
ESAIM: M2AN 42 (2008) 609–644 ESAIM: Mathematical Modelling and Numerical Analysis

DOI: 10.1051/m2an:2008020 www.esaim-m2an.org

CONVERGENCE OF A LAGRANGE-GALERKIN METHOD
FOR A FLUID-RIGID BODY SYSTEM IN ALE FORMULATION ∗
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Abstract. We propose a numerical scheme to compute the motion of a two-dimensional rigid body in
a viscous fluid. Our method combines the method of characteristics with a finite element approximation
to solve an ALE formulation of the problem. We derive error estimates implying the convergence of
the scheme.
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1. Introduction

The present work aims at proposing and analyzing a Lagrange-Galerkin scheme for the numerical solu-
tion of an Arbitrary Lagrangian Eulerian (ALE) formulation of a fluid-rigid solid interaction problem. While
the Lagrange-Galerkin technique has been used for years for the numerical treatment of convection-diffusion
equations like the Navier-Stokes equations (see for instance [1,26,31]), it was more recently introduced in the
context of ALE formulations of free surface or two-fluid flow problems [7,12,22] and fluid-structure interaction
problems [23,24].

The system we consider is composed of a viscous homogeneous fluid and a rigid solid, both contained in a
bounded domain O of R

2 with regular boundary ∂O. At the initial time, the rigid body is assumed to occupy
a regular open connected subset S of O, surrounded by the fluid filling the domain F = O \ S. For the sake of
simplicity and without loss of generality, we shall suppose that the center of mass of S is located at the origin.
The domain occupied by the rigid body at each instant t > 0 is then defined by

S(ζ(t), θ(t)) =
{
ζ(t) + Rθ(t)x, x ∈ S} ,
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Lagrange-Galerkin method.
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where ζ(t) and Rθ(t) are respectively the position of the center of mass and the orientation of the rigid body
at time t (Rθ being the matrix of rotation of angle θ). The fluid then occupies the domain F(ζ(t), θ(t)) =
O \ S(ζ(t), θ(t)).

The fluid flow is assumed to be incompressible and modeled by the classical Navier-Stokes equations, and
the motion of the rigid body governed by Newton’s laws. As a consequence, the following system of partial and
ordinary differential equations describes the evolution of the coupled system

∂u

∂t
+ (u · ∇)u− ν Δu+ ∇p = f in F(ζ(t), θ(t)), t ∈ [0, T ], (1.1)

divu = 0 in F(ζ(t), θ(t)), t ∈ [0, T ], (1.2)
u = 0 on ∂O, t ∈ [0, T ], (1.3)

u(x, t) = ζ ′(t) + θ′(t)(x− ζ(t))⊥, x ∈ ∂S(ζ(t), θ(t)), t ∈ [0, T ], (1.4)

M ζ′′(t) = −
∫

∂S(ζ(t),θ(t))

σ(u, p)ndΓ +
∫
S(ζ(t),θ(t))

ρs f(x, t) dx, t ∈ [0, T ], (1.5)

I θ′′(t) = −
∫

∂S(ζ(t),θ(t))

σ(u, p)n · (x− ζ(t))⊥ dΓ +
∫
S(ζ(t),θ(t))

ρs f (x, t) · (x− ζ(t))⊥ dx, t ∈ [0, T ], (1.6)

u(·, 0) = u(0) in F , (1.7)

ζ(0) = 0, ζ′(0) = ζ(1) ∈ R
2, θ(0) = 0, θ′(0) = θ(1) ∈ R. (1.8)

In the above equations, the unknowns are the Eulerian velocity field u(x, t) and the pressure field p(x, t) in
the fluid, the position ζ(t) of the center of mass and the angle of rotation θ(t) of the rigid body. To simplify,
we assume that the density of the homogeneous fluid is equal to unity and that the density of the rigid body
is a positive constant, denoted by ρs. The positive scalar ν denotes the viscosity of the fluid and M and I are
respectively the mass and the moment of inertia of the solid. The relations between M , I and ρs are given by

M =
∫
S

ρs dx, I =
∫
S

ρs |x|2 dx.

The stress tensor σ is defined by
σ(u, p) = −p Id + 2ν D(u),

where Id is the identity tensor and D(u) is the strain tensor given by

D(u) =
1
2
(∇u+t ∇u) .

Finally, the field f (x, t) represents the density (per mass unit) of forces applied to the system, n is the unit
normal vector to the boundary of the rigid body ∂S(ζ(t), θ(t)), pointing into the interior of the solid and, for

any x =
(

x1

x2

)
, we have denoted by x⊥ the vector

(−x2

x1

)
.

The well-posedness of this type of problem has been the subject of a large number of papers (see for in-
stance [32] and the references given therein) and we aim at approximating strong solutions of the above system.
As far as the numerical solution of such fluid-solid interaction problems is concerned, several different approaches
have been introduced in the literature, based on ALE formulations [7,17,23,24], fictitious domain technique [13],
penalty method [20] or Lagrange-Galerkin method [29], but only a few actually received a rigorous analysis of
their properties. On this very topic, let us mention the paper of Grandmont et al. [15] for proofs of convergence
of time decoupling algorithms used to solve an ALE formulation of a one-dimensional fluid-structure interaction
problem. More recently, the convergence of a numerical scheme based on a Lagrange-Galerkin method, using
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a fixed mesh, has been established in [29]. Also of interest, since the present work involves a finite element
approximation for solving an ALE formulation, are the paper of Gastaldi [11], which focuses on the derivation of
a priori estimates in space and time in the case of an advection-diffusion equation in a moving two-dimensional
domain, and the proof of convergence in [30] of a scheme based on an ALE formulation, a mixed finite ele-
ment discretization in space and an implicit Euler scheme in time, for the non-steady Stokes equations in a
two-dimensional, non-cylindrical domain. However, to the best of our knowledge, there is no convergence result
for the numerical approximation of system (1.1)–(1.8) within an ALE framework. Our main result, stated in
Theorem 3.5, asserts that the solution to a Lagrange-Galerkin discretization scheme of an ALE formulation
of system (1.1)–(1.8) converges towards the exact solution of the problem, provided some assumptions on the
regularity of this exact solution, on the finite element mesh and on the discrete time step. We emphasize that
we managed to remove the hypothesis of a one-dimensional model [15] or of equality of the solid and fluid
densities [29], which were present in the above mentioned works.

The main difficulties when studying system (1.1)–(1.8) are that the Navier-Stokes equations are coupled
with some ordinary differential equations and that it defines a free boundary problem, the position of the rigid
body being one of the unknowns of the problem. These issues remain at the discrete level and must be taken
into consideration when devising a numerical scheme. The method presented here is characterized by the use
of a semi-implicit coupling algorithm (see [9,14,27] for precisions on this terminology), in the sense that the
computational domain at the next time step is obtained explicitly, by moving the nodes of the mesh with an
arbitrary velocity in order to follow the motion of the rigid body, while the nonlinearities and the fluid-body
coupling are treated implicitly.

Let us now discuss some of the points that contribute to make the numerical analysis in this paper technical.
In spite of the fact that part of the problems encountered in establishing a convergence result can be circumvented
with the help of techniques for fixed domains existing in the literature, other ones, intrinsically associated to the
discretization, still have to be adequately addressed. To begin with, the notion of convergence has to be specified,
since the exact and discrete solutions are defined over two different spatial domains which change with time.
Their comparison will involve the essential use of a change of variables. Another important technical obstacle
comes from the construction of the mesh associated to the finite element approximation of the problem. To be
more precise, one would like to assume that, at least at initial time, the exact fluid domain and its approximation
coincide. Without resorting to involved techniques like curved elements (whose applicability is briefly discussed
in Sect. 3.3), this simple assumption requires in particular the solid body to be a polygon. As a consequence,
the fluid domain is polygonal and possesses reentrant corners, which results in the exact solution of (1.1)–(1.8)
not being smooth in general. Since minimal regularity is needed to establish a convergence result, we suppose
that the domain is smooth and rule out the case of a boundary fitted mesh made of straight triangles. In this
context, it would be natural to approximate the rigid body by a polygon which vertices are situated on the
boundary of the exact body. However, this results in the approximated fluid domain not being included in the
exact one and leads to a further nonconforming approximation of the fluid velocity. Dealing with such a case
complicates severely the study and adds numerous technicalities that are, in our opinion, only loosely related
to the free boundary aspect of the problem on which we restricted our attention. In order to keep the analysis
tractable, we chose to use an approximation of the fluid domain guaranteeing the above mentioned inclusion
(see Sect. 3.1). While we benefit from some previously established results on the finite element approximation,
this fact yields a loss in the accuracy in space of the scheme.

An outline of the article is the following. A characteristics-ALE weak formulation of problem (1.1)–(1.8) is
presented in Section 2. In Section 3, we propose a discretization scheme for this problem, describe its practical
construction, and state an associated convergence theorem. The remainder of the paper, divided into four
sections, is devoted to the proof of the main result: Section 4 introduces the change of variables which is the
tool used for comparing the exact and approximate solutions, various preliminary error estimates for both the
ALE and characteristics mappings are derived in Sections 5 and 6, and the numerical analysis of the scheme is
carried out in Section 7, where the main result is finally established.
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2. A characteristics-ALE formulation of the problem

2.1. Hypotheses

Throughout the paper, we shall assume that the data satisfy

f ∈ C([0, T ]; H1(O)2), u(0) ∈ H1(F)2, divu(0) = 0 in F ,

u(0)(x) = ζ(1) + θ(1)x⊥, ∀x ∈ ∂S, and u(0) = 0 on ∂O.
(2.1)

We moreover suppose that
dist(S(ζ(t), θ(t)), ∂O) > 0, ∀t ∈ [0, T ]. (2.2)

Owing to the result in [32], we have the following regularity for the solution to problem (1.1)–(1.8):

u ∈ L2(0, T ; H2(F(ζ(t), θ(t)))2) ∩ H1(0, T ; L2(F(ζ(t), θ(t)))2) ∩ C([0, T ]; H1(F(ζ(t), θ(t)))2),

p ∈ L2(0, T ; H1(F(ζ(t), θ(t)))), ζ ∈ H2(0, T ; R2), θ ∈ H2(0, T ; R).
(2.3)

2.2. Weak formulation of the problem

For any ζ ∈ O and θ ∈ R such that dist(S(ζ, θ), ∂O) > 0, we introduce the functional spaces

V(ζ, θ) =
{
(v, ξv, ωv) ∈ H1(F(ζ, θ))2 × R

3; v = 0 on ∂O and v(x) = ξv + ωv(x− ζ)⊥, ∀x ∈ ∂S(ζ, θ)
}

and

Q(ζ, θ) = L2
0(F(ζ, θ)) =

{
q ∈ L2(F(ζ, θ));

∫
F(ζ,θ)

q(x) dx = 0

}
.

We denote by ξ = ζ ′ and ω = θ′ the translational and angular velocities of the rigid body, and use the notations

fM (t) =
∫
S(ζ(t),θ(t))

ρs f(·, t) dx and fI(t) =
∫
S(ζ(t),θ(t))

ρs f(x, t) · (x− ζ(t))⊥ dx, ∀t ∈ [0, T ]. (2.4)

One can easily check (see [13,17,23]) that the strong solution of (1.1)–(1.8) satisfies the following mixed
variational formulation: Find (u, ζ, θ, p) verifying (1.7), (1.8), (2.3), and, for almost every t in (0, T ),∫

F(ζ(t),θ(t))

(
∂u

∂t
+ (u · ∇)u

)
·v dx+M ξ′ ·ξv +I ω′ωv +2ν

∫
F(ζ(t),θ(t))

D(u) : D(v) dx−
∫
F(ζ(t),θ(t))

p div v dx

=
∫
F(ζ(t),θ(t))

f · v dx+ fM · ξv + fI ωv, ∀ (v, ξv, ωv) ∈ V(ζ(t), θ(t)), (2.5)

−
∫
F(ζ(t),θ(t))

q divudx = 0, ∀q ∈ Q(ζ(t), θ(t)). (2.6)

In conjunction with this weak formulation of the problem, a feature of the numerical scheme we consider is
the use of the method of characteristics for the treatment of the nonlinear convection term in the Navier-Stokes
equations. It is well known (see for instance [26]) that the material derivative in the flow u can be written as a
total derivative (

∂u

∂t
+ (u · ∇)u

)
(x, t) =

d
dt

[u(C(t; s,x), t)]|s=t
, (2.7)

by employing the characteristic function C, which, for all x in F(ζ(s), θ(s)), is solution to the initial value
problem ⎧⎨⎩

∂C
∂t

(t; s,x) = u(C(t; s,x), t),

C(s; s,x) = x.

(2.8)
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These characteristics are defined over the moving domain F(ζ(s), θ(s)), which complicates their effective com-
putation in a discrete setting. The idea introduced by Maury in [23,24] consists of adapting this method to an
ALE framework. We address the specifics of this combination in the next subsections.

2.3. Domain velocity and ALE mapping

A very popular technique for the simulation of fluid-structure interaction problems since its introduction at
the beginning of the eighties [6,18], the Arbitrary Lagrangian Eulerian (ALE) formulation combines advantages
of both Lagrangian and Eulerian formalisms by introducing a domain velocity which makes it possible for
the space discretization mesh to follow the motion of the fluid domain. Such a velocity can be defined quite
arbitrarily, as long as it satisfies a compatibility condition, with respect to the fluid velocity, on the boundary of
the domain [17,22,23]. This being done, one is able to construct a transformation linking any point of a reference
configuration to a point of the current configuration, simply by using the characteristic curves associated to the
domain velocity.

Choosing the fluid domain at the initial time as the frame of reference, we introduce a family of ALE mappings
A(t; 0, ·), which, at each t in [0, T ], maps F into F(ζ(t), θ(t)). At each instant t in (0, T ), it is assumed that
the application A(t; 0, ·) is an homeomorphism, that is, A(t; 0, ·) ∈ C(F)2 is invertible with continuous inverse
A(t; 0, ·)−1 ∈ C(F(ζ(t), θ(t)))2, and that, for all x in F , the application t �→ A(t; 0,x) is differentiable almost
everywhere in [0, T ]. The domain velocity w is defined by

w(x, t) =
∂A
∂t

(
t; 0, A(t; 0, ·)−1(x)

)
, ∀x ∈ F(ζ(t), θ(t)), (2.9)

and the ALE mapping between two time levels s and t in [0, T ] is given by

A(t; s, ·) = A(t; 0, ·) ◦ A(s; 0, ·)−1. (2.10)

It is easily seen that the application t �→ A(t; s,x), ∀x ∈ F(ζ(s), θ(s)), is solution to the initial value problem⎧⎨⎩
∂A
∂t

(t; s,x) = w(A(t; s,x), t)

A(s; s,x) = x.

(2.11)

Since we will use the transformations A(t; s, ·) in the sequel, it is important to ensure that they are compatible
with the functional spaces involved in the weak formulation (2.5) of the problem. This is achieved by adding
some regularity properties to the ALE mapping. Let us first recall the following classical proposition (see [16],
pp. 19–20 and [10]).

Proposition 2.1. Assume that the ALE mapping A(t; 0, ·) satisfies, for all t in (0, T ), the following conditions:

F(ζ(t), θ(t)) = A(t; 0,F) is bounded and the boundary ∂F(ζ(t), θ(t)) is Lipschitz continuous, (2.12)

A(t; 0, ·) ∈ W1,∞(F)2, A(t; 0, ·)−1 ∈ W1,∞(F(ζ(t), θ(t)))2. (2.13)

Then, a function v belongs to H1(F(ζ(t), θ(t))) if and only if v̂ = v ◦ A(t; 0, ·) belongs to H1(F).

As recalled in the references [10,11], there exist several techniques in the literature to construct a mapping
satisfying the above assumptions. We follow [8,11], in which the reference domain is viewed as an elastic solid
being deformed into the current domain. This leads us to solve a linear elasticity problem: For all t in (0, T ),
find d(·, t) satisfying ⎧⎪⎪⎨⎪⎪⎩

−Δd(·, t) − λ∇ divd(·, t) = 0 in F ,

d(x, t) = ζ(t) + Rθ(t)x− x on ∂S,

d(·, t) = 0 on ∂O,

(2.14)
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where λ is an arbitrary positive constant. Existence, uniqueness and regularity issues for solutions of this type
of system have been extensively studied and it is known (see, for instance, [4,11]) that, for all r � 2,

‖d(·, t)‖W 2,r(F)2 � C (|ζ(t)| + |θ(t)|) , ∀t ∈ (0, T ). (2.15)

The ALE mapping is then defined by

A(t; 0,x) = x+ d(x, t), ∀x ∈ F , (2.16)

and we have the following result.

Lemma 2.2. Assume that
‖ζ‖L∞(0,T )2 + ‖θ‖L∞(0,T ) � c0, (2.17)

with c0 a small enough constant. Then, for all t in (0, T ), the mapping A(t; 0, ·) is a diffeomorphism from F
onto F(ζ(t), θ(t)). Moreover, it satisfies assumptions (2.12) and (2.13).

Proof. The mapping A(t; 0, ·) is first extended to the whole of R
2 by setting

d(x, t) = ζ(t) + Rθ(t)x− x, ∀x ∈ S(ζ(t), θ(t)), and d(·, t) = 0 in R
2 \ O.

Using inequality (2.15) and assuming that the constant c0 appearing in (2.17) is small enough, we deduce that
d(·, t) is a contraction. This implies the invertibility of the mapping defined by (2.16) from R

2 onto R
2. Since

it is clear that A(t; 0, R2 \ O) = R
2 \ O and A(t; 0,S) = S(ζ(t), θ(t)), we have proved the assertion. �

Remark 2.3. Assumption (2.17) is important and supposed to hold hereafter. It expresses the fact that
the displacement of the rigid solid is not too large. This restriction cannot be avoided when using an ALE
formulation. Indeed, as described below, the principle of this approach is to modify the mesh, according to a
discrete ALE mapping, in order to follow the solid in its movement. To preserve the desired properties of the
space discretization (like the regularity and quasi-uniformity of the mesh triangulation, for instance), we must
assume that the displacements of the body are small.

Remark 2.4. In the proof of Lemma 2.2, we have extended A(t; 0, ·) to R
2 and showed that it is a diffeomor-

phism from R
2 onto R

2. From now on, we will identify the mapping with its extension. Notice that it is of the
form (2.16), with d(·, t) small enough. More precisely, we will consider that the constant c0 in (2.17) is such
that

‖d‖L∞(0,T ;W1,∞(O)2) � 1
4
· (2.18)

2.4. Characteristics-ALE formulation

The introduction of the ALE mapping allows us to define a new characteristic function, which involves a
fixed spatial domain and is as such more manageable from a discrete point of view. The importance of this
mapping comes from the fact that the material derivative in the flow can be written as a total derivative, as
seen in (2.7). Let B be a characteristic function such that

C(t; s,x) = A(t; s, B(t; s,x)), ∀x ∈ F(ζ(s), θ(s)). (2.19)

For all t and s in (0, T ), we have that the application B(t; s, ·) : F(ζ(s), θ(s)) → F(ζ(s), θ(s)) is a diffeomor-
phism satisfying, for all x in F(ζ(s), θ(s)), the initial value problem⎧⎨⎩

∂B
∂t

(t; s,x) = (u−w)(B(t; s,x), t),

B(s; s,x) = x,

(2.20)
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where the functions u and w are respectively defined by

u(x, t) = [∇A(t; s,x)]−1 u(A(t; s,x), t) and w(x, t) = [∇A(t; s,x)]−1w(A(t; s,x), t), (2.21)

for all x in F(ζ(s), θ(s)) and t in (0, T ).

Remark 2.5. By extending the velocity field u(·, t) to R
2 by

u(x, t) = ξ(t) + ω(t) (x− ζ(t))⊥ , ∀x ∈ S(ζ(t), θ(t)), and u(x, t) = 0, ∀x ∈ R
2 \ O, ∀t ∈ [0, T ],

the unique solution C(·; s,x) of the initial value problem (2.8) exists for any x in R
2. Owing to Remark 2.4, the

ALE mapping A(t; s, ·) is now defined in R
2 and, consequently, so is the domain velocity w(·, t). Considering

these extensions, problem (2.20) actually defines a diffeomorphism B(t; s, ·) from R
2 onto R

2.

Expressions (2.7) and (2.19) are finally substituted into the system (2.5)–(2.6) to yield an equivalent weak
formulation of problem (1.1)–(1.8): For almost every t in (0, T ), find (u, ζ, θ, p) such that (u(·, t), ξ(t), ω(t)) ∈
V(ζ(t), θ(t)) and p(·, t) ∈ Q(ζ(t), θ(t)) are solution to∫

F(ζ(t),θ(t))

d
dt

[u (A (t; ·, B(t; ·,x)) , t)] (t) · v dx+ M ξ′(t) · ξv + I ω′(t)ωv

+ 2ν

∫
F(ζ(t),θ(t))

D(u) : D(v) dx−
∫
F(ζ(t),θ(t))

p div v dx

=
∫
F(ζ(t),θ(t))

f · v dx+ fM (t) · ξv + fI(t)ωv, ∀ (v, ξv, ωv) ∈ V(ζ(t), θ(t)), (2.22)

−
∫
F(ζ(t),θ(t))

q divudx = 0, ∀q ∈ Q(ζ(t), θ(t)). (2.23)

3. Discretization of the problem and convergence result

This section describes the discrete scheme we propose for computing an approximation of the solution to the
variational problem (2.22)–(2.23). While clearly inspired from the method introduced by Maury in [23,24] to
simulate the motion of two-dimensional rigid particles in a viscous incompressible fluid, our scheme differs on
two main points. First, the discrete domain velocity is derived from its associated discrete ALE mapping in a
different manner. Second, for the needs of the error analysis in the convergence study, the mesh of the fluid
domain must satisfy some special, non-standard features which are absent from references [23,24].

Here and subsequently, we suppose that O is the interior of a convex polygon. This assumption is not
essential, but it allows to make simpler the forthcoming finite element analysis, while guaranteeing the expected
regularity for the solution of the problem. The more general case of a domain O with a curved boundary ∂O
could be dealt with by using the classical techniques presented in [5] for instance.

3.1. Discrete scheme

Fix N in N
∗ and introduce a partition of the time interval [0, T ] by defining tk = kδt for any k ∈ {0, . . . , N},

where δt = T/N . The quantities uk
h, pk

h, ζk
h, θk

h, ξk
h and ωk

h are then the respective approximations of u(·, tk),
p(·, tk), ζ(tk), θ(tk), ξ(tk) and ω(tk).

3.1.1. Initialization

At the initial time, we consider an approximation F0
h of the fluid domain F , which is the union of straight

triangles of a regular, quasi-uniform triangulation T 0
h , h being the discretization parameter, and satisfies the

inclusion property
F0

h ⊂ F . (3.1)



616 G. LEGENDRE AND T. TAKAHASHI

T2

T1

T3

Figure 1. Detail of the discretization mesh with the position of the rigid solid and the three
categories of triangles.

Since F is not convex, even if O is convex, hypothesis (3.1) is certainly not standard. It implies in particular
that the boundary ∂F0

h is a piecewise linear continuous curve whose nodes do not necessarily belong to ∂F .
In the present work, the following process is adopted for the construction of the approximate domain1. We

first build a regular, quasi-uniform triangulation T̃ 0
h of the whole domain O. We then define Hh, the union of

all triangles in T̃ 0
h such that their three vertices are contained in Gh, with

Gh = ∪
K∈T̃ 0

h
◦
K∩

◦
S�=∅

K,

and divide the triangles into three categories as follows (see Fig. 1):

• T1 is the subset of T̃ 0
h formed by all triangles K ∈ T̃ 0

h such that K ⊂ S;
• T2 is the subset formed by all triangles K ∈ T̃ 0

h \T1 such that K ⊂ Hh;
• T3 = T̃ 0

h \(T1 ∪ T2).

We finally set T 0
h = T3 and

F0
h =

⋃
K∈T 0

h

K, S0
h = O \ F0

h =
⋃

K∈T̃ 0
h \T 0

h

K.

Notice that this approximate domain is such that it satisfies (3.1) by construction and

dist
(F0

h,F)
< C h. (3.2)

We next define the finite element space P0
h = {γ ∈ C(F0

h)2 ; γ|K ∈ P1(K), ∀K ∈ T 0
h }, where P1(K) denotes

the set of affine functions on K, and its analogue P̃0
h = {γ ∈ C(O)2 ; γ|K ∈ P1(K), ∀K ∈ T̃ 0

h } over the
triangulation of O.

1It will also be the process repeated whenever a remeshing is needed (i.e., when the quality of the triangulation degrades too
much due to the changes in the mesh geometry). Of course, this step, while common in practical applications of the method
(see [23], in which the domain is said to be remeshed every five or ten time steps in actual computations), cannot be taken into
account in the study of convergence of the scheme and we assume that the mesh remains regular enough during the whole course
of its use, which is consistent with assumption (2.17).
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We finally take ζ0
h = 0, θ0

h = 0 and we obtain the initial approximate velocity field (u0
h, ξ0

h, ω0
h) by first

extending u(0) using the rigid velocity formula

u(0)(x) = ζ(1) + θ(1)x⊥, ∀x ∈ S,

then by considering u0
h as the projection of this extended field on (P̃0

h)2 and setting

ξ0
h =

∫
S0

h

ρs u
0
h dx and ω0

h =
∫
S0

h

ρs u
0
h(x) · (x− ζ0

h)⊥ dx.

3.1.2. Computation of the new domain

Suppose that the quantities ζk
h, θk

h, ξk
h and ωk

h are known for some k in {0, . . . , N − 1}. We approximate the
position of the center of mass and the orientation of the rigid body at instant tk+1 by

ζk+1
h = ζk

h + (δt) ξk
h and θk+1

h = θk
h + (δt)ωk

h. (3.3)

The approximations of the domains occupied respectively by the solid and fluid at instant tk+1 are then

Sk+1
h =

{
ζk+1

h + Rθk+1
h −θk

h
(x− ζk

h), x ∈ Sk
h

}
and Fk+1

h = O \ Sk+1
h . (3.4)

3.1.3. Computation of the ALE mapping and of the characteristic function

The finite element approximation of the ALE mapping at time tk+1, denoted by Ak+1
h , is defined by

Ak+1
h (x) = x+ dk+1

h (x), ∀x ∈ F0
h, (3.5)

where the field dk+1
h ∈ (P0

h

)2 is uniquely determined by

dk+1
h (x) = ζk+1

h + Rθk+1
h
x− x, ∀x ∈ ∂S0

h, and dk+1
h = 0 on ∂O, (3.6)

and ∫
F0

h

∇dk+1
h : ∇γh dx+ λ

∫
F0

h

(divdk+1
h )(div γh) dx = 0, ∀γh ∈ (P0

h)2, s.t. γh = 0 on ∂F0
h. (3.7)

Remark 3.1. Problem (3.6)–(3.7) is well-posed, but we do not know whether the mapping defined in (3.5) is
invertible. Consider the field ď

k+1

h solution to⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δď

k+1

h − λ∇div ď
k+1

h = 0 in F ,

ď
k+1

h (x) = ζk+1
h + Rθk+1

h
x− x, ∀x ∈ ∂S,

ď
k+1

h = 0 on ∂O.

(3.8)

Inequality (4.26) in [11] (see also [25,28]) yields the following estimate

‖ďk+1

h − dk+1
h ‖W1,∞(F0

h)2 � C h| log h| ‖ďk+1

h ‖W2,∞(F0
h)2 .

By continuity of the solution of (3.8) with respect to the data, we have

‖ďk+1

h ‖W2,∞(F0
h)2 � C

(
|ζk+1

h | + |θk+1
h |

)
,
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hence
‖dk+1

h ‖W1,∞(F0
h)2 � C

(
|ζk+1

h | + |θk+1
h |

)
, (3.9)

which implies, as in the continuous case and if |ζk+1
h |+ |θk+1

h | is small enough, that Ak+1
h is invertible. Setting

Ak+1,k
h = Ak

h ◦ (Ak+1
h

)−1
, (3.10)

we have in particular that Ak+1,k
h (Fk+1

h ) = Fk
h .

To end this remark, notice that the mapping Ak+1
h can be easily extended into a diffeomorphism of R

2 by

dk+1
h (x) = ζk+1

h + Rθk+1
h
x− x, ∀x ∈ S0

h, and dk+1
h = 0 on R

2 \ O.

We will identify Ak+1
h with its extension without any change in the notation in what follows.

In order to define the approximate domain velocity wk
h : Fk

h → R
2, we introduce the following linear

interpolations in time of the approximate center of mass and orientation of the rigid solid:

θh(t) =
(

tk+1 − t

δt

)
θk

h +
(

t − tk

δt

)
θk+1

h and ζh(t) =
(

tk+1 − t

δt

)
ζk

h +
(

t − tk

δt

)
ζk+1

h , ∀t ∈ [tk, tk+1],

and of the discrete ALE mapping:

Ah(x, t) =
(

tk+1 − t

δt

)
Ak

h(x) +
(

t − tk

δt

)
Ak+1

h (x), ∀x ∈ F0
h, ∀t ∈ [tk, tk+1]. (3.11)

Using (3.5) and (3.9), we infer that Ah(·, t) is invertible from F0
h onto Fh(t) = Ah(F0

h , t) and set

wh(x, t) =
∂Ah

∂t

(
t, Ah(·, t)−1(x)

)
, ∀x ∈ Fh(t). (3.12)

Introducing the finite element space Pk
h = {γ ∈ C(Fk

h ) ; γ|K ∈ P1(K), ∀K ∈ T k
h }, the approximate domain

velocity at time tk, wk
h ∈ (Pk

h)2, is defined as

wk
h = lim

t→tk, t>tk
wh(·, t). (3.13)

Remark 3.2. It is easily seen that, ∀t ∈ (tk, tk+1), wh(x, t) = ξk
h + ωk

h(x − ζh(t))⊥, ∀x ∈ ∂Sh(t), and
wh(·, t) = 0 on ∂O, which obviously implies that wk

h(x) = ξk
h + ωk

h(x− ζk
h)⊥, ∀x ∈ ∂Sk

h , and wk
h = 0 on ∂O.

We next consider the approximate characteristic function Bh which, for all x in Fk+1
h , is solution to⎧⎨⎩

∂Bh

∂t
(t; tk+1,x) = (uk

h −wk
h)(Bh(t; tk+1,x)),

Bh(tk+1; tk+1,x) = x,

(3.14)

where

uk
h(x) =

[
∇Ak+1,k

h (x)
]−1

uk
h(Ak+1,k

h (x)) and wk
h(x) =

[
∇Ak+1,k

h (x)
]−1

wk
h(Ak+1,k

h (x)), ∀x ∈ Fk+1
h , (3.15)

and we denote Bk
h = Bh(tk; tk+1, ·).

Remark 3.3. Since the discrete ALE mappings have been extended to the whole of R
2 (see Rem. 3.1), it

is enough to extend the discrete velocity field uk
h as previously done in the continuous case to define the

characteristic mapping Bk
h over R

2 using problem (3.14).
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3.1.4. Calculation of the new velocity and pressure

The triangulation T k+1
h of the new domain Fk+1

h is obtained as the image of the triangulation T k
h at the

previous step by the ALE application Ak,k+1
h . Likewise, the triangulation of Sk+1

h is given by T̃ k+1
h \T k+1

h ,
where T̃ k+1

h is the image of T̃ k
h by the ALE application Ak,k+1

h . Defining the finite element spaces

Vk+1
h =

{
(vk+1

h , ξvk+1
h

, ωvk+1
h

) ∈ C(Fk+1
h )2 × R

3 ; vk+1
h |K ∈ (P1(K) ⊕ 〈λ1λ2λ3〉)2 , ∀K ∈ T k+1

h ,

vk+1
h = 0 on ∂O and vk+1

h (x) = ξvk+1
h

+ ωvk+1
h

(x− ζk+1
h )⊥, ∀x ∈ ∂Sk+1

h

}
,

with {λi}i=1,2,3 the set of barycentric coordinates (with respect to the vertices of triangle K), and

Qk+1
h =

{
qk+1
h ∈ C(Fk+1

h ) ∩ L2
0(Fk+1

h ) ; qk+1
h |K ∈ P1(K), ∀K ∈ T k+1

h

}
,

the discrete velocity and pressure at instant tk+1 are obtained as the solution of a discrete generalized Stokes
problem: Find (uk+1

h , ξk+1
h , ωk+1

h ) ∈ Vk+1
h and pk+1

h ∈ Qk+1
h such that

∫
Fk+1

h

(
uk+1

h − uk
h ◦ Ak+1,k

h ◦ Bk
h

δt

)
· vk+1

h dx+ M
ξk+1

h − ξk
h

δt
· ξvk+1

h
+ I

ωk+1
h − ωk

h

δt
ωvk+1

h

+ 2ν

∫
Fk+1

h

D(uk+1
h ) : D(vk+1

h ) dx−
∫
Fk+1

h

pk+1
h div vk+1

h dx

=
∫
Fk+1

h

fk+1
h · vk+1

h dx+ fk+1
h,M · ξvk+1

h
+ fk+1

h,I ωvk+1
h

, ∀(vk+1
h , ξvk+1

h
, ωvk+1

h
) ∈ Vk+1

h , (3.16)

−
∫
Fk+1

h

qk+1
h divuk+1

h dx = 0, ∀qk+1
h ∈ Qk+1

h , (3.17)

where fk+1
h stands for the projection of f(·, tk+1) on (P̃k+1

h )2, with P̃k+1
h = {γ ∈ C(O)2 ; γ|K ∈ P1(K), ∀K ∈

T̃ k
h }, and

fk+1
h,M =

∫
Sk+1

h

ρs f
k+1
h dx, fk+1

h,I =
∫
Sk+1

h

ρs f
k+1
h (x) · (x− ζk+1

h )⊥ dx.

Remark 3.4. It is worth pointing out that the discrete mixed problem (3.16)–(3.17) is well-posed for any k ∈
{0, . . . , N}. Indeed, by adapting the proof of Lemma 4.3 in [29], one can prove a discrete inf-sup condition, that
is, there exists a positive constant βk, possibly depending on h, such that

inf
vh∈Vk

h

sup
qh∈Qk

h

∫
Fk

h
qh div vh dx

‖vh‖H1(Fk
h)2‖qh‖L2(Fk

h)

� βk.

3.2. Statement of the main result

Let us recall the hypotheses made so far. We have supposed that the domain O is the interior of a convex
polygon, that there is no contact between the solid and the boundary ∂O, a condition expressed by (2.2), and
that the data verify the regularity and compatibility conditions (2.1). We shall now assume that the solution to
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problem (1.1)–(1.8) is smoother than the regularity previously given in (2.3) by making the additional hypotheses

u ∈ C([0, T ]; H2(F(ζ(t), θ(t)))2),
du
dt

∈ C([0, T ]; L∞(F(ζ(t), θ(t)))2),

d2u

dt2
∈ L∞(0, T ; L2(F(ζ(t), θ(t)))2), p ∈ C([0, T ]; H1(F(ζ(t), θ(t)))),

ζ ∈ W3,∞(0, T )2, ω ∈ W2,∞(0, T ),

(3.18)

and
f ∈ C([0, T ]; L∞(O)2). (3.19)

Our main result is the following.

Theorem 3.5. Assume that there exist two positive constants cs and Cs such that

cs h1/2 � δt � Cs h1/2. (3.20)

Then, under hypotheses (2.2), (2.3), (2.17), (3.18), (3.19) and the usual assumptions on the space discretization,
there exist two positive constants C and κ, depending on neither h nor δt, such that, for all δt in (0, κ) and k
in {0, . . . , N}, we have

|ζ(tk) − ζk
h| + |θ(tk) − θk

h| � C(δt)
and

‖u(A(tk; 0, ·), tk) − uk
h ◦ Ak

h‖L2(F)2 + |ξ(tk) − ξk
h| + |ω(tk) − ωk

h| � C(δt).

Remark 3.6. In the above result, the ALE mappings appear in the error estimates for the velocity since the
exact and approximate fields are not defined a priori in the same domain at instant tk. Of course, we could
alternatively use the extensions of these fields given in the previous sections to state a similar result without
ALE mappings and quantities defined over the whole domain O.

3.3. Comments

The order of convergence given in Theorem 3.5 is not as good as one would expect. Indeed, the method is
shown to have an error of O(δt + h1/2), which is suboptimal as a piecewise linear finite element approximation
is used. Moreover, this appears somewhat paradoxical since, contrary to “global” methods (like the fictitious
domain formulation, the penalty technique or the Lagrange-Galerkin scheme introduced respectively in [13,20,
29]), the ALE formulation should allow the scheme to accurately track the motion of the rigid body. This loss in
accuracy stems from the fact that the approximate domain at initial time is not based on an exact triangulation
of F . We justified this choice in the introduction by pointing out the difficulties in the analysis when using a
boundary fitted mesh. In our opinion, the present paper should be viewed as a starting point for the rigorous
study of more complex schemes.

An obvious extension of this work would be to employ curved finite elements for an exact (or at least fairly
good) approximation of the boundary of the rigid body (see the work of Lenoir in [21]), which would hopefully
give rise to a better order of convergence with respect to the space discretization parameter. Still, one should
keep in mind that the no-slip condition coupling the fluid and rigid body appears in the discretization space for
the fluid velocity. As a consequence, issues with the polynomial approximation of this condition at the discrete
level are most likely to occur due to the mappings involved when dealing with curved simplices.

Let us finally mention that, if a polygonal rigid body is considered, the algorithm presented in these pages
could certainly be worked out within the framework of singular complement methods to numerically solve
the problem. This type of approximation technique relies on a decomposition of the solution into a regular part,
for which our scheme provides a finite element approximation that is optimal (the domain being now exactly
approximated), and a singular part, taken into account explicitly since the space of the singularities is of finite
dimension.
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3.4. Summary of the proof

The remainder of this paper will be devoted to the proof of Theorem 3.5. Let us develop below the main
ideas behind it.

First, we use the regularity of the solution to replace the time derivatives in (1.1)–(1.8) by the finite difference
operators appearing in the scheme, leading to a perturbed system of semidiscretized equations which includes
truncation errors. The obtained equations are next transformed according to a change of variables that maps
at each time step the exact fluid domain onto the approximate one. Actually, since these two domains cannot
be exactly superposed onto each other due to the space discretization, the rigid body is translated and rotated
with respect to the position and orientation of his approximate counterpart. The resulting system contains
variable coefficients and is thus rewritten as a system with constant coefficients and a perturbation term. This
term and the errors arising from the discrepancy between the exact and approximate domains after the change
of variables are then estimated.

Next, the fluid velocity and pressure are projected onto their corresponding finite element spaces. At this
point, we have obtained that the projection of the solution satisfies a mixed formulation, similar to the one
verified by the approximate solution, which comprises error terms emanating from the time discretization, the
change of variables and the geometrical and finite element approximations. The last step consists of considering
the difference between these two mixed variational formulations, taking as a test function the difference between
the projected and the approximate solutions. The result is proved after some more calculations.

4. Change of variables

To prove Theorem 3.5, one needs to compare the exact solution, defined at instant tk in the domain
F(ζ(tk), θ(tk)), with the approximate one, defined at the same moment in the approximate domain Fk

h . This
is accomplished with the help of a change of variables similar to the one featured in [19] and subsequently used
in [29] for an identical purpose. A description of this transformation and some of its properties are briefly
recalled in the next subsections.

4.1. Construction of the change of variables

We introduce a family of changes of variable which, for any k in {0, . . . , N}, transforms a function defined
on F(ζ(tk), θ(tk)) into a function defined on F(ζk

h, θk
h). First, hypotheses (2.2) and (2.3) imply the existence of

η > 0 such that
dist (S(ζ(t), θ(t)), ∂O) > η, ∀t ∈ [0, T ].

We then assume2 that
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| � C(δt), (4.1)

for some positive constant C independent of h and k. As a consequence, for δt and h both small enough, we
verify that, for all λ in [0, 1],

λζ(tk) + (1 − λ)ζk
h + Rλ(θ(tk)−θk

h)(S(ζk
h, θk

h) − ζk
h) ⊂ O,

and
dist

(
λζ(tk) + (1 − λ)ζk

h + Rλ(θ(tk)−θk
h
)(S(ζk

h, θk
h) − ζk

h), ∂O
)

>
η

2
·

Let χ ∈ C∞(R2; R) be a function with compact support contained in O, such that, for all x in O,

χ(x) =

⎧⎨⎩ 1 if dist(x, ∂O) >
η

2
,

0 if dist(x, ∂O) <
η

4
·

2This assumption will be proved later by induction.



622 G. LEGENDRE AND T. TAKAHASHI

Defining the following smooth functions for all x in O and all λ in [0, 1]

τk(x, λ) = (ζ(tk)−ζk
h)·x⊥+(θ(tk)−θk

h)
( |x|2

2
− (λ ζ(tk) + (1 − λ) ζk

h) · x
)

and Λk(x, λ) = ∇ [
χ(x)τk(x, λ)

]⊥
,

we check that

Λk(x, λ) =

⎧⎨⎩ ζ(tk) − ζk
h + (θ(tk) − θk

h)(x− λζ(tk) − (1 − λ)ζk
h)⊥ if dist(x, ∂O) >

η

2
,

0 if dist(x, ∂O) <
η

4
,

and
div Λk(x, λ) = 0. (4.2)

Considering the following initial value problem⎧⎨⎩
∂ψ

∂λ
(y, λ) = Λk (ψ(y, λ), λ) ,

ψ(y, 0) = y, y ∈ O,

we can show that the application
Xk(y) = ψ(y, 1), ∀y ∈ F(ζk

h, θk
h), (4.3)

is a diffeomorphism which maps F(ζk
h, θk

h) onto F(ζ(tk), θ(tk)) and satisfies

Xk(y) = ζ(tk) + Rθ(tk)−θk
h
(y − ζk

h) (4.4)

for any y in a neighborhood of ∂S(ζk
h, θk

h).

4.2. Transformed system

The purpose of the change of variables defined by the mapping Xk is to be applied to the exact solution of
problem (1.1)–(1.8). We thus introduce the following quantities

Uk(y) = JYk(Xk(y))u(Xk(y), tk), Pk(y) = p(Xk(y), tk), ∀y ∈ F(ζk
h, θk

h),

Ξk = Rθk
h−θ(tk)ξ(tk) and Ωk = ω(tk),

where we have denoted by Yk the inverse of Xk and by JYk the Jacobian matrix of Yk

JYk =
(

∂Y k
i

∂xj

)
1�i,j�2

·

Also needed will be the transformed characteristic function

Ck = Yk ◦ C(tk; tk+1, ·) ◦Xk+1. (4.5)

This change of variables is inspired by the work of Inoue and Wakimoto in [19]. In particular, the fact that the
field Λk has a vanishing divergence yields the conservation of the divergence of the fluid velocity field through
the transformation. More precisely, owing to a Liouville lemma (see for instance [2], p. 251) and property (4.2),
we have

div Uk = 0 in F(ζk
h, θk

h), (4.6)
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and, using notably (4.4), we verify that

Uk(y) = Ξk + Ωk(y − ζk
h)⊥, ∀y ∈ ∂S(ζk

h, θk
h), and Uk = 0 on ∂O.

Finally, in order to write down the expressions of Δu and ∇p after the change of variables, we define (see [19])

[LkUk]i =
2∑

j,l=1

∂

∂yj

(
gjl ∂Uk

i

∂yl

)
+ 2

2∑
j,l,m=1

glmΓi
jl

∂Uk
j

∂ym
+

2∑
j,l,m=1

(
∂

∂yl
(glmΓi

jm) +
2∑

n=1

glmΓn
jmΓi

ln

)
Uk

j , (4.7)

[GkPk]i =
2∑

j=1

gij ∂Pk

∂yj
, (4.8)

gij =
2∑

l=1

∂Yk
i

∂xl

∂Yk
j

∂xl
, gij =

2∑
l=1

∂Xk
i

∂yl

∂Xk
j

∂yl
, (4.9)

Γl
ij =

1
2

2∑
m=1

glm

(
∂gim

∂yj
+

∂gjm

∂yi
+

∂gij

∂ym

)
. (4.10)

4.3. Properties

We end this section by stating a series of estimates satisfied by the change of variables. Their proofs can be
obtained from [32] and [29], where the same kind of estimates are derived.

All the letters C appearing throughout the paper will denote generic, strictly positive constants which are
independent of δt, h and k.

Lemma 4.1. The function Xk, defined by (4.3), and its inverse Yk satisfy the following inequalities

‖Xk‖L∞(F(ζk
h,θk

h))2 � C, ‖Yk‖L∞(F(ζ(tk),θ(tk)))2 � C,

‖Xk − Id‖L∞(O)2 � C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)

, ‖Yk − Id‖L∞(O)2 � C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)

,

‖JXk − Id‖L∞(O)4 � C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)

, ‖JYk − Id‖L∞(O)4 � C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)

,

∥∥∥∥∥ ∂2Xk

∂yi∂yj

∥∥∥∥∥
L∞(O)2

� C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)

,

∥∥∥∥∥ ∂2Yk

∂xi∂xj

∥∥∥∥∥
L∞(O)2

� C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)

,

∀i, j ∈ {1, 2}.

Lemma 4.2. Assume that (Uk, Pk) ∈ H2(F(ζk
h, θk

h))2 × H1(F(ζk
h, θk

h)). We have

‖ν (Lk − Δ)Uk‖L2(F(ζk
h

,θk
h
))2 � C

(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)
‖Uk‖H2(F(ζk

h
,θk

h
))2 ,

‖(∇ −Gk)Pk‖L2(F(ζk
h,θk

h))2 � C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)
‖Pk‖H1(F(ζk

h,θk
h)).

Lemma 4.3. The function Xk, defined by (4.3), and its inverse Yk satisfy the following inequalities

‖Xk+1 − Xk‖L∞(O)2 � C(δt)
(
|θ(tk) − θk

h| + |ξ(tk) − ξk
h| + |ω(tk) − ωk

h| + δt
)

,

‖Yk+1 − Yk‖L∞(O)2 � C(δt)
(
|θ(tk) − θk

h| + |ξ(tk) − ξk
h| + |ω(tk) − ωk

h| + δt
)

,

‖JXk+1 − JXk‖L∞(O)4 � C(δt)
(
|θ(tk) − θk

h| + |ξ(tk) − ξk
h| + |ω(tk) − ωk

h| + δt
)

.
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5. Error bounds on the ALE mappings

A number of preliminary results related to the ALE mappings are established in this section. As previously,
it is assumed that (4.1) holds and that δt and h are small enough, so that the preceding results are valid. We
also suppose that δt and h are both smaller than unity to simplify the estimates.

We first complete Lemma 2.2 by giving additional results on the continuous ALE mapping. By differentiating
problem (2.14) with respect to time, we obtain that ∂d

∂t (·, t) is solution of the system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Δ
(

∂d

∂t

)
(·, t) − λ∇ div

(
∂d

∂t

)
(·, t) = 0 in F ,(

∂d

∂t

)
(x, t) = ξ(t) + ω(t)Rθ(t)x

⊥, ∀x ∈ ∂S,(
∂d

∂t

)
(·, t) = 0 on ∂O.

(5.1)

In particular, the following estimate holds (see for instance [4,11])∥∥∥∥∂d

∂t
(·, t)

∥∥∥∥
W 2,∞(F)2

� C (|ξ(t)| + |ω(t)|) , ∀t ∈ (0, T ).

Using regularity assumptions (2.1), we conclude that

d, A(·; 0, ·) ∈ W2,∞(0, T ; W2,∞(F)2). (5.2)

One also has, owing to definition (2.9),

w ∈ W1,∞(0, T ; W2,∞(F)2), (5.3)

and, from the proof of Lemma 2.2,

(x, t) �→ (A(t; 0, ·))−1 (x) ∈ W2,∞(0, T ; W2,∞(F(ζ(t), θ(t)))2). (5.4)

We now give an estimate on the difference between the mapping A(tk; 0, ·) and its discrete counterpart Ak
h.

Recall that both of these mappings have been extended (see Rems. 2.4 and 3.1) to the whole of R
2.

Lemma 5.1. There exists a constant C such that, for all k ∈ {0, . . . , N},∥∥A(tk; 0, ·) − Ak
h

∥∥
L∞(O)2

� C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + h

)
,∥∥∇A(tk; 0, ·) − ∇Ak

h

∥∥
L2(O)4

� C
(
|ζ(tk) − ζk

h| +
∣∣θ(tk) − θk

h

∣∣ + h1/2
)
.

Proof. From definitions (2.16) and (3.5), one has, for all x in O,

A(tk; 0,x) − Ak
h(x) = d(x, tk) − dk

h(x).

On the one hand, error estimates (4.26) and (4.25) in [11] respectively yield

‖ďk

h − dk
h‖L∞(F0

h)2 � Ch2| log h|
(
|ζk

h| + |θk
h|
)

,

‖∇ďk

h − ∇dk
h‖L2(F0

h)4 � Ch
(
|ζk

h| + |θk
h|
)
,
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and, on the other hand, it holds

‖d(·, tk) − ďk

h‖L∞(O)2 � C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)

‖∇d(·, tk) − ∇ďk

h‖L2(O)4 � C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)
.

We infer from these relations and the triangle inequality that

‖d(·, tk) − dk
h‖L∞(F0

h)2 � C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + h2| log h|

)
,

‖∇d(·, tk) − ∇dk
h‖L2(F0

h
)4 � C

(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + h

)
.

Then, given the form of the extensions of the ALE mappings (see Rems. 2.4 and 3.1), it is easy to check that

‖d(·, tk) − dk
h‖L∞(S)2 � C

(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)

,

‖∇d(·, tk) − ∇dk
h‖L2(S)4 � C|θ(tk) − θk

h|.

Finally, owing to the mean value theorem and property (3.2), it follows that

‖d(·, tk) − dk
h‖L∞(F\F0

h)2 � C
(
h ‖d(·, tk)‖W1,∞(F)2 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)

and, using directly (3.2),

‖∇d(·, tk) − ∇dk
h‖L2(F\F0

h)4 � Ch1/2
(
‖d(·, tk)‖W1,∞(F)2 + |Rθk

h
− Id|

)
,

which ends the proof of the lemma. �
It is also natural to compare the discrete mapping Ak

h with the diffeomorphism

Âk
= Yk ◦ A(tk; 0, ·) (5.5)

which verifies Âk
(F) = F(ζk

h, θk
h). From assumptions (2.1) and Lemma 4.1, we have∥∥Âk∥∥

W2,∞(O)2
� C, 0 � k � N, (5.6)

and, using (5.4) and Lemma 4.1, we can also see that∥∥(Âk)−1∥∥
W2,∞(O)2

� C, 0 � k � N. (5.7)

Lemma 5.2. There exists a constant C such that, for all k ∈ {0, . . . , N},∥∥Âk − Ak
h

∥∥
L∞(O)2

� C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + h

)
,∥∥(Âk)−1 − (Ak

h

)−1∥∥
L∞(O)2

� C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + h

)
.

Proof. The first assertion is an easy consequence of Lemmata 4.1 and 5.1. To prove the second one, we write∥∥(Âk)−1 − (Ak
h

)−1∥∥
L∞(O)2

=
∥∥(Âk)−1 ◦Ak

h − (Ak
h

)−1 ◦Ak
h

∥∥
L∞(O)2

=
∥∥(Âk)−1 ◦Ak

h − (Âk)−1 ◦ Âk∥∥
L∞(O)2

.
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Consequently, using the mean value theorem and (5.7), we find∥∥(Âk)−1 − (Ak
h

)−1∥∥
L∞(O)2

� C
∥∥Âk − Ak

h

∥∥
L∞(O)2

.

The above inequality and the first claim of the lemma then imply the desired result. �
We next recall a classical result (see [1]).

Lemma 5.3. Assume that Zi : O → O (i = 1, 2) are two diffeomorphisms such that, for all μ in [0, 1],

μZ1 + (1 − μ)Z2 : O → O
is a diffeomorphism with Jacobian Jμ satisfying

Jμ � c, (5.8)

with c a positive constant. Then, for any γ in H1(O), we have

‖γ ◦Z1 − γ ◦Z2‖L1(O) � 1
c
‖∇γ‖L2(O)2‖Z1 −Z2‖L2(O)2 .

From the above lemma, we infer the following.

Lemma 5.4. Assume that δt and h are both small enough. Then, for all k in {0, . . . , N} and μ in [0, 1], the
mapping

μ Âk
+ (1 − μ)Ak

h : O → O
is a diffeomorphism with Jacobian satisfying inequality (5.8). The same property holds for the family of mappings

μ
(Âk)−1 + (1 − μ)

(Ak
h

)−1 : O → O.

Proof. Recall that the constant c0 in (2.17) has been chosen in such a way that bound (2.18) is satisfied. We
first deduce from estimate (3.9) and hypothesis (4.1) that, for all k in {0, . . . , N},

‖dk
h‖W1,∞(O)2 � C(c0 + δt + h1/2).

Then, choosing c0, h and κ small enough, we obtain that, for all h in (0, h) and δt in (0, κ),

‖dk
h‖W1,∞(O)2 � 1

4
· (5.9)

For all k in {0, . . . , N} and μ in [0, 1], this implies that

‖μd(·, tk) + (1 − μ)dk
h‖W1,∞(O)2 � 1

4
,

which yields the first result (see the proof of Lem. 2.2 for details). Next, using again bounds (2.18) and (5.9),
we infer that, for all k in {0, . . . , N},(Âk)−1 = Id + dk,

(Ak
h

)−1 = Id + dk
h,

with
‖dk‖W1,∞(O)2 � 1

2
and ‖dk

h‖W1,∞(O)2 � 1
2
,

so that, for all μ in [0, 1], the mapping μ
(Âk)−1 + (1 − μ)

(Ak
h

)−1 is a diffeomorphism of O onto itself with
Jacobian satisfying (5.8). �
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We are now in position to prove the following result.

Lemma 5.5. There exists a constant C such that, for all k ∈ {0, . . . , N − 1},∥∥∥∥[∇(
Âk ◦ (Âk+1)−1

)]−1

−
[
∇Ak+1,k

h

]−1
∥∥∥∥

L2(O)4
� C

(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + h1/2

)
.

Proof. Differentiating, we have respectively[
∇

(
Âk ◦ (Âk+1)−1

)]−1

=
[
∇Âk+1

((Âk+1)−1
)] [

∇Âk
((Âk+1)−1

)]−1

and [
∇Ak+1,k

h

]−1

=
[
∇Ak+1

h

((Ak+1
h

)−1
)] [

∇Ak
h

((Ak+1
h

)−1
)]−1

.

We use this to rewrite the following difference as the sum of four terms:

[
∇

(
Âk ◦ (Âk+1)−1

)]−1

−
[
∇Ak+1,k

h

]−1

=
4∑

i=1

Ri, (5.10)

where

R1 =
[
∇Âk+1

((Âk+1)−1
)] [

∇Âk
((Âk+1)−1

)]−1

−
[
∇Âk+1

((Ak+1
h

)−1
)] [

∇Âk
((Âk+1)−1

)]−1

,

R2 =
[
∇Âk+1

((Ak+1
h

)−1
)] [

∇Âk
((Âk+1)−1

)]−1

−
[
∇Ak+1

h

((Ak+1
h

)−1
)] [

∇Âk
((Âk+1)−1

)]−1

,

R3 =
[
∇Ak+1

h

((Ak+1
h

)−1
)] [[

∇Âk
((Âk+1)−1

)]−1

−
[
∇Âk

((Ak+1
h

)−1
)]−1

]
,

R4 =
[
∇Ak+1

h

((Ak+1
h

)−1
)] [

∇Âk
((Ak+1

h

)−1
)]−1

−
[
∇Ak+1

h

((Ak+1
h

)−1
)] [

∇Ak
h

((
Ak+1

h

)−1
)]−1

.

Using bounds (5.6) and (5.7), we infer from Lemma 5.4 that

‖R1‖L2(O)4 � C
∥∥(Âk+1)−1 − (Ak+1

h

)−1∥∥
L2(O)2

.

Combining the above inequality with Lemma 5.2 then yields

‖R1‖L2(O)4 � C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + h

)
.

Next, using Lemmata 5.1 and 5.4, we obtain

‖R2‖L2(O)4 � C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + h1/2

)
.

To estimate R3, we first write

[
∇Âk

((Âk+1)−1
)]−1

−
[
∇Âk

((Ak+1
h

)−1
)]−1

=[
∇Âk

((Âk+1)−1
)]−1 [

∇Âk
((Ak+1

h

)−1
)
− ∇Âk

((Âk+1)−1
)] [

∇Âk
((Ak+1

h

)−1
)]−1

.
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Consequently, using Lemmata 5.2, 5.3 and 5.4, we get

‖R3‖L2(O)4 � C
∥∥(Âk+1)−1 − (Ak+1

h

)−1∥∥
L2(O)2

� C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + h

)
.

Finally, using the relation[
∇Âk

]−1

−
[
∇Ak

h

]−1

=
[
∇Âk

]−1 (∇Ak
h − ∇Âk) [∇Ak

h

]−1

,

in conjunction with Lemmata 5.1, 5.3 and 5.4, it can be shown that

‖R4‖L2(O)4 � C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + h1/2

)
,

which completes the proof. �

We now derive an error estimate for the discrete domain velocity. Denote

Wk(y) = JYk

(
Xk(y)

)
w
(
Xk(y), tk

)
.

We have the following result.

Lemma 5.6. There exists a constant C such that, for all k ∈ {0, . . . , N},

‖Wk −wk
h‖L2(O)2 � C

(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + |ξ(tk) − ξk

h| + |ω(tk) − ωk
h| + δt + h

)
.

Proof. From definition (2.9) of the domain velocity and identity (2.16) defining the ALE mapping, it follows
that

w(A(tk+1; 0, ·), t) =
∂A
∂t

(t; 0, ·) =
∂d

∂t
(·, t) in F ,

where ∂d
∂t (·, t) is solution to problem (5.1). On the other hand, combining definitions (3.11), (3.12) and (3.13),

we obtain that

wk
h ◦ Ak

h =
Ak+1

h − Ak
h

δt
·

Moreover, using (3.5), (3.6) and (3.7), an easy computation shows that the field Υk
h = Ak+1

h −Ak
h

δt satisfies

Υk
h(x) = ξk+1

h + ωk
hRθk

h
x⊥ + (δt)eΥk

h
(x), ∀x ∈ ∂S0

h, and Υk
h = 0 on ∂O,

where

eΥk
h
(x) = −(ωk

h)2
∫ 1

0

(1 − s)Rs(δt)ωk
h
xds,

and ∫
F0

h

∇Υk
h : ∇γh dx+ λ

∫
F0

h

(div Υk
h)(div γh) dx = 0, ∀γh ∈ (P0

h

)2
s.t. γh = 0 on ∂F0

h.

Then, using inequality (4.26) in reference [11] and proceeding as in the proof of Lemma 5.1, we deduce that∥∥∥∥∥∂A
∂t

(tk; 0, ·) − Ak+1
h − Ak

h

δt

∥∥∥∥∥
L2(O)2

� C
(
|ξ(tk) − ξk

h| + |ω(tk) − ωk
h| + δt + h

)
. (5.11)
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According to the definition of Wk, we can write

Wk −wk
h = JYk(Xk)w(Xk, tk) −wk

h =
(
JYk(Xk) − Id

)
w(Xk, tk) +

∂d

∂t

((Âk)−1
, tk

)
− ∂d

∂t

((Ak
h

)−1
, tk

)
+

∂d

∂t

((Ak
h

)−1
, tk

)
− Ak+1

h − Ak
h

δt
◦ (Ak

h

)−1
.

Assumptions (2.1) and Lemma 4.1 then give

∥∥(JYk(Xk) − Id
)
w(Xk, tk)

∥∥
L2(O)2

� C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)

.

From the regularity of d and Lemma 5.2, we deduce that∥∥∥∥∂d

∂t

((Âk)−1
, tk

)
− ∂d

∂t

((Ak
h

)−1
, tk

)∥∥∥∥
L2(O)2

� C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + h

)
,

and, from inequality (5.11) and Lemma 5.4, we obtain∥∥∥∥∥∂d

∂t

((Ak
h

)−1
, tk

)
− Ak+1

h − Ak
h

δt
◦ (Ak

h

)−1

∥∥∥∥∥
L2(O)2

� C
(
|ξ(tk) − ξk

h| + |ω(tk) − ωk
h| + δt + h

)
.

The last four relations and the triangle inequality establish the result. �

Lemma 5.7. There exists a constant C such that, for all k ∈ {0, . . . , N − 1},

∥∥Âk ◦ (Âk+1)−1 − Ak
h ◦ (Ak+1

h

)−1∥∥
L2(O)2

�

C(δt)
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + |ξ(tk) − ξk

h| + |ω(tk) − ωk
h| + δt + h

)
.

Proof. We have

Âk ◦ (Âk+1)−1 − Ak
h ◦ (Ak+1

h

)−1 =
(Âk − Âk+1) ◦ (Âk+1)−1 − (Ak

h − Ak+1
h

) ◦ (Ak+1
h

)−1

=
(Ak+1

h − Ak
h

) ◦ (Ak+1
h

)−1 − (Ak − Ak+1
) ◦ (Âk+1)−1

+
(
Yk − Yk+1

) ◦ Ak ◦ (Âk+1)−1

+
(
Yk − Id

) ◦ (Ak − Ak+1
) ◦ (Âk+1)−1

.

Owing to (3.18), the mapping A(·; 0, ·) belongs to W2,∞(0, T ; L2(O)2) and we thus can write

Ak − Ak+1

δt
◦ (Âk+1)−1 =

∂A
∂t

(tk; 0, ·) ◦ (Âk+1)−1 + ek
∂tA,

with

‖ek
∂tA‖L2(O)2 � C(δt).
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Consequently, using (5.2), (5.6) and Lemma 5.4, we deduce that

∥∥Âk ◦ (Âk+1)−1 − Ak
h ◦ (Ak+1

h

)−1∥∥
L2(O)2

� C(δt)

⎛⎝∥∥∥∥∥∂A
∂t

(tk; 0, ·) − Ak+1
h − Ak

h

δt

∥∥∥∥∥
L2(O)2

+
∥∥(Âk+1)−1 − (Ak+1

h

)−1∥∥
L2(O)2

+

∥∥∥∥∥Yk − Yk+1

δt

∥∥∥∥∥
L2(O)2

+ ‖Yk − Id‖L2(O)2 + δt

⎞⎠.

Combining the above inequality with estimate (5.11) and Lemmata 4.1, 4.3 and 5.2 then gives the result. �
The following lemma is stated without proof, since it follows from arguments similar to those used to show

Lemmata 5.1 and 5.2 (using regularity properties (5.2) and (5.7)).

Lemma 5.8. There exists a constant C such that, for all k ∈ {0, . . . , N},∥∥A(tk; 0, ·) − Ak
h

∥∥
W1,∞(O)2

� C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + h| log h|

)
,∥∥(Âk)−1 − (Ak

h

)−1∥∥
W1,∞(O)2

� C
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + h| log h|

)
.

As a corollary, we have:

Corollary 5.9. There exists a constant C such that, for all k ∈ {0, . . . , N},∥∥Ak
h

∥∥
W1,∞(O)2

� C
(
1 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)

,∥∥(Ak
h

)−1∥∥
W1,∞(O)2

� C
(
1 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)

.

In particular, if we denote by hk the discretization parameter relative to T̃ k
h , then there exist two positive

constants c1 and c2 such that, for all k ∈ {0, . . . , N},

c1 h
(
1 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)

� hk � c2 h
(
1 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)
.

6. Error bounds on the characteristics

In the forthcoming proof of the main result, we will need some estimates on the difference Ck −Ak+1,k
h ◦Bk

h

between the exact and approximated characteristics. We assume that (4.1) holds and that δt and h are small
enough, so that all the previously established results are valid. We still suppose that δt and h are smaller than
unity to simplify the estimates.

Let us recall once more that the various mappings are now defined in R
2. In the sequel, the diffeomorphisms

Xk and Yk are extended to R
2 by setting Xk = Yk = Id in R

2 \ O. We moreover assume that there exists a
constant ε > 0 such that the relations

(δt)
∥∥Yk+1 ◦ (u−w) ◦ Xk+1

∥∥
L∞(tk,tk+1;W1,∞(O)2)

� ε (6.1)

and
(δt)

∥∥uk
h −wk

h

∥∥
W1,∞(O)2

� ε, (6.2)

hold, where, for all t in [tk, tk+1] and x in F(ζ(tk+1), θ(tk+1)), the functions u and w are given by

u(x, t) =
[∇A(t; tk+1,x)

]−1
u(A(t; tk+1,x), t), w(x, t) =

[∇A(t; tk+1,x)
]−1

w(A(t; tk+1,x), t). (6.3)
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These assumptions are stability results to be proven by induction in Section 7, the positive constant ε being
fixed below. The main result of this section is the:

Theorem 6.1. For all k in {0, . . . , N − 1}, we have the following error estimate for the characteristics

‖Ck − Ak+1,k
h ◦ Bk

h‖L2(O)2 � C(δt)
(
‖Uk − uk

h‖L2(O)2 + |ζ(tk) − ζk
h| + |θ(tk) − θk

h| + δt + h1/2
)
. (6.4)

Auxiliary results are needed to prove Theorem 6.1. First, let us define the mapping

B̂(t; tk+1, ·) = Yk+1 ◦ B(t; tk+1, ·) ◦ Xk+1, ∀t ∈ [tk, tk+1],

and denote

B̂k
= B̂(tk; tk+1, ·). (6.5)

From problem (2.20), we know that B̂(t; tk+1, ·) satisfies, for any x in F(ζk+1
h , θk+1

h ), the initial value problem⎧⎪⎨⎪⎩
∂B̂
∂t

(t; tk+1,x) = Yk+1 ◦ (u−w)(·, t) ◦ Xk+1(B̂(t; tk+1,x), t),

B̂(tk+1; tk+1,x) = x,

(6.6)

in which the functions u and w are defined by (6.3). Using bounds (6.1) and (6.2) for ε small enough, we can

show that, for any μ in [0, 1], the mapping μ B̂k
+ (1−μ)Bk

h is a diffeomorphism with Jacobian satisfying (5.8)
for some positive constant c.

Lemma 6.2. Consider the functions u and w given by (6.3), and uk
h and wk

h given by (3.15). Then, for all k
in {0, . . . , N − 1}, we have

∫ tk+1

tk

∥∥Yk+1 ◦ (u−w)(·, t) ◦ Xk+1 − (uk
h −wk

h)
∥∥

L2(O)2
dt �

C (δt)
(
‖Uk − uk

h‖L2(O)2 + |ζ(tk) − ζk
h| + |θ(tk) − θk

h| + δt + h1/2
)

.

Proof. From definitions (3.15) and (6.3), it follows that, for any y in O and t in [tk, tk+1],

Yk+1 ◦ (u−w)(·, t) ◦ Xk+1(y) − (uk
h −wk

h)(y) =

Yk+1

([
∇A(t; tk+1,Xk+1(y))

]−1

(u−w) (A(t; tk+1,Xk+1(y)), t)
)

−
[
∇Ak+1,k

h (y)
]−1

(uk
h −wk

h)(Ak+1,k
h (y)).

The right hand side of the above identity is then decomposed into a sum of five terms:

Yk+1 ◦ (u−w)(·, t) ◦Xk+1(y) − (uk
h −wk

h)(y) =
5∑

i=1

E i(y),
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where

E1(y) =
(
Yk+1 − Id

)([∇A(t; tk+1,Xk+1(y))
]−1

(u−w)
(
A(t; tk+1,Xk+1(y)), t

))
,

E2(y) =
[
∇A(t; tk+1,Xk+1(y))

]−1

(u−w) (A(t; tk+1,Xk+1(y)), t)

−
[
∇A(tk; tk+1,Xk+1(y))

]−1

(u−w) (A(tk; tk+1,Xk+1(y)), tk),

E3(y) =
([

∇Âk ◦ (Âk+1)−1(y)
]−1

−
[
∇Ak+1,k

h (y)
]−1

)
(Uk − Wk)

(
Âk ◦ (Âk+1)−1(y)

)
,

E4(y) =
[
∇Ak+1,k

h (y)
]−1 (

(Uk − Wk)
(
Âk ◦ (Âk+1)−1(y)

)
− (Uk − Wk)(Ak+1,k

h (y))
)
,

E5(y) =
[
∇Ak+1,k

h (y)
]−1 (

(Uk − Wk) − (
uk

h −wk
h

))
(Ak+1,k

h (y)).

First, we deduce from Lemma 4.1 that∫ tk+1

tk

‖E1‖L2(O)2 dt � C(δt)‖Yk+1 − Id‖L∞(O)2 � C(δt)
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)
.

We infer from (3.18), (5.2), (5.3) and Lemma 4.1 that the family of mappings

(y, t) �→
[
∇A(t; tk+1,Xk+1(y))

]−1

(u−w) (A(t; tk+1,Xk+1(y)), t)

is bounded in W1,∞(0, T ; L∞(O)2) with respect to k and we thus find that∫ tk+1

tk

‖E2‖L2(O)2 dt � C (δt)2.

For the next term, the use of (3.18), (5.3), (5.6) and Lemmata 4.1 and 5.5 yields∫ tk+1

tk

‖E3‖L2(O)2 dt � C(δt)
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + h1/2

)
.

Using assumption (2.17), it can be shown that
∥∥∥∥[∇Ak+1,k

h

]−1
∥∥∥∥

L∞(O)4
is uniformly bounded with respect to k

and h (see the proof of Lem. 5.4 for details). In addition, using the regularity hypotheses, we obtain that
‖∇(Uk − Wk)‖L∞(O)4 is also uniformly bounded with respect to k and h. Therefore, we have∫ tk+1

tk

‖E4‖L2(O)2 dt � C(δt)
∥∥Âk ◦ (Âk+1)−1 − Ak+1,k

h

∥∥
L∞(O)2

,

which in turn implies∫ tk+1

tk

‖E4‖L2(O)2 dt � C(δt)
(∥∥Âk − Ak

h

∥∥
L∞(O)2

+
∥∥(Âk+1)−1 − (Ak+1

h

)−1∥∥
L∞(O)2

)
.

Hence, using Lemma 5.2, we obtain∫ tk+1

tk

‖E4‖L2(O)2 dt � C(δt)
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + h

)
.



LAGRANGE-GALERKIN METHOD FOR A FLUID-RIGID BODY SYSTEM IN ALE FORMULATION 633

Finally, using a change of variables, we reach∫ tk+1

tk

‖E5‖L2(O)2 dt � C(δt)
(
‖Uk − uk

h‖L2(O)2 + ‖Wk −wk
h‖L2(O)2

)
and infer from Lemma 5.6 that∫ tk+1

tk

‖E5‖L2(O)2 dt � C(δt)
(
‖Uk − uk

h‖L2(O)2 + |ζ(tk) − ζk
h| + |θ(tk) − θk

h| + δt + h
)
.

Collecting all these bounds then establishes the lemma. �
Proof of Theorem 6.1. From definition (4.5), we have

Ck − Ak+1,k
h ◦ Bk

h = Yk ◦ A(tk; tk+1, ·) ◦ B(tk; tk+1, ·) ◦ Xk+1 − Ak+1,k
h ◦ Bk

h,

and it follows from (5.5) and (6.5) that

Ck − Ak+1,k
h ◦ Bk

h = Yk ◦ A(tk; tk+1, ·) ◦ Xk+1 ◦ Yk+1 ◦ B(tk; tk+1, ·) ◦ Xk+1 − Ak+1,k
h ◦ Bk

h

= Âk ◦ (Âk+1)−1 ◦ B̂k − Ak
h ◦ (Ak+1

h

)−1 ◦ Bk
h.

The right-hand side of the above equality is then broken into two contributions:

Ck − Ak+1,k
h ◦ Bk

h = Âk ◦ (Âk+1)−1 ◦ B̂k − Âk ◦ (Âk+1)−1 ◦ Bk
h

+ Âk ◦ (Âk+1)−1 ◦ Bk
h − Ak

h ◦ (Ak+1
h

)−1 ◦ Bk
h. (6.7)

Using (5.6) and (5.7), we have that∥∥Âk ◦ (Âk+1)−1 ◦ B̂k − Âk ◦ (Âk+1)−1 ◦ Bk
h

∥∥
L2(O)2

� C
∥∥B̂k − Bk

h

∥∥
L2(O)2

. (6.8)

Additionally, taking the difference between problems (6.6) and (3.14), we find that, for all t in [tk, tk+1],

∥∥B̂(t; tk+1, ·) − Bh(t; tk+1, ·)∥∥
L2(O)2

�∫ tk+1

t

∥∥∇(
Yk+1 ◦ (u−w)(·, s) ◦ Xk+1

)∥∥
L∞(O)4

∥∥B̂(s; tk+1, ·) − Bh(s; tk+1, ·)∥∥
L2(O)2

ds

+
∫ tk+1

t

∥∥(Yk+1 ◦ (u−w)(·, s) ◦ Xk+1 − (uk
h −wk

h)
) ◦ Bh(s; tk+1, ·)∥∥

L2(O)2
ds.

Combining the above inequality with Grönwall’s inequality and the fact that the Jacobian of Bh is bounded
(owing to assumption (6.2)), we obtain

∥∥B̂(t; tk+1, ·) − Bh(t; tk+1, ·)∥∥
L2(O)2

� C

∫ tk+1

tk

∥∥Yk+1 ◦ (u−w)(·, s) ◦ Xk+1 − (uk
h −wk

h)
∥∥

L2(O)2
ds

and, using Lemma 6.2, finally deduce that∥∥B̂(tk; tk+1, ·) − Bk
h

∥∥
L2(O)2

� C(δt)
(
‖Uk − uk

h‖L2(O)2 + |ζ(tk) − ζk
h| + |θ(tk) − θk

h| + δt + h1/2
)
. (6.9)
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We now turn our attention on the second term in the right-hand side of (6.7). Since the Jacobian of Bk
h is

bounded, we find that∥∥Âk ◦ (Âk+1)−1 ◦ Bk
h − Ak

h ◦ (Ak+1
h

)−1 ◦ Bk
h

∥∥
L2(O)2

� C
∥∥Âk ◦ (Âk+1)−1 − Ak

h ◦ (Ak+1
h

)−1∥∥
L2(O)2

.

Given the bound obtained in Lemma 5.7, we have

∥∥Âk ◦ (Âk+1)−1 ◦ Bk
h − Ak

h ◦ (Ak+1
h

)−1 ◦ Bk
h

∥∥
L2(O)2

�

C(δt)
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + |ξ(tk) − ξk

h| + |ω(tk) − ωk
h| + δt + h

)
.

Collecting (6.7), (6.8), (6.9) and this last inequality therefore yields estimate (6.4). �

Lemma 6.3. Assume that h is small enough. Then, for all k in {0, . . . , N − 1} and μ in [0, 1], the mapping

μ Ck + (1 − μ)Ak+1,k
h ◦ Bk

h : O → O

is a diffeomorphism with Jacobian satisfying (5.8) for some positive constant c.

Proof. It suffices to write

μ Ck + (1 − μ)Ak+1,k
h ◦ Bk

h = μ Âk ◦ (Âk+1)−1 ◦ B̂k
+ (1 − μ)Ak

h ◦ (Ak+1
h

)−1 ◦ Bk
h,

and follow the proof of Lemma 5.4 using assumptions (6.1) and (6.2). �

Lemma 6.4. For all k in {0, . . . , N} and μ in [0, 1], there exists a constant C such that

‖Ck − Id‖L∞(O)2 � C(δt)
(
1 + |θ(tk) − θk

h| + |ξ(tk) − ξk
h| + |ω(tk) − ωk

h|
)
. (6.10)

Proof. For all t in [tk, tk+1], define Ĉ(t; tk+1, ·) = Yk ◦C(t; tk+1, ·)◦Xk+1, hence Ĉ(tk; tk+1, ·) = Ck. It is deduced
from problem (2.8) that, for all x in O, the function Ĉ(·; tk+1,x) satisfies the following initial value problem⎧⎨⎩

∂Ĉ
∂t

(t; tk+1,x) = JYk

(
Xk(Ĉ(t; tk+1,x))

)
u
(
Xk(Ĉ(t; tk+1,x)), t

)
,

Ĉ(tk+1; tk+1,x) = Yk ◦ Xk+1(x).

The Taylor-Lagrange inequality combined with Lemma 4.1 and regularity assumption (3.18) then leads to

‖Ck − Id‖L∞(O)2 � ‖Yk ◦ Xk+1 − Id‖L∞(O)2 + C(δt),

from which the result is inferred using Lemma 4.3. �

7. Proof of the main result

In this section, it is assumed that every assumption under which Theorem 3.5 is formulated holds. In
particular, the quantities δt and h are both smaller than unity and we take advantage of this fact to simplify
the estimates.

We will now show that the exact strong solution of (1.1)–(1.8) satisfies at each instant tk a perturbed system of
semidiscretized equations which leads to a weak formulation similar to problem (3.16)–(3.17), and give estimates
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for the perturbations. Consider (u, ζ, θ, p) the solution to (1.1)–(1.8) and assume that it satisfies (3.18). For
any k in {0, . . . , N − 1}, we have that

u(·, tk+1) − u(C(tk; tk+1, ·), tk)
δt

− νΔu(·, tk+1) + ∇p(·, tk+1) = f(·, tk+1) + ek
dtu in F(ζ(tk+1), θ(tk+1)), (7.1)

M
ξ(tk+1) − ξ(tk)

δt
= −

∫
∂S(ζ(tk+1),θ(tk+1))

σ(u, p)n(x, tk+1) dΓ + fM (tk+1) + ek
ξ , (7.2)

I
ω(tk+1) − ω(tk)

δt
= −

∫
∂S(ζ(tk+1),θ(tk+1))

(x− ζk+1
h )⊥ · σ(u, p)n(x, tk+1) dΓ + fI(tk+1) + ek

ω, (7.3)

where

ek
dtu =

u(·, tk+1) − u(C(tk; tk+1, ·), tk)
δt

− d
dt

[u ◦ C] (·, tk+1),

and

ek
ξ =

ξ(tk+1) − ξ(tk)
δt

− ξ′(tk+1), ek
ω =

ω(tk+1) − ω(tk)
δt

− ω′(tk+1).

Using regularity assumptions (3.18) and the Taylor-Lagrange inequality, we can prove the following result.

Lemma 7.1. For all k in {0, . . . , N − 1}, there exists a constant C such that the quantities ek
dtu, ek

ξ and ek
ω

defined above satisfy the following inequalities

‖ek
dtu‖L2(F(ζ(tk+1),θ(tk+1)))2 � C(δt), |ek

ξ | � C(δt) and |ek
ω| � C(δt). (7.4)

The change of variable introduced in Section 4 allows to transform equations (7.1) to (7.3), set at instant tk+1

in a domain in which the rigid body has ζ(tk+1) as the position for its center of mass and θ(tk+1) as its
orientation, into a system of equations set in a domain where the solid is centered on ζk+1

h with orientation θk+1
h .

This step permits the subsequent comparison between the exact and approximate solutions of the problem. We
suppose that (4.1) holds so that we can consider the change of variables Xk+1. Retaining the notations from
Section 4, we obtain that the couple (Uk+1, Pk+1) satisfies

Uk+1 − (JYk+1 ◦ Xk+1)(JXk ◦ Ck)(Uk ◦ Ck)
δt

− ν [Lk+1Uk+1] + [Gk+1Pk+1] = Fk+1 + Ek
dtu in F(ζk+1

h , θk+1
h ),

(7.5)
where Fk+1(y) = JYk+1(Xk+1(y))f (Xk+1(y), tk+1), Ek

dtu(y) = JYk+1(Xk+1(y))ek
dtu

(Xk+1(y)), and, from
property (4.6),

div Uk+1 = 0 in F(ζk+1
h , θk+1

h ). (7.6)

The transformed equations for the rigid solid are obtained using property (4.4) and we have

M
Ξk+1 − Ξk

δt
= −

∫
∂S(ζk+1

h ,θk+1
h )

σ(Uk+1, Pk+1)n dΓ + Fk+1
M + Ek

ξ , (7.7)

I
Ωk+1 − Ωk

δt
= −

∫
∂S(ζk+1

h ,θk+1
h )

(x− ζk+1
h )⊥ · σ(Uk+1, Pk+1)n dΓ + Fk+1

I + Ek
ω, (7.8)

where Fk+1
M = Rθk+1

h −θ(tk+1)fM (tk+1), Fk+1
I = fk+1

I , Ek
ξ = Rθk

h
−θ(tk)e

k
ξ and Ek

ω = ek
ω.
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Observe that, while Vk+1
h is not a subspace of V(ζk+1

h , θk+1
h ) due to the nonconforming approximation of the

fluid domain, any function (vk+1
h , ξvk+1

h
, ωvk+1

h
) of Vk+1

h can be easily extended into a function of H1
0(O)2 × R

3

by setting

vk+1
h (x) = ξvk+1

h
+ ωvk+1

h
(x− ζk+1

h )⊥, ∀x ∈ Sk+1
h .

Similarly, any function qk+1
h of Qk+1

h can be extended into a function of L2
0(O) by setting qk+1

h = 0 in Sk+1
h . We

therefore introduce the couple of “global” discretization spaces, both defined over the triangulation T̃ k+1
h ,

V̂k+1
h =

{(
vh, ξvh

, ωvh

) ∈ C(O)2 ∩ H1
0(O)2 × R

3; vh|K ∈ [P1(K) ⊕ 〈λ1λ2λ3〉]2 , ∀K ∈ T̃ k+1
h ,

and vh(x) = ξvh
+ ωvh

(x− ζk+1
h )⊥, ∀x ∈ Sk+1

h

}
,

and Q̂k+1
h = {qh ∈ C(O) ∩ L2

0(O) ; qh|K ∈ P1(K), ∀K ∈ T̃ k+1
h , and qh = 0 in Sk+1

h }, and their respective
continuous counterparts

V̂(ζk+1
h , θk+1

h ) =
{

(v, ξv, ωv) ∈ C(O)2 ∩ H1
0(O)2 × R

3; v(x) = ξv + ωv(x− ζk+1
h )⊥, ∀x ∈ S(ζk+1

h , θk+1
h )

}
,

and Q̂(ζk+1
h , θk+1

h ) = {q ∈ C(O) ∩ L2
0(O) ; q = 0 in S(ζk+1

h , θk+1
h )}. Then, multiplying scalarly equation (7.5)

(respectively (7.6)) by a test function vk+1
h such that (vk+1

h , ξvk+1
h

, ωvk+1
h

) belongs to V̂k+1
h (respectively by qk+1

h

in Q̂k+1
h ), integrating over the domain F(ζk+1

h , θk+1
h ) and using equations (7.7) and (7.8), we obtain that the

quadruplet (Uk+1,Ξk+1, Ωk+1, Pk+1) is solution to the following variational problem

∫
F(ζk+1

h ,θk+1
h )

(
Uk+1 − Uk ◦ Ck

δt

)
· vk+1

h dx+ M
Ξk+1 − Ξk

δt
· ξvk+1

h
+ I

Ωk+1 − Ωk

δt
ωvk+1

h

+ 2ν

∫
F(ζk+1

h ,θk+1
h )

D(Uk+1) : D(vk+1
h ) dx−

∫
F(ζk+1

h ,θk+1
h )

Pk+1 div vk+1
h dx

=
∫
F(ζk+1

h ,θk+1
h )

Fk+1 · vk+1
h dx+ Fk+1

M · ξvk+1
h

+ Fk+1
I ωvk+1

h

+
∫
F(ζk+1

h ,θk+1
h )

(
Ek

dtu + Ek
ch

) · vk+1
h dx+ Ek

ξ · ξvk+1
h

+ Ek
ω ωvk+1

h
, ∀(vk+1

h , ξvk+1
h

, ωvk+1
h

) ∈ V̂k+1
h , (7.9)

−
∫
F(ζk+1

h ,θk+1
h )

qk+1
h div Uk+1 dx = 0, ∀qk+1

h ∈ Q̂k+1
h , (7.10)
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with

Ek
ch =

(
(JYk+1 ◦ Xk+1)(JXk ◦ Ck) − Id

)
(Uk ◦ Ck)

δt
+ ν(Lk+1 − Δ)Uk+1 + (Gk+1 − ∇)Pk+1. (7.11)

We infer from Lemmata 4.1, 4.3, 4.2 and 6.4 and assumptions (3.18) that

‖Ek
ch‖L2(F(ζk+1

h ,θk+1
h ))2 � C

(
|ζ(tk+1) − ζk+1

h | + |θ(tk+1) − θk+1
h |

)
+ C

(
1 + |ζ(tk+1) − ζk+1

h | + |θ(tk+1) − θk+1
h |

)
(
1 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h| + |ξ(tk) − ξk

h| + |ω(tk) − ωk
h|
)2

(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + |ξ(tk) − ξk

h| + |ω(tk) − ωk
h| + δt

)
. (7.12)

We will now proceed with the finite element analysis of problem (3.16)–(3.17). The particular construction of
the domain Fk+1

h makes possible the use of an important result relative to the existence of projectors from [29].
First, notice that

2ν

∫
F(ζk+1

h ,θk+1
h )

D(Uk+1) : D(vk+1
h ) dx−

∫
F(ζk+1

h ,θk+1
h )

Pk+1 div vk+1
h dx

= 2ν

∫
O

D(Uk+1) : D(vk+1
h ) dx−

∫
O

Pk+1 div vk+1
h dx,

−
∫
F(ζk+1

h ,θk+1
h )

qk+1
h div Uk+1 dx = −

∫
O

qk+1
h div Uk+1 dx.

Adapting the proof of Lemma 4.4 in [29] and using Corollary 5.9, we can show the following result.

Proposition 7.2. Suppose that assumption (2.17) holds. Then, for any k in {0, . . . , N}, there exists a unique
quadruplet (V k

h, ξV k
h
, ωV k

h
, Qk

h) ∈ V̂k
h × Q̂k

h satisfying

2ν

∫
F(ζk

h,θk
h)

D(Uk − V k
h) : D(vk

h) dx−
∫
F(ζk

h,θk
h)

(
Pk − Qk

h

)
div vk

h dx = 0,

−
∫
F(ζk

h,θk
h)

qk
h div(Uk − V k

h) dx = 0,

for all (vk
h, ξvk

h
, ωvk

h
, qk

h) in V̂k
h × Q̂k

h. Moreover, there exists a constant C such that

‖Uk − V k
h‖L2(O)2 � Ch

(
1 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)2

,

‖∇(Uk − V k
h)‖L2(O)4 � Ch1/2

(
1 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)3/2

.
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Using the above proposition and equations (7.9) and (7.10), we deduce that

∫
F(ζk+1

h ,θk+1
h )

(
Uk+1 − Uk ◦ Ck

δt

)
· vk+1

h dx+ M
Ξk+1 − Ξk

δt
· ξk

vh
+ I

Ωk+1 − Ωk

δt
ωk

vh

+ 2ν

∫
F(ζk+1

h ,θk+1
h )

D(V k+1
h ) : D(vk+1

h ) dx−
∫
F(ζk+1

h ,θk+1
h )

Qk+1
h div vk+1

h dx

=
∫
F(ζk+1

h ,θk+1
h )

Fk+1 · vk+1
h dx+ Fk+1

M · ξvk+1
h

+ Fk+1
I ωvk+1

h

+
∫
F(ζk+1

h ,θk+1
h )

(
Ek

dtu + Ek
ch

) · vk+1
h dx+ Ek

ξ · ξvk+1
h

+ Ek
ω ωvk+1

h
, ∀(vk+1

h , ξvk+1
h

, ωvk+1
h

) ∈ V̂k+1
h , (7.13)

−
∫
F(ζk+1

h ,θk+1
h )

qk+1
h divV k+1

h dx = 0, ∀qk+1
h ∈ Q̂k+1

h . (7.14)

Choosing vk+1
h = V k+1

h − uk+1
h as a test function in both (3.16) and (7.13) and subtracting the respective

results, we then obtain

1
δt
‖V k+1

h − uk+1
h ‖2

L2(Fk+1
h )2

+
M

δt
|ξV k+1

h
− ξk+1

h |2 +
I

δt
|ωV k+1

h
− ωk+1

h |2 + 2ν ‖D(V k+1
h − uk+1

h )‖2
L2(Fk+1

h )4

=
1
δt

∫
Fk+1

h

(
Uk ◦ Ck − uk

h ◦ Ak+1,k
h ◦ Bk

h

) · (V k+1
h − uk+1

h ) dx+
M

δt
(ξV k

h
− ξk

h) · (ξV k+1
h

− ξk+1
h )

+
I

δt
(ωV k

h
− ωk

h)(ωV k+1
h

− ωk+1
h ) +

8∑
i=1

Ei (7.15)

where the terms in the indexed sum are defined as follows

E1 = −
∫
F(ζk+1

h ,θk+1
h )\Fk+1

h

(
Uk+1 − Uk ◦ Ck

δt

)
· (V k+1

h − uk+1
h ) dx,

E2 = − 1
δt

∫
Fk+1

h

(Uk+1 − V k+1
h ) · (V k+1

h − uk+1
h ) dx,

E3 = −M

δt
(Ξk+1 − ξV k+1

h
) · (ξV k+1

h
− ξk+1

h ), E4 =
M

δt
(Ξk − ξV k

h
) · (ξV k+1

h
− ξk+1

h ),

E5 = − I

δt
(Ωk+1 − ωV k+1

h
) · (ωV k+1

h
− ωk+1

h ), E6 =
I

δt
(Ωk − ωV k

h
) · (ωV k+1

h
− ωk+1

h ),

E7 =
∫
F(ζk+1

h ,θk+1
h )

Fk+1 · (V k+1
h − uk+1

h ) dx−
∫
Fk+1

h

fk+1
h · (V k+1

h − uk+1
h ) dx,

+
(
Fk+1

M − fk+1
h,M

) · (ξV k+1
h

− ξk+1
h ) + (Fk+1

I − fk+1
h,I )(ωV k+1

h
− ωk+1

h ),

E8 =
∫
F(ζk+1

h ,θk+1
h )

(
Ek

dtu + Ek
ch

) · (V k+1
h − uk+1

h ) dx+ Ek
ξ · (ξV k+1

h
− ξk+1

h ) + Ek
ω (ωV k+1

h
− ωk+1

h ).

We estimate |E1| by first recalling that

Uk+1 − Uk ◦ Ck

δt
= Ek

dtu +(JYk+1 ◦Xk+1)
d
dt

[u ◦ C] (Xk+1, tk+1)+

(
(JYk+1 ◦ Xk+1)(JXk ◦ Ck) − Id

)
(Uk ◦ Ck)

δt
·
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Lemmata 4.1, 4.3 and 6.4, property (3.2), regularity hypotheses (3.18) and bound (7.12) are therefore used to
find that

|E1| � C
(
1 + |ζ(tk+1) − ζk+1

h | + |θ(tk+1) − θk+1
h |

)
×
(
1 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h| + |ξ(tk) − ξk

h| + |ω(tk) − ωk
h|
)2

×
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + |ξ(tk) − ξk

h| + |ω(tk) − ωk
h| + δt + h1/2

)
‖V k+1

h − uk+1
h ‖L2(O)2. (7.16)

The terms |Ei|, i = 2, . . . , 6, can be bounded using Proposition 7.2, which gives

6∑
i=2

|Ei| � C
h

δt

(
1 + |ζ(tk+1) − ζk+1

h | + |θ(tk+1) − θk+1
h |

)2

‖V k+1
h − uk+1

h ‖L2(O)2 . (7.17)

In order to deal with |E7|, let us first remark that, since S(ζk+1
h , θk+1

h ) ⊂ Sk+1
h by construction, we have,

from definitions (2.4), the respective definitions of Fk+1, Fk+1
M and Fk+1

I , and property (4.4) of the change of
variables Xk+1,

∫
F(ζk+1

h ,θk+1
h )

Fk+1 · vk+1
h dx−

∫
Fk+1

h

fk+1
h · vk+1

h dx+
(
Fk+1

M − fk+1
h,M

) · ξvk+1
h

+
(
Fk+1

I − fk+1
h,I

)
ωvk+1

h

=
∫
F(ζk+1

h ,θk+1
h )

Fk+1 · vk+1
h dx+

∫
S(ζk+1

h ,θk+1
h )

ρs Fk+1 · vk+1
h dx

−
∫
Fk+1

h

fk+1
h · vk+1

h dx−
∫
Sk+1

h

ρs f
k+1
h · vk+1

h dx.

The field fk+1
h being the projection of f (·, tk+1) on

(P̃k+1
h

)2, it satisfies, owing to Corollary 5.7,

‖f(·, tk+1) − fk+1
h ‖L2(O)2 � Ch

(
1 + |ζ(tk+1) − ζk+1

h | + |θ(tk+1) − θk+1
h |

)
.

Note that the positive constant C in the above inequality can indeed be chosen in such a way that it does not
depend on k, as it is assumed that (2.17) holds for some constant c0 small enough. It then follows from the
above estimate, Lemma 4.1, property (3.2) and assumption (3.19) that

|E7| � C
(
|ζ(tk+1) − ζk+1

h | + |θ(tk+1) − θk+1
h | + h1/2

)
‖V k+1

h − uk+1
h ‖L2(O)2. (7.18)

Finally, we infer from Lemmata 4.1 and 7.1 and estimate (7.12) that

|E8| � C
[(

1 + |ζ(tk+1) − ζk+1
h | + |θ(tk+1) − θk+1

h |
)

×
(
1 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h| + |ξ(tk) − ξk

h| + |ω(tk) − ωk
h|
)2

×
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| + |ξ(tk) − ξk

h| + |ω(tk) − ωk
h| + δt

)
+
(
|ζ(tk+1) − ζk+1

h | + |θ(tk+1) − θk+1
h |

)]
‖V k+1

h − uk+1
h ‖L2(O)2. (7.19)
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Next, the first term in the right-hand side of (7.15) can be decomposed as follows

∫
Fk+1

h

(
Uk ◦ Ck − uk

h ◦ Ak+1,k
h ◦ Bk

h

) · (V k+1
h − uk+1

h ) dx =
∫
Fk+1

h

(
(Uk − uk

h) ◦ Ck
) · (V k+1

h − uk+1
h ) dx

−
∫
Fk+1

h

(
(Uk − uk

h) ◦ Ck − (Uk − uk
h) ◦ Ak+1,k

h ◦ Bk
h

) · (V k+1
h − uk+1

h ) dx

+
∫
Fk+1

h

(
Uk ◦ Ck − Uk ◦ Ak+1,k

h ◦ Bk
h

) · (V k+1
h − uk+1

h ) dx. (7.20)

Denoting respectively by I1, I2 and I3 the three integrals in the right-hand side above, we first check that

|I1| � 1
2

(
‖V k+1

h − uk+1
h ‖2

L2(Fk+1
h )2

+ ‖V k
h − uk

h‖2
L2(Fk

h)2

)
+ Ch

(
1 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)2

‖V k+1
h − uk+1

h ‖L2(O)2 . (7.21)

Then, arguing as in [1], we have

|I2| �
∥∥(Uk − uk

h) ◦ Ck − (Uk − uk
h) ◦ Ak+1,k

h ◦ Bk
h

∥∥
L1(Fk+1

h )2
‖V k+1

h − uk+1
h ‖L∞(Fk+1

h )2 ,

which yields, using an inverse inequality (see for instance [3]), Lemmata 5.3 and 6.3, and Corollary 5.9,

|I2| � C
(
|log h| + |ζ(tk+1) − ζk+1

h | + |θ(tk+1) − θk+1
h |

)1/2

‖∇(Uk − uk
h)‖L2(O)4

× ‖Ck − Ak+1,k
h ◦ Bk

h‖L2(O)2‖V k+1
h − uk+1

h ‖H1(Fk+1
h )2 .

Then, by the Poincaré and Korn inequalities, Theorem 6.1 and Proposition 7.2, it follows that

|I2| � C(δt)
(
|log h| + |ζ(tk+1) − ζk+1

h | + |θ(tk+1) − θk+1
h |

)1/2

×
(
‖D(V k

h − uk
h)‖L2(Fk

h)4 + h1/2
(
1 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)3/2

)
×
(
‖Uk − uk

h‖L2(O)2 + |ζ(tk) − ζk
h| + |θ(tk) − θk

h| + δt + h1/2
)
‖D(V k+1

h − uk+1
h )‖L2(Fk+1

h )4 . (7.22)

The last term can be treated as follows

|I3| � C
(
1 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)
‖Ck − Ak+1,k

h ◦ Bk
h‖L2(Fk+1

h )2‖V k+1
h − uk+1

h ‖L2(Fk+1
h )2 ,

hence

|I3| � C(δt)
(
1 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)
‖V k+1

h − uk+1
h ‖L2(Fk+1

h )2

×
(
‖Uk − uk

h‖L2(O)2 + |ζ(tk) − ζk
h| + |θ(tk) − θk

h| + δt + h1/2
)

. (7.23)
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Substituting bounds (7.16) to (7.23) into identity (7.15) and using the triangle inequality with the first estimate
in Proposition 7.2, we obtain

‖V k+1
h − uk+1

h ‖2
L2(Fk+1

h )2
+ M |ξV k+1

h
− ξk+1

h |2 + I|ωV k+1
h

− ωk+1
h |2 + 4ν(δt)‖D(V k+1

h − uk+1
h )‖2

L2(Fk+1
h )4

� ‖V k
h − uk

h‖2
L2(Fk

h)2 + M |ξV k
h
− ξk

h|2 + I|ωV k
h
− ωk

h|2 + C
(
1 + |ζ(tk+1) − ζk+1

h | + |θ(tk+1) − θk+1
h |

)3

×
(
(δt)

(
|ζ(tk+1) − ζk+1

h | + |θ(tk+1) − θk+1
h | + ‖V k

h − uk
h‖L2(O)2 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)

+ (δt)2 + h
)

×
(
1 + ‖V k

h − uk
h‖L2(O)2 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)2

‖V k+1
h − uk+1

h ‖L2(O)2

+ C(δt)
(
1 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)4 (

| log h| + |ζ(tk+1) − ζk+1
h | + |θ(tk+1) − θk+1

h |
)1/2

×
(
‖V k

h − uk
h‖L2(O)2 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h| + δt + h1/2

)
×
(
‖D(V k

h − uk
h)‖L2(Fk

h)4 + h1/2
)
‖D(V k+1

h − uk+1
h )‖L2(Fk+1

h )4 . (7.24)

Denoting, for all k in {0, . . . , N},

N k = ‖V k
h − uk

h‖2
L2(Fk

h)2 + M |ξV k
h
− ξk

h|2 + I|ωV k
h
− ωk

h|2,

we infer on the one hand, using the Taylor-Lagrange inequality and regularity assumptions (3.18), that

|ζ(tk+1) − ζk+1
h | + |θ(tk+1) − θk+1

h | � |ζ(tk) − ζk
h| + |θ(tk) − θk

h| + C(δt)(
√
N k + (δt)), (7.25)

|ζ(tk+1) − ζk+1
h |2 + |θ(tk+1) − θk+1

h |2 � (1 + C(δt))
(|ζ(tk) − ζk

h|2 + |θ(tk) − θk
h|2

)
+ C(δt)(N k + (δt)2), (7.26)

and on the other hand, from (7.24), (7.25), the use of condition (3.20), Young’s inequality, hypotheses (3.18)
and some estimates, that

N k+1 + 4ν(δt)‖D(V k+1
h − uk+1

h )‖2
L2(Fk+1

h )4
� N k + C(δt)

(
1 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h| +

√
N k

)6

×
(
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| +

√
N k + δt

)√
N k+1 + C(δt)

(
1 + |ζ(tk) − ζk

h| + |θ(tk) − θk
h|
)4

×
(
| log δt| + |ζ(tk) − ζk

h| + |θ(tk) − θk
h| +

√
N k

)1/2 (
|ζ(tk) − ζk

h| + |θ(tk) − θk
h| +

√
N k + δt

)
×
(
‖D(V k

h − uk
h)‖2

L2(Fk
h)4 + ‖D(V k+1

h − uk+1
h )‖2

L2(Fk+1
h

)4
+ (δt)2

)
. (7.27)

We are finally in a position to demonstrate the main result of the paper.

Proof of Theorem 3.5. We proceed by induction on k to show that bounds (6.1) and (6.2) and the following
induction relation

N k + 2ν(δt)‖D(V k
h − uk

h)‖2
L2(Fk

h)4 + |ζ(tk) − ζk
h|2 + |θ(tk) − θk

h|2 � Ck(δt)2, (7.28)

hold for all k in {0, . . . , N}, with

Ck = (1 + 642C(δt))k C0 + (4ν + 130)
(1 + 642C(δt))k − 1

642C
, (7.29)
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where C is the maximum of the fixed generic constants appearing in (7.26) and (7.27). Notice there exists a
positive constant C∞, independent of δt and h, such that, for any k in {0, . . . , N},

Ck � C∞. (7.30)

The first step is to show that these statements are true when k = 0. From the respective definitions of u0
h,

ζ0
h, θ0

h, ξ0
h and ω0

h in Subsection 3.1.1 and assumption (2.1) on the regularity of the initial datum u(0), we have

N 0 + 2ν(δt)‖D(V 0
h − u0

h)‖2
L2(F0

h)4 � C0(δt)2,

for some positive constant C0. It remains only to prove that (6.1) and (6.2) are satisfied, that is

(δt) ‖u−w‖L∞(0,t1;W1,∞(O))2 � ε and (δt)
∥∥u0

h −w0
h

∥∥
W1,∞(O)2

� ε,

where, for all t in [0, t1] and x in F(ζ(t1), θ(t1)), the functions u and w are defined by taking s equal to t1

in (2.21) and u0
h and w0

h are given by (3.15). The first bound being only a condition on the time step, we check
the second one by using an inverse inequality

(δt)‖u0
h −w0

h‖W1,∞(O)2 � (δt) |log h|1/2 ‖u0
h −w0

h‖H1(O)2 .

Then, from assumption (2.17) and the properties of the mapping A0
h, we get that

(δt)‖u0
h −w0

h‖W1,∞(O)2 � C(δt) |log h|1/2
.

The above relation and condition (3.20) thus imply the result for k = 0.
Now, assuming that the relations (6.1), (6.2) and (7.28) hold for some k � 0, we will show they are also true

for k + 1. For δt small enough, relation (6.1) is simply a consequence of Lemma 4.1 and results (5.2) to (5.4).
Next, assuming that δt is such that√

3C∞(δt) � 1 and 16C(δt) (| log δt| + 1)1/2 (√3C∞ + 1
)

< 2ν,

we infer from (7.27) that

N k+1 + 2ν(δt)‖D(V k+1
h − uk+1

h )‖2
L2(Fk+1

h )3
� N k + 2ν(δt)‖D(V k

h − uk
h)‖2

L2(Fk
h)3 + 128C(δt)N k+1

+ 192C(δt)
(
N k + |ζ(tk) − ζk

h|2 + |θ(tk) − θk
h|2

)
+ (64C + 2ν)(δt)3.

Using (7.26) and the latter inequality, we find that(
N k+1 + 2ν(δt)‖D(V k+1

h − uk+1
h )‖2

L2(Fk+1
h )4

+ |ζ(tk+1) − ζk+1
h |2 + |θ(tk+1) − θk+1

h |2
)

�

(1 + 642Cδt)
(
N k + 2ν(δt)‖D(V k

h − uk
h)‖2

L2(Fk
h)4 + |ζ(tk) − ζk

h|2 + |θ(tk) − θk
h|2

)
+ (130 + 4ν)(δt)3,

which clearly implies (7.28) and (7.29). It remains to prove that (6.2) holds for k + 1. We have

(δt)‖uk+1
h −wk+1

h ‖W1,∞(O)2 � (δt)
(
‖uk+1

h − V k+1
h ‖W1,∞(O)2 + ‖wk+1

h −W k+1
h ‖W1,∞(O)2

+ ‖V k+1
h ‖W1,∞(O)2 + ‖W k+1

h ‖W1,∞(O)2

)
,
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which yields, using an inverse inequality and some estimates,

(δt)‖uk+1
h −wk+1

h ‖W1,∞(O)2 � C(δt)
(
|log δt|1/2 + δt

)
.

Taking the time step small enough thus gives the desired result.
The two estimates stated in the theorem finally derive from (7.28). Indeed, combining this bound with (7.30)

and the results of Lemma 4.1 and Proposition 7.2, we find that

‖u(·, tk) − uk
h‖L2(O2) � C(δt),

and reach the conclusion by using the error bounds obtained above, assumptions (3.18) and Lemma 5.1. �
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