metabolic program whereas their 
energy requirements mainly depend on glycolysis, 
with mitochondria metabolism playing crucial roles 
for survival and cell fate decisions [124, 130]. 
Similarly, cells that transition to a senescent 
phenotype undergo extensive metabolic remodeling 
that can lead to increased glycolysis and/or oxidative 
phosphorylation [131].  

One of the key events in oncogene-induced 
senescence is a specific shift of pyruvate utilization 

toward the TCA cycle [132]. BRAFV600E-induced 
senescence in human fibroblasts activates pyruvate 
dehydrogenase (PDH) through suppression of 
pyruvate dehydrogenase kinase 1 (PDK1) and 
induction of pyruvate dehydrogenase phosphatase 2 
(PDP2), resulting in cell cycle arrest and senescence 
[132]. Overexpression of PDK1 allows p53-depleted 
BRAFV600E-expressing melanocytes to develop tumors, 
whereas PDK1 knockdown in melanoma reduces 
tumor initiation, progression and maintenance [132], 
supporting a tumor-promoting role of PDK1. The 
requirement of a PDK1-mediated switch, in and out of 
a senescence-like state, to promote tumor initiation 
and maintenance is reminiscent of the KDM5Bhigh 
slow-cycling melanoma subpopulation that drives 
tumor initiation, propagation and drug resistance [3, 
58]. KDM5Bhigh cells are also dependent on 
mitochondria metabolism with increased dependence 
on glucose and fatty acids to fuel their oxidative 
phosphorylation [3, 133]. Interestingly, PDK1 
knockdown sensitizes BRAF-mutant melanoma to 
BRAF inhibitor treatment [132], suggesting the role of 

 

 
Figure 2: A schematic representation describing how cancer persister cells contribute to therapy resistance through genetic and epigenetic changes. Parental cell populations 
under drug treatment acquire a dormant persister phenotype (star-shaped red cells). The transition is transient in nature and dependent on continuous drug exposure. The 
persister cells can acquire mutations that produce resistant subpopulations (A and B: Mutant subpopulations are shown using the changes in nuclear and cytoplasmic colors, 
representing genetic and phenotypic changes, respectively). Under a short-term drug selection followed by a drug holiday, the mutant drug-resistant subpopulations shift their 
phenotypes into dormant persisters due to the lack of fitness in the absence of drug, and non-mutant cells in turn switch back to parental subpopulations (A). On the other hand, 
under a chronic drug selection, the mutant subpopulations outgrow the non-mutant populations; however, under a drug holiday, the lack of fitness in the mutant populations 
leads to a persister phenotype that could be overcome by epigenetic reprogramming (Epigenetically reprogrammed subpopulations are shown using the change in nuclear 
membrane colors to pink). The final phenotype observed in this process is stable and does not respond to drug treatments or drug holiday (B). In contrast to the genetic changes 
observed in A and B, the dormant persister cells could also undergo epigenetic remodeling to acquire a semi-proliferative transient resistant state (multi-colored star-shaped 
population with pink dotted nuclear membrane). When these cells are treated with drugs continuously, they can further undergo epigenetic imprinting to transition into a 
resistant phenotype (C, right. Epigenetically reprogrammed subpopulations are shown using the change in their nuclear membrane color to pink). Similar to the resistant cells 
caused by genetic changes (B), the final phenotype observed in the process (C) is stable and does not respond to drug treatments or drug holiday. However, a drug holiday before 
establishing this stable phenotypes could prevent semi-proliferative transiently resistant cells from acquiring stable resistance (C, left). 
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senescence PDK1-mediated drug resistance. It would 
be interesting to test how PDK1 affects markers of 
cancer persisters, such as KDM5B and NGFR, and 
whether the knockdown cells are still capable of 
stochastic phenotypic switching. What we do know is 
that the emergence of drug tolerant melanoma cells is 
accompanied by a BRAF inhibitor-induced 
suppression of glycolysis [134] as well as dependence 
on mitochondrial biogenesis and oxidative 
phosphorylation [3, 135]. A similar reliance is found 
in stem-like drug resistant subpopulations of chronic 
myeloid leukemia [136], acute myeloid leukemia 
[137], breast cancer [138] and glioblastoma [139], 
suggesting that a metabolic switch toward a 
mitochondria-dependent phenotype is common for 
therapy-resistant stem-like cancer cells. A 
consequence of increased oxidative phosphorylation 
is, among others, tissue hypoxia due to increased 
oxygen consumption, which is associated with T-cell 
exhaustion and therefore, decreased anti-PD-1 
response in melanoma mouse models [140]. This 
effect can be overcome by oxidative phosphorylation 
inhibitors such as metformin [141] that target 
metabolic adaptions to boost immunogenicity. A 
similar shift toward oxidative phosphorylation is 
observed in melanoma brain metastases, and linked to 
immunosuppression and brain metastasis incidence 
[142]. It is worth noting that glycolysis-related gene 
expression patterns and tumor glycolytic activity have 
been negatively correlated with T-cell infiltration, 
leading to adoptive T-cell therapy failure in 
melanoma and lung cancer [143]. This is in part 
mediated by tumor-derived lactate, a byproduct of 
anaerobic glycolysis in the tumor microenvironment, 
that results in the suppression of natural killer cell 
cytolytic function [144] and polarization of 
tumor-promoting macrophages [145], suggesting that 
a balance between oxidative and glycolytic 
metabolism is important to evoke an effective 
anti-tumor immune response. 

An intriguing feature of slow-cycling CSCs in 
glioblastoma and ovarian cancer is a specific increase 
in unsaturated lipid metabolites [139, 146] that was 
later found to be a therapeutic vulnerability [146]. 
This resembles the recently identified increase of 
unsaturated fatty acids in the persister cells of various 
cancer types after treatment with anti-cancer drugs 
[55, 147], which leads to a reliance on enzymes 
involved in the detoxification of lipid peroxides, 
mainly glutathione peroxidase 4 (GPX4) to prevent 
ferroptosis [55, 56, 147, 148]. This vulnerability to 
iron-dependent oxidative stress is also found in 
response to immune therapy [98]. Mechanistically, 
ferroptosis requires high levels of polyunsaturated 
fatty acids (PUFA) containing phospholipids in the 

cell membrane, which are prone to oxygenation [149], 
suggesting that the observed increase in unsaturated 
fatty acids and the resulting GPX4 dependence is 
caused by increased unsaturation of cancer persister 
cell membranes. In clear cell carcinoma, a highly 
aggressive form of kidney cancer, HIF-2α was 
identified as a driver of PUFA generation, a factor that 
has been described to stabilize β-catenin that mediates 
lipid desaturation [148, 150-153]. Interestingly, 
WNT-beta-catenin signaling and a permissive 
H3K4me3 epigenetic landscape at WNT and 
stemness-related genes are key mechanisms involved 
in senescence-associated cancer cell reprogramming 
[41]. Accordingly, fatty acid unsaturation has been 
described to be increased in replicative senescence 
[154] and oncogene-induced senescence [155], which 
is also reflected by increased lipid peroxidation in 
therapy-induced senescent cells [156], suggesting that 
a senescence-like metabolic remodeling process is 
involved in cancer persistence.  

One functional consequence of the 
ferroptosis-sensitive state is immunoevasion, possibly 
through the release of immunosuppressive 
eicosanoids such as prostaglandin E2 [157]. 
Furthermore, the presence of oxidatively-truncated 
lipids has been shown to interfere with major 
histocompatibility complex (MHC)-mediated antigen 
cross-presentation by dendritic cells in cancer [158], 
and alterations of the membrane lipid composition, 
specifically increased PUFA content, have been 
shown to negatively affect antigen presentation and 
modulate the inflammatory eicosanoid metabolites 
[159], suggesting decreased immunogenicity of cancer 
persister cells. Besides changes in lipid metabolism, 
alterations in amino acid metabolism, specifically 
tryptophan, have significant immunosuppressive 
consequences. Tryptophan is an essential amino acid 
that shows increased uptake in tumor tissue [160] . 
Recently, the MYC-dependent upregulation of the 
tryptophan transporters SLC7A5 and SLC1A5 and the 
tryptophan catabolizing enzyme arylformamidase 
(AFMID), involved in the conversion of tryptophan 
into kynurenine, has been identified as a mechanism 
underlying increased tryptophan uptake in colon 
cancer cells [161]. Within tumor cells, 
indoleamine-2,3-dioxygenase (IDO) and 
tryptophan-2,3-dioxygenase (TDO)-mediated 
tryptophan catabolism produces the active metabolite 
kynurenine, an agonist of the aryl hydrocarbon 
receptor (AhR) that exerts immunosuppressive 
functions [162]. The kynurenine-AhR metabolic 
circuit has been implicated in the dormancy of 
stem-like tumor repopulating cells (TRC) in response 
to IFN-γ stimulation [163]. These TRCs actively 
import tryptophan and produce kynurenine, which is 
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released into the tumor microenvironment where it 
stimulates PD-1 expression in adjacent CD8+ T-cells 
in a kynurenine-AhR-dependent manner to decrease 
the immune response [164] and has therefore attracted 
vast interest in the development of combination 
therapies including anti-PD-1 therapy [165]. This is in 
line with the previously mentioned transcriptomic 
signatures of residual MAPKi-treated melanoma that 
resembles an innate anti-PD-1 resistance (IPRES) 
signature [109, 110] and the clinical observations that 
anti-PD-1 therapy is less effective immediately 
following BRAF inhibition [116]. Overall, these 
studies suggest that stress-induced phenotypic 
switching to a drug resistant state mediates 
cross-resistance to PD-1 immune checkpoint 
inhibitors, which may be mediated, at least in part, by 
metabolic remodeling. 

Crosstalk between metabolic remodeling 
and epigenetic regulation. 

As previously mentioned, a hallmark of cancer 
persisters is remodeling of their epigenetic landscape 
[45, 63, 79], a process that is inherently linked to 
metabolism [166]. As described above, the persister 
phenotype contributing to cancer stemness may 
require multiple metabolic shifts, one allowing the 
senescence phenotype and the other allowing the 
escape from senescence. Hence, dynamic regulation of 
metabolism, which is linked to epigenetics, could be a 
key factor driving this plasticity. The shift toward 
oxidative phosphorylation-dependent metabolism in 
cancer persister cells can have a strong influence on 
epigenetics, as multiple TCA cycle intermediates 
directly affect epigenetic reactions. Among the most 
important metabolites involved in epigenetic 
regulation is alpha ketoglutarate (α-KG), which is a 
co-factor of α-KG-dependent dioxygenases of the 
Jumonji C (JmjC)-family of histone demethylases and 
ten-eleven translocation (TET)-family of DNA 
demethylases, both important to maintain stem cell 
self-renewal [167] and influence early differentiation 
of human pluripotent stem cells [168]. These reactions 
convert α-KG to succinate, whereas succinate and the 
structurally similar fumarate, both TCA cycle 
intermediates, act as competitive inhibitors [169]. For 
example, accumulation of fumarate has been shown 
to drive EMT through inhibition of TET 
enzyme-mediated DNA demethylation and 
subsequent decreased expression of miR-200 [170]. 
Accordingly, KDM5 family H3K4 demethylases 
belonging to JmjC family are known to be dependent 
on α-KG for their function [171]. Considering the 
central role of KDM5A and KDM5B for the 
development of cancer persisters [2, 3], it is very likely 
that the observed shift toward oxidative 

phosphorylation is, at least in part, necessary to 
supporting epigenetic remodeling. Besides 
glucose-derived carbon, glutamine is a key amino 
acid for cellular energetics that is often used to feed 
TCA cycle intermediates in cancer cells [172], a 
phenomenon reported during BRAF inhibitor 
resistance [173]. In contrast, localized glutamine 
deficiency in solid tumors results in histone 
hypermethylation of H3K4me3, H3K9me3, histone 3 
lysine 27 trimethylation (H3K27me3) and histone 3 
lysine 36 trimethylation (H3K36me3) [174]. This shift 
in epigenetic state leads to cancer cell 
dedifferentiation and BRAF inhibitor resistance 
because of decreased α-KG availability and 
consequently, inhibition of JmjC-family histone 
demethylases. These cells, subjected to α-KG 
deficiency, show increased expression of cancer 
persister marker, NGFR. This observation suggests 
that a delicate balance in α-KG levels is necessary to 
maintain the histone epigenetic patterns of cells. A 
shift in this balance seems to trigger a similar response 
either through histone hyper- or hypo- methylation, 
which is quite intriguing. For example, this effect 
could be due to the upregulation of transcriptional 
repressor marks, H3K9me3, H3K27me3 and 
H3K36me3, which could override the effect of 
H3K4me3 upregulation. Further understanding of the 
role of KDM5 enzymes in the context of histone 
hypermethylation is needed.  

The one carbon donor, S-adenosylmethionine 
(SAM), regulates histone and DNA methylation, and 
H3K4me3 is specifically sensitive to fluctuations in 
SAM concentrations [175]. SAM is the main product 
of the one carbon cycle and its synthesis and 
regeneration requires amino acid metabolism [176]. 
Changes in methionine availability, the amino acid 
that is directly converted to SAM, have been shown to 
influence H3K4me3 peak width and subsequently, 
gene expression [177]. Depletion of methionine is a 
vulnerability of tumor-initiating lung CSCs as they 
are characterized by high methionine cycle activity, 
which, if not maintained, presumably leads to 
alterations of the epigenetic landscape, blocking 
tumor initiation and survival of tumor-initiating cells 
(TICs) [178]. This suggests that the availability of SAM 
may positively regulate the capacity of cancer 
persisters to exit the slow-cycling state and gain 
expression of stem cell factors, which could be 
dependent on H3K4me3 [41]. Similarly, CSCs 
specifically require SAM biosynthesis to maintain 
viability and H3K4me3 marking [179], exemplifying 
the fundamental connection of metabolism and 
epigenetic plasticity. Beside methionine, serine has 
been reported to contribute to the maintenance of the 
one carbon cycle, supporting de novo nucleotide 
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synthesis by fueling the folate cycle [180], also known 
as serine, glycine, one-carbon pathway [181]. This 
phenomenon has been shown to occur specifically in 
TICs [182], and has been described during the 
development of neuroendocrine prostate cancer, the 
most lethal subtype of castration-resistant prostate 
cancer. De novo serine synthesis that might rely on 
retrograde flux through glycolysis [183], together with 
glucose-derived ribose, are major contributors that 
fuel de novo ATP synthesis to drive SAM generation in 
inflammatory macrophages [184], highlighting the 
importance of glycolysis to maintain one carbon 
pools. Beyond that, one carbon metabolism and SAM 
levels are strongly influenced by mitochondria 
dysfunctions, which increase serine biosynthesis and 
affect polyamine and methionine metabolism as a 
direct result of changes in TCA flux, resulting in DNA 
hypermethylation and transcriptional changes [185, 
186]. In general, metabolic flux through the TCA 
cycle, the pentose phosphate pathway and the serine, 
glycine, once carbon pathway (SGOCP) are 
interconnected and it appears that phosphoglycerate 
dehydrogenase (PHGDH), the enzyme that commits 
carbon units to de novo serine biosynthesis, 
coordinates this central carbon metabolism [187]. An 
intriguing example for the interplay between these 
pathways is the identification of the serine-responsive 
SAM-containing metabolic enzyme complex in yeast 
[188]. This complex consists of the yeast analogs of 
pyruvate kinase M2, serine metabolic enzymes, SAM 
synthetases, and an acetyl-CoA synthetase, that 
interacts with the H3K4 methyltransferase complex 
SET1 to regulate H3K4me3, amongst other histone 
modifications [188].  

Similar to histone and DNA methylation, histone 
acetylation and deacetylation are dependent on the 
availability of metabolic co-factors. Glucose-derived 
acetyl-CoA is required as a substrate for protein 
acetylation and is generated in an ATP-citrate lyase 
(ACL)-dependent manner [189]. AKT activation, 
which is found in response to treatment with 
anti-cancer drugs [45, 63], facilitates ACL-dependent 
acetyl-CoA production in low glucose conditions, 
possibly aiding increased H3K27 acetylation of 
cis-regulatory elements found in slow-cycling drug 
tolerant glioblastoma stem cells [190]. However, in 
addition to glucose, acetyl-CoA derived from fatty 
acids [191] or acetate recycling [192] has been shown 
to fuel histone acetylation. Detailed analysis of 
metabolic mechanisms that fuel acetylation reactions 
during the development of drug resistance is 
warranted. The reverse reaction, histone 
deacetylation, is also in partly dependent on the 
availability of the metabolite nicotinamide adenine 
dinucleotide (NAD+). Skeletal muscle stem cells 

undergoing a transition from a quiescent to a 
proliferative state reprogram their metabolism from 
oxidative phosphorylation dependent to glycolysis 
dependent, which results in decreased NAD+ 
availability and subsequently, increased histone 
acetylation [193]. The importance for NAD+ 
metabolism for therapy resistance is highlighted by 
the key roles of NAD+ metabolism for 
SAM-dependent methylation reactions and 
glioblastoma stem cell maintenance [194] as well as 
the dependence of self-renewal and radiation 
resistance of glioblastoma stem-like cells on 
nicotinamide phosphoribosyltransferase (NAMPT), 
the rate-limiting step in NAD+ synthesis [195]. 
Whether or not NAD+ metabolism is important for 
cancer persistence is currently unclear but the high 
degree of lipid desaturation discussed previously 
would be an intriguing avenue that has been shown to 
contribute to NAD+ recycling [196].  

Another interesting caveat is the local synthesis 
of metabolites to support enzymatic reactions, which 
has been demonstrated for the nuclear synthesis of 
fumarate [197] and acetyl-CoA [198] as well as the 
previously mentioned SAM-containing metabolic 
enzyme complex [188]. A more comprehensive 
nuclear translocation of TCA cycle enzymes occurs 
during zygotic genome activation (ZGA) in early 
embryogenesis, a shift depending on protein 
O-GlcNAc transferase (OGT) ultimately promoting 
epigenetic remodeling [199]. Interestingly, OGT is 
known to play an important role in multiple stress 
responses including oxidative, ER, and genotoxic 
stresses [200]. Chromatin-associated fumarase is 
phosphorylated by AMPK at Ser75 to maintain 
di-methylation at the 36th lysine residue of the 
histone H3 (H3K36me2) and a gene expression profile 
that facilitates cell cycle arrest [201]. This is 
counteracted by O-GlcNAcylation of the same serine 
residue to avoid cell growth arrest, even in 
glucose-deprived conditions [201], and is overall 
reminiscent of the key role of the hexosamine 
biosynthesis pathway, OGT and protein 
O-GlcNAcylation to overcome KRAS proto-oncogene, 
GTPase (KRAS)-induced [202] or radiation-induced 
senescence [203]. Furthermore, O-GlcNAcylation has 
been shown to be important to maintain acute 
myeloid leukemia (AML) in an undifferentiated state 
[204] and has a key role in maintaining pluripotency 
[205], suggesting that the metabolic reprogramming 
that fuels the hexosamine biosynthesis pathway might 
be important to  reactivate the genome and initiate a 
stem-like cell state following senescence-like 
reprogramming. It remains to be investigated if a 
nuclear shift of metabolic enzymes is involved in the 
epigenetic regulation of CSCs or cancer persister cells, 
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which might represent an intriguing aspect of 
metabolic and epigenetic crosstalk in cancer plasticity 
that is yet to be explored.  

Similar to the profound consequences of 
metabolic alteration that shape the epigenetic 
landscape, many metabolic pathways are regulated 
by epigenetic mechanisms. A quite intriguing and less 
explored function of KDM5 proteins is activation of 
genes against its well-documented gene-repressive 
function. This function of KDM5 in gene activation 
has been reported in humans and drosophila pointing 
to an evolutionarily conserved mechanism [206-208]. 
Interestingly, KDM5 directly upregulates genes 
required for mitochondrial function in drosophila 
through its PHD reader motif which is distinct from 
its classical JmjC domain-mediated functions [207]. 
However, this particular function of KDM5B in cancer 
persisters still remains ambiguous, even though 
KDM5B expression is shown to correlate with 
dependency on oxidative phosphorylation. The 
interdependency of epigenetic and metabolism 
regulation is exemplified by the direct 
phosphorylation of the DNA methyltransferase 1 
(DNMT1), the histone acetyltransferase 1 (HAT1), and 
the HAT co-activator RB binding protein 7 (RBBP7) by 
the metabolic master regulator AMPK [209]. 
Phosphorylation of these proteins facilitates 
mitochondria biogenesis by increasing the expression 
of peroxisome proliferator-activated receptor gamma 
coactivator-1α (PGC-1α), nuclear respiratory factor 1 
and 2 (NRF1 and NRF2), and the mitochondrial 
transcription factor A (TFAM), and controls the 
mitochondrial membrane potential through 
expression of uncoupling proteins 2 and 3 (UCP2 and 
UCP3) [209]. Furthermore, studies in C. elegans 
showed that the H3K27 demethylases JMJD-1.2 and 
JMJD-3.1 regulate the mitochondrial unfolded protein 
response to maintain mitochondrial proteostasis, 
which also modulates longevity in mouse models 
[210].  

Glycolytic pathways are also subject to extensive 
epigenetic regulation. The EMT regulatory complex 
Snail-G9a-Dnmt1 was found to suppress expression 
of fructose-1,6-biphosphatase in basal-like breast 
cancer through increased histone 3 lysine 9 
dimethylation (H3K9me2) and DNA methylation 
[211]. Loss of fructose-1,6-biphosphatase, rate-limiting 
enzyme in gluconeogenesis, drives a shift towards 
increased glucose uptake and glycolysis, while 
inhibiting oxygen consumption and mediating the 
development of CSC-like characteristics [211]. 
Furthermore, glucose uptake has been shown to be 
regulated by CpG island hypermethylation-linked 
inactivation of DERL3, a member of the protein 
degradation pathway, which leads to the 

accumulation of GLUT1 and contribution to glycolytic 
phenotypes in cancer cells [212]. The glycolytic 
phenotype of cancer cell appears to be strongly 
mediated by epigenetic regulation as sirtuin (SIRT) 6, 
a H3K9 deacetylase that also controls cellular 
senescence [213], is a tumor suppressor that regulates 
aerobic glycolysis in cancer cells [214].  

In conclusion, the literature suggests 
intertwound mechanisms that connect metabolic 
changes to epigenetic reprogramming, which could 
play a central role in stress-induced phenotypic 
plasticity (Figure 3). 

Conclusion 
Growing evidence indicates a central role for a 

stress-induced phenotypic plasticity in cancer 
progression and drug resistance. The drug-induced 
phenotypic plasticity leads to an initial shift of cells 
into a slow-cycling persister phenotype, which acts as 
a reservoir for the accumulation of genetic or 
epigenetic changes that drive the process of acquired 
drug resistance. This process could be critical for drug 
resistance to not only chemotherapy but also targeted 
and immune checkpoint inhibitors. Phenotypic and 
epigenetic plasticity is closely linked to metabolic 
remodeling, suggesting a close interplay between 
epigenetic and metabolic pathways. Furthermore, 
epigenetic changes are progressive rather than 
stochastic, suggesting a tightly regulated time-bound 
mechanism, which determines transient or permanent 
epigenetic marks contributing to the respective 
phenotype.  

Multiple strategies have been proposed and 
tested to target this process of drug-induced 
phenotypic plasticity, which have shown promise to 
varying degrees. Drug holidays and intermittent 
treatment strategy have shown clinical efficacy 
[215-218]. Most studies were conducted in patients 
who relapsed after continuous treatment of the drug. 
Although the patients regained partial sensitivity to 
the same drug after discontinuation of the drug, the 
precise regimen, its safety and efficacy still need 
further testing. Clinical trials (NCT03352947, 
NCT02196181) are ongoing to address these questions 
in melanoma patients. In addition, histone 
deacetylase inhibition is reported to deplete quiescent 
stem-like cells in multiple cancer types [219, 220], and 
a strategy to combine drug holidays with vorinostat, a 
histone deacetylase inhibitor, has shown better effects 
than the combination of BRAF-MEK inhibitors in a 
melanoma model [221]. A clinical trial is ongoing in 
melanoma patients who showed signs of progression 
on BRAF-MEK inhibitor therapy (NCT02836548). A 
similar strategy of combining drug holidays with 
chemotherapeutic agent dacarbazine has also shown 
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efficacy in melanoma pre-clinical models [104]. The 
success of these strategies could be due to the 
time-dependent vulnerability induced by drug 
holidays during which the cells undergo phenotypic 
switching. Strategies targeting the metabolic 
reprogramming through inducing ferroptosis have 
also shown promise and await further testing in 
clinical settings [55, 98]. Although many strategies 
that target phenotypic plasticity, epigenetics and 
metabolism are promising, the underlying 
mechanisms that determine a transient or permanent 
phenotype remain elusive and need further 
investigation. Single-cell omics analysis could be 
employed to dissect the heterogeneity and the 
transition state of stress-induced phenotypic 
plasticity, and further decipher transcriptional, 
epigenetic and metabolic crosstalks. A deeper 
understanding of the mechanisms that contribute to 
this plasticity triggered by epigenetic and metabolic 
changes will open a plethora of therapeutic 
opportunities. 
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histone acetyltransferases; HMT: histone methyltransferases; NAD+: nicotinamide adenine dinucleotide; OGT: O-GlcNAc transferase; SAM: S-adenosylmethionine; SIRT: 
sirtuins; TET: ten-eleven translocation methylcytosine dioxygenase; α-KG: alpha ketoglutarate 
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