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Abstract: Health detection relies on the heartbeat mechanism in Eureka. The heartbeat mechanism analyzes the status 

of service by periodically detecting the running status of the service node. But it doesn't care whether the 

service runs successfully, therefore reducing the success rate of service calls. In order to solve the problem, 

this paper proposes a new method for load forecasting based on time series. The value of load forecasting is 

used to measure the health of the service node quantitatively, and the number of available instances is 

effectively reduced during load balancing and the load balancing efficiency was improved. 

1 INTRODUCTION 

With the rapid development of computer network, the 

drawbacks of the traditional application architecture 

become more and more obvious, which seriously 

restrict the rapid innovation and agile delivery of the 
business (Zheng Mingzhao et al. 2017). The 

microservice architecture was proposed to solve the 

problems in traditional application architectures 

(Lewis et al. 2014). 
Spring Cloud is an open source microservice 

development tool based on Spring Boot. Spring 

Cloud Eureka module has been used for service 

governance, and providing services such as health 
detection. At present, the health detection in Spring 

Cloud Eureka relies on the heartbeat mechanism 

(Smaoui et al. 2017). The mechanism gets the running 

status of service by periodically detecting the running 
status of the service node, regardless of whether the 

service can run successfully. This approach will have 

resulted in some failed service calls, which will 

reduce the success rate of service calls. In order to 
solve the above problem, a health detection method 

based on load forecasting for quantitative analysis of 

service health has been proposed. In this method, 

while monitoring the performance indicators, the 
health of the service node is measured quantitatively 

by the load forecasting value. 

Load balancing technology is the focus of 

research in distributed architecture. The research 
direction mainly focuses on the load balancing 

algorithm, which is divided into static load balancing 

algorithm and dynamic load balancing algorithm. 

Static load balancing algorithm does not consider the 
actual load status of the server generally. Although 

the implementation of static load balancing algorithm 

is simple, the effect is not good mostly. Dynamic load 

balancing algorithm requires that service load 
information can be sent in smaller time intervals, even 

in real time, which results in significant consumption 

of server resources. Therefore, some people proposed 

some load forecasting algorithms. Li Qinghua and 
Guo Zhixin (2002) proposed a BP forecasting 

algorithm based on artificial neural network. Xu 

Jianfeng f et al. (2000) proposed a forecasting 

algorithm based on filtering theory. Meng Limin and 
Xu Yang (2016) proposed a load forecasting 

algorithm based on dynamic index. Wolski et al. 

(2000) proposed a forecasting algorithm based on 

CPU utilization in UNIX system. Yuan Gang (2015) 
proposed a load forecasting algorithm based on 

service classification. Yang Wei et al. (2006) 

proposed a load forecasting algorithm based on time 

series and so on. 
The algorithms proposed in [4-6] are relatively 

complicated. The algorithms did not consider the 

resource consumption of the load forecasting, which 

will have affected the execution efficiency of the 
service node. The algorithms proposed in [7-8] 

calculated the current load value of the service 

quantitatively, and calculated the load forecasting 

value comprehensively by monitoring the number of 
service requests, without considering the relationship 

between the load values at different time (Dinda 
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1998). Therefore the accuracy of the prediction could 

not be guaranteed. The algorithm proposed by Yang 
Wei et al. (2006) was based on the time series of the 

load, but it did not provide a detailed measure of the 

load value. Based on the above considerations, this 

paper proposes a load forecasting method based on 
the time series of the load, and considers the 

dependence of different service nodes on host 

resources, and gives a quantitative measure of load 

value. 
In summary, this paper proposes an improvement 

measure for Eureka's health detection. It provides 

more data support for system load balancing by 

distinguishing between normal service and fault 
service by running monitoring and load forecasting of 

service node. 

2 LOAD FORECASTING MODEL 

2.1 The Calculation of Load 

The load is a reflection of the current performance of 

the server. In order to make full use of the resources 

of all service nodes and improve resource utilization 

and system execution efficiency, the performance 
status of the server must be accurately measured. 

Indicators such as CPU utilization, memory 

utilization, disk I/O utilization, network bandwidth 

utilization, and the count of server processes usually 
affect the load on the server. Yang Mingji et al. (2016) 

proposed a load calculation method based on CPU 

utilization and memory utilization. The calculation of 

the load in the method was not sufficient for the 
utilization of performance indicators. This paper 

proposes a load calculation method that 

comprehensively considers CPU utilization, memory 

utilization, disk I/O utilization, and network 
bandwidth utilization. 

The load on the server is highly correlated with its 

own hardware utilization. These factors have 

different effects on server performance. The 
following two aspects should be noted when selecting 

hardware load indicators: 

(1) The indicator should be collected 

conveniently, and the collection process is basically 
non-intrusive to the load balancing process. 

(2) Appropriate indicator is selected under 

conditions of high accuracy and low computational 

overhead. 
The load of a service node usually includes two 

aspects: hardware resource utilization and the number 

of the service consumer. Hardware resources 

determine the ability of a service node to process 

service requests. The more threads in the service node, 

the more resources are consumed. Therefore, the 
change in hardware resource utilization can 

intuitively reflect the actual load of the service node. 

In summary, this paper selects CPU utilization, 

memory utilization, I/O occupancy rate and network 
bandwidth utilization to calculate the comprehensive 

load of the server. These indicators can reflect the 

actual load of the service load. 

The calculation formula is shown in Equation 1.  

100*)4321 NkIkMkCkX （  (1) 

Where X is the integrated load, C is the CPU 

utilization, M is the memory utilization, I is the I/O 
utilization, N is the network bandwidth utilization, ki 

is a coefficient, and the magnitude of ki represents the 

degree of importance of the four indicators, and their 

values satisfy the Equation 2. 

1 2 3 4+ + + =1k k k k  (2) 

Different service nodes provide different services, 

so the service nodes have different degrees of 
dependence on various indicators. We assign 

different values to different service nodes 

dynamically. 

2.2 Time Series Model 

It can be seen from the characteristics of the load that 

the load is a time series, and the load value shows a 

strong correlation with time, so this paper proposes a 
load forecasting algorithm based on the time series 

model. 

The theory of time series summarizes a number of 

time series models describing stochastic processes. 
Common models are AutoRegressive model (AR 

model), Moving Average model (MA model), and 

AutoRegressive Moving Average models (ARMA 

model).  
Generally, which model should be selected for 

fitting needs to be distinguished according to the 

tailing or truncation characteristics of the 

autocorrelation coefficient and partial autocorrelation 
coefficient of the time series. 

If the autocorrelation coefficient is tailing and the 

partial autocorrelation coefficient is truncation, the 

AR model is suitable. If the autocorrelation 
coefficient is truncation and the partial 

autocorrelation coefficient is tailing, the MA model is 

suitable. If the autocorrelation coefficient and the 

partial autocorrelation coefficient are tailing, the 
ARMA model is suitable. 

Through the collection of multiple sets of data, 

this paper finds that the time series of load obtained 

through calculations all fluctuate randomly within a 
certain range, and the series presents a certain degree 
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of stability. And the autocorrelation coefficient is 

tailing, the partial autocorrelation coefficient is 
truncation in most series. Therefore, the AR model is 

used in this paper. 

The AR model describes a simple autoregressive 

stochastic process whose mathematical 
representation is shown in Equation 3. 

=a +a +a + +at 0 1 t-1 2 t-2 p t p tx x x x    (3) 

Where ai is a parameter, { }t is white noise. The 

time series value tx  can be expressed by the sequence 

value of the previous p moments and the current noise. 

The p order autoregressive model, abbreviated as 
AR(p) model, is an AR model that predicts the next 

sequence value based on the sequence values of the 

previous p moments. a = (a ,a , ,a )T

0 1 p  is the 

autoregressive coefficient in the AR(p) model, and 

{ }t  obeys the distribution 
2(0, )N  . 

For a time series { }tx , the modelling process of 

the AR model is shown in Figure 1. 

Figure 1: The modelling process of AR model. 

2.3 Test for Stationary 

If the mean of a time series is constant and the 
variance does not exhibit a time-varying 

characteristic, then it can be called a stationary 

sequence. The autocorrelation coefficient and partial 
autocorrelation coefficient of the stationary sequence 

exhibit tailing or truncation characteristics. Therefore, 

the stationarity test can be performed by the 

autocorrelation coefficient and the partial 
autocorrelation coefficient of the sequence. The 

mathematical representation of the P-order 

autocorrelation coefficient is shown in Equation 4. 
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Where u has the meaning shown in Equation 5, 

and 2  has the meaning shown in Equation 6. 

If the autocorrelation coefficient and partial 

autocorrelation coefficient of sequence exhibit tailing 
or truncation characteristics as the order increases, 

then the sequence is a stationary sequence. 

2.4 Parameter Estimation 

The parameter estimation in the AR model is usually 

the least square estimation. 

For the load sequence { }tx , if its mean is not zero, 

the sequence should be converted to a zero-sequence 

{ | }t t tw w x u  . 

For a time series { }tw , when 1i p  , the 

estimation of i is represented by ˆ
i  which has the 

meaning shown in Equation 7. 

ˆ ˆ ˆ ˆ-(a +a + +a )i i 1 i-1 2 i-2 p i pw w w w    (7) 

Where ˆ
i  is residual. The goal of parameter 

estimation is to minimize the sum of squared 
residuals. We define a in Equation 8, define W in 

Equation 9, and define Y in Equation 10. 
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Then the sum of squared residuals can be 
expressed as Equation 11. 

(a) ( a) ( a)TF Y W Y W    (11) 

In the Equation 11, we obtain the derivation of 
parameter a and then let the derivation equals 0. The 

parameter a in Equation 12 is obtained. The parameter 

estimation of the model was obtained. 
1a ( )T TW W W Y  (12) 

2.5 Tests for Forecasting Model 

After the model is fitted, it is necessary to test the 
validity of the model to determine whether the fitting 

model is sufficient to extract the information in the 

sequence. A good fit model should be able to extract 

almost all of the sample-related information in the 
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sequence values. This paper proposes a method to test 

the validity of the fitted model. 

If ˆ{ }i is white noise, the autocorrelation 

coefficients of all its orders are theoretically zero. 

Considering the deviation of the data, most 

autocorrelation coefficients should be in the vicinity 
of zero. This means that the model takes into account 

relevant information for almost all samples. 

Therefore, the validity of the model can be confirmed 

by a white noise test of the ˆ{ }i . 

3 IMPLEMENT 

Health detection is part of service governance in 

Eureka. Service governance in Eureka includes three 
core elements: service registry, service provider, and 

service consumer. The entire calling process of the 

service is shown in Figure 2. 
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Figure 2: The calling process of service in Eureka. 

In Eureka, the registration center does not care 

about the status of the service, but only records the 

status of the service. In the heartbeat mechanism, as 
long as the program is running, it is judged that the 

service is healthy and available by default, which is 

obviously not accurate enough. This paper proposes 

an improved scheme based on the load forecasting 
model. The entire calling process of the service is 

shown in Figure 3. 
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Figure 3: The improved calling process of service in the 
Eureka. 

The load forecasting model works in the 

monitoring component, and the workflow is as the 
following: 

 The service provider registers the service 

instance in the service registry; 

 The service provider starts the spring-boot-
actuator module and uses the Sigar monitoring 

component to periodically obtain service 

performance indicators; 

 Calculate the load value by the load value 
calculation method, and save it in the Map; 

 Input the load sequence in the Map to the load 

forecasting model, a load forecasting value of 

the service instance will be outputted; 
 The service registry accesses the /health 

endpoint of the spring-boot-actuator module 

periodically; 

 The /health endpoint obtains the load 
forecasting value of the service instance, and 

returns the service running status according to 

the monitoring result of the service, and 

updates the load value of the service instance in 
the registration center; 

 The service consumer obtains a list of service 

instances, and completes instance selection and 

invocation according to the load forecasting 
value combined with the load balancing policy. 

4 EXPERIMENTAL RESULTS 

In order to verify the validity and feasibility of the 
forecasting model, we carry out the following 

experiments. 

The parameter p of the time series model is larger, 

the prediction cost is higher. In order to reduce the 
complexity of the experimental evaluation, we choose 

5, 10, 15 as the candidate parameters. The time 

interval of the sequence value will have a certain 

impact on the forecasting model. We choose 1s, 5s, 
10s, 20s as the candidate parameters, and use the two 

indicators in Equation 13 and Equation 14 to predict 

and evaluate different parameters. 
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The meanings of terr  and err  are shown in 

Equation 15 and Equation 16. 

ˆ=t t terr x x  (15) 
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The average ratio λ and the variance δ2 of the 

prediction errors are used as indicators for evaluating 
the forecasting model. The smaller the variance is, the 

more stable and accurate the forecasting is. The 

experimental results are shown in Figure 4 and Figure 

5. 

 

Figure 4: Comparison of the average ratio of prediction 
errors. 

 

Figure 5: Comparison of the variance of prediction 
errors. 

According to the above experimental results, as 

the time interval increases, the average ratio and the 

variance of the prediction error in model of each order 
show an upward trend, which means the shorter the 

time interval for monitoring the load value, the 

smaller the error of the load forecasting value and the 

smaller the error range. With the increase of the order, 
the average ratio and the variance of the prediction 

errors in model of each time interval show a 

downward trend, which means the more load values 

referenced in the model, the smaller the error of the 
load forecasting value and the smaller the error range. 

The 5th order model has fewer prediction 

reference values, so the accuracy of the predicted 

value changes relatively with the change of the time 
interval. The evaluation index difference between the 

10th order model and the 15th order model is small. 

In order to reduce the complexity of the model, the 

10th order model is selected. For the 10th order model, 
when the time interval is less than 10 seconds, the 

average of the prediction error is less than 8%, the 

variance of the prediction error is less than 4. When 

the time interval is 20 seconds, the average of the 
prediction error is close to 15%. Since time is 

required between transmitting the load forecasting 

value and using the load forecasting value, the time 

interval of 10 seconds is selected for modeling. 

5 CONCLUSIONS 

The current service health detection heartbeat 

mechanism in Eureka can only detect whether the 
service is online. And through the Spring-boot-

actuator module, the operating status can be 

monitored before and after service registration. Based 

on this, this paper adds the load information 
monitoring component to monitor the load 

information of the service node by means of the 

Spring-boot-actuator module. Then the load 

forecasting model is used to predict the load value 
after a period of time and the load value will be fed 

back to the registry. This method adds very little 

overhead to the service provider, but the service 

consumer can accurately obtain the load status of 
each instance providing the same service from the 

experimental results. Combined with the load 

balancing algorithm, the consumer can call the 

appropriate service instance more reasonably. Finally, 
how the load balancing component in Ribbon client 

combines the existed load balancing strategy with 

load forecasting values in the service consumer will 

be the direction of future research. 
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