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ABSTRACT 

Battery energy systems are currently one of the most 

common power sources found in mobile electromechanical 

devices. In all these equipment, assuring the autonomy of 

the system requires to determine the battery state-of-charge 

(SOC) and predicting the end-of-discharge time with a high 

degree of accuracy. In this regard, this paper presents a 

comparative analysis of two well-known Bayesian 

estimation algorithms (Particle filter and Unscented Kalman 

filter) when used in combination with Outer Feedback 

Correction Loops (OFCLs) to estimate the SOC and 

prognosticate the discharge time of lithium-ion batteries. 

Results show that, on the one hand, a PF-based estimation 

and prognosis scheme is the method of choice if the model 

for the dynamic system is inexact to some extent; providing 

reasonable results regardless if used with or without OFCLs. 

On the other hand, if a reliable model for the dynamic 

system is available, a combination of an Unscented Kalman 

Filter (UKF) with OFCLs outperforms a scheme that 

combines PF and OFCLs. 

 

1. INTRODUCTION 

The main focus of this research is to establish a comparative 

analysis of two well-known Bayesian estimation algorithms, 

particle-filter (PF) (Arulampalam, Maskell, Gordon 

&Clapp) and UKF (Partovibakhsh & Guangiun, 2015), 

when used in combination with OFCLs (Orchard, 

Kacprzynski, Goebel, Saha & Vachtsevanos, 2008), 

(Orchard, 2007) to estimate the SOC and prognosticate the 

end-of-discharge (EoD) time of lithium-ion batteries.  

The proposed case study, which is related to the problem of 

autonomy assessment in electromechanical devices, is 

selected due to its importance in decision-making processes 

that are related to mission reformulation based on condition 

monitoring, where the availability of real-time information 

is critical for optimal performance. Even though many 

manufacturers provide detailed information for batteries 

operating at constant temperatures and/or discharge 

currents, in practice this information is insufficient to avoid 

considerable errors on the autonomy estimates of the 

devices under time-varying power demands.  

Numerous research efforts (Pola, Navarrete, Orchard, Rabie, 

Cerda, Olivares, Silva, Espinoza & Perez, 2015) have 

identified advantages associated with the implementation of 

Bayesian estimation techniques such as PF or UKF to 

characterize process and measurement uncertainty in the 

aforementioned problem. However, the incorporation of 

OFCLs has not been sufficiently discussed. In this regard, 

this article intends to present scientific evidence that could 

help future researchers to assess the real value behind the 

implementation of these schemes to characterize the 

uncertainty associated with the state estimates; which in turn 

define all initial conditions for online prognosis modules.   

The structure of the article is as follows. Section 2 focuses 

on describing the theoretical framework that is required to 

understand the research performed. Section 3 presents the 

manner in which PF, UKF, and OFCLs algorithms were 

implemented to solve the SOC estimation problem. 

Section 4 presents the obtained results in terms of state 

estimation and EoD prognosis stages. Section 5 focuses on 

providing a performance comparison in terms of adequate 
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measures, and finally Section 6 summarizes the main 

conclusions of this research effort.   

2. THEORETICAL FRAMEWORK 

2.1. Outer Feedback Correction Loops 

OFCLs play an important role within the structure of online 

prognosis modules, since they are capable of assuring 

increased precision and accuracy of remaining useful life 

(RUL) estimates model (Orchard, 2008). Typically, they 

measure the prediction capability offered by the process 

model (Orchard, 2008), (Orchard, 2007) through the 

analysis of short term prediction errors, improving the 

performance of the prognosis algorithm by either modifying 

the structure of the model that is used during the filtering 

stage (Orchard, Tobar, Vachtsevanos, 2009) or updating the 

hyper-parameters that define the process or observation 

noises (Orchard, et al., 2008), (Orchard, 2007), (Cruse, 

2004). 

One example of OFCLs is found in (Orchard, et al. 2009), 

where the authors propose a method that modifies the 

process noise variance depending if the prediction error over 

a horizon s, starting from a time t,   ( ), is bigger or smaller 

than a determined threshold    . Equation (1) shows the rule 

of decision, where ,   - are such that,       and   
 . As a result, the process variance related to the artificial 

evolution equation (Orchard, 2009) will increase if the 

prediction quality over the short-term horizon is poor, or it 

will decrease otherwise.  

   ( ( ))  {
     ( ( ))  |  ( )|     

     ( ( ))  |  ( )|     
 (1) 

2.2. Prognosis Performance Indices 

The evaluation of an algorithm capacity to predict the 

time-of-failure (ToF), which in this case would be 

equivalent to the EoD time, can be done considering 

different characteristics such as accuracy, precision or 

steadiness of results in time. The accuracy is related to the 

estimation bias and can be defined as a measure of 

proximity between the average estimation result and the 

ground truth value, while the precision measures the degree 

of concordance between different realizations obtained 

under similar circumstances. 

 Accuracy Index 2.2.1.

Considers the relative width of the 95% confidence interval 

for the EoD estimate at time   (   ), when compared to its 

conditional expectation (  *   +)  [30]. Equation (2) 

quantifies the concept of “the more the amount of data, the 

more accurate the estimation results”. 

  ( )   
 (

   (   )    (   )
  *   +  

)
 

(2) 

    ( )       ,    *   +)     

Accurate prognosis results are associated to values of 

  ( )  . 

 Accuracy-precision Index 2.2.2.

Represents the amount of bias on the estimation of the EoD 

time, relative to the width of the corresponding 95% 

confidence interval, and penalizes the fact that the estimated 

expected value is greater than the real failure time (ground 

truth) (Orchard, et al. 2009). 

  ( )   
 (

           *   +   *   +
   (   )    (   )

)
 

    ( )    ,    *   +)     

 

(3) 

Good results of this index are associated to values such that 

      ( )   , where   is a small positive constant. 

 On-line Steadiness Index 2.2.3.

Corresponds to the capacity of the algorithm to deliver 

prognosis results that are consistent in time. The evolution 

in time of the EoD conditional expected value is considered, 

and quantifies the concept “the more amount of data, the 

more stable the prognosis result should be” (Orchard, et al. 

2009). 

  ( )  √   (  *   +) 
    ( )      

 

(4) 

Steady results are associated with small values of this index. 

2.3. Characterization of the State-of-Charge 

One of the main difficulties when estimating the SOC is that 

this parameter cannot be measured directly, and its value 

has to be obtained indirectly by measuring other parameters 

(Pattipati, Sankavaram, Pattipati, 2011), (Qingsheng, 

Chenghui, Naxin, Xiaoping, 2010), (Cadar, Petreus, Orian, 

2009), (Di, Yan, Quin-Wen, 2011). Also, when estimating 

the SOC parameters such as temperature, rate of 

charge/discharge, hysteresis, age of the battery and self-

discharge effect (Pattipati, et al., 2011). Chemical models 

for the SOC require many precise measurements for the 

different model variables (Pattipati, et al., 2011), (Charkhard 

& Farrokhi, 2011) and for this reason other methods are 

preferred. In this sense, the most popular methods are the 

Ampere-hour counter, internal impedance measurement and 

the open circuit voltage measurement (OCV) (Pattipati, et 

al., 2011), (Charkhard & Farrokhi, 2011), (Ran, Junfeng, 

Haiying & Gechen, 2010), (Qingsheng, et al., 2010), (Di, et 

al., 2011),  (Saha, Goebel, Poll & Christophersen, 2009), 

(Tang, Mao, Lin & Koch, 2011). 
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The Ampere-hour counter estimates the battery capacity by 

the integration of the current during the charge/discharge 

cycle. This method has the advantage that can be 

implemented on-line. However, it has disadvantages, 

perhaps the main one is that it only is able to give good 

results for short periods of time, which leads to a low 

acceptance (Pattipati, et al., 2011), (Ranjbar, Banaei, 

Fahimi, 2012). Other disadvantages include the requirement 

of accurate measurements, the no consideration of the 

internal impedance losses, and the need to reference a SOC 

in order to compare the results (typically its maximum 

nominal capacity), among others (Pattipati, et al., 2011), 

(Charkhard & Farrokhi, 2011), (Cadar, et al., 2009), (Di, et 

al., 2011), (Tang, et al., 2011).  

The OCV method has the advantage that it doesn’t need 

information prior to the measurements and that it has a 

direct relation with the SOC: the higher the OCV, the higher 

SOC (Tang, et al., 2011). Unfortunately, in order to realize 

this measurement the battery must have a prolonged period 

of rest (no current circulating) which makes difficult to use 

in systems where this time is not enough, and makes it hard 

to use on-line (Pattipati, et al., 2011), (Charkhard & 

Farrokhi, 2011), (Di, et al., 2011), (Tang, et al., 2011).  

More recently, in (Pola et al., 2015) and (Cerda et al., 2012), 

the battery state model is obtained using an empirical 

scheme considering parts of the electric equivalents and a 

curve fitting of the voltage discharge curve, with good 

results obtained. The model of (Pola, et al., 2015) shown in 

Eq. (5) considers a two state vector (     ) where the first 

variable corresponds to the internal impedance of the battery 

and the second represents the state of charge in terms 

relative to its nominal capacity      . The observation 

equation  ( ) characterizes the voltage measured during the 

discharge of the battery, and it is expressed as a function of 

the parameters           and  . These parameters must be 

estimated off-line in order to obtain good results. The 

processes noises (     )  and observation noise ( )  are 

assumed Gaussian. It is important to mention that    is 

correlated to  , since the evolution in time of    depends of 

the voltage measurements. 

 

{
  (   )    ( )    ( )                                            

  (   )    ( )   ( )   ( )          
     ( )

 

 ( )     (     ) 
 (  ( )  )     (  ( )   )    

 (   )  .       √  ( )/   ( )  ( )   ( ) 

 

(5) 

2.4. SOC Estimation and Prognosis 

Sequential Monte Carlo methods such as the PF, offer good 

performance when used in the implementation of estimation 

and prognosis modules for nonlinear, non-Gaussian systems 

(Orchard & Vachtsevanos, 2009). There are studies where 

these techniques are applied to monitor the SOC and State-

of-Health (SOH) of batteries in (Pola, et al., 2015), (Saha, et 

al., 2009), (Saha & Goebel, 2009), (Dalal, Ma, He, 2011), 

(Orchard, Tang, Saha, Goebel & Vachtsevanos, 2010) and 

(He, Williard, Osterman & Pecht, 2011). An alternative to 

the PF is the UKF, which has also been applied to the same 

problem (Bole, Daigle, Gorospe & Goebel, 2014). The UKF 

outstands for its good performance when nonlinear 

equations are present and its capacity to be implemented 

computationally in an efficient way (Van Der Merwe & 

Wan, 2001). Another type of techniques that becomes 

complimentary to the mentioned algorithms are the OFCLs, 

since they have been applied to estimation and prognosis 

problems (Orchard, et al., 2008), (Orchard, 2007) (Orchard, 

et al. 2009), hence it becomes interesting to analyze its 

impact. 

 

3. IMPLEMENTATION OF SOC ESTIMATION SCHEMES 

BASED ON OUTER FEEDBACK CORRECTION LOOPS 

3.1. Database description 

Voltage and current data used in all experiments correspond 

to the discharge of a lithium-ion cell, identical to the ones 

described in (Pola, et al., 2015), and illustrated in the 

Figure 1. Data correspond to the characterization of usage of 

an electric vehicle in the city, specifically the Federal Urban 

Driving Schedule (FUDS), properly scaled for just one 

battery cell. 

   

 

Figure 1 a). Discharge current profile 

 

 

Figure 1 b). Discharge voltage profile 
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Table 1 shows the values for the parameters of the evolution 

of the state model. The process and observation noises are 

assumed Gaussian with a zero mean value. 

Table 1. SOC Model Parameter values. 

 

Symbol Description Value 

      Battery model parameter       

   Battery model parameter   

   Battery model parameter        

   Battery model parameter       

  Battery model parameter        

  Battery model parameter    

  Battery model parameter         

    Process noise covariance 

matrix 
[        

        ] 

    Observation noise covariance       

   Experimental internal 

resistance 
    

 

3.2. Classical Particle Filter implementation 

The base case used for comparison purposes corresponds to 

the classical PF-based implementation developed in (Pola, 

et al., 2015). It uses a total of 40 particles and a basic design 

for an OFCL. The model described in Eq. (5) is used for this 

scheme.  

The basic OFCL implemented in (Pola, et al., 2015) 

considers a reduction of the process noise associated with 

the evolution of SOC in time, starting at a fixed time instant 

and considering a lower bound for the variance. In other 

words, if   ( )  is the process noise associated to the 

evolution of the battery SOC in time, then the OFCL is: 

 

          

         (  (   ))     (   (  ( ))     ⁄        ) 

 

In this case,    (  ( ))  is the standard deviation of the 

process noise at time  . This belongs to a basic correction 

loop since it does not measure the prediction capability of 

the model when using the output of the PF algorithm as the 

initial condition for prognosis. Instead, it opts to reduce the 

noise variance under the assumption that there is less 

uncertainty associated with the state estimation process 

since the filter has received more information. The PF 

estimates iteratively the SOC as new measurements of 

voltage and current are acquired. However, the complete 

scheme also includes the prognosis of the discharge. By 

applying the state transition equations, is possible to 

characterize probabilistically the moment in which the 

battery is fully discharged (when the SOC falls down under 

a certain threshold or within a hazard zone). Nevertheless, it 

is necessary to know the value of the current that will be 

demanded in the future. To solve this issue, the work done 

in (Pola, et al., 2015) proposes a two-state Markov Chain 

that emulates usage profiles with low and a high discharge 

currents. These two values, as well as the transition 

probabilities, are determined from historic measurements of 

the power demand. A more detailed description can be 

found in (Cerda et al, 2012). In (Pola, et al., 2015), 25 

realizations of discharge current profiles are used for 

prognosis purposes, hence the discharge time estimate 

computed at a determined moment corresponds to the 

weighted sum of 25 empirical distributions (Law of Total 

Probabilities), where each distribution is computed 

accordingly to Eq. (6), where Hlb and Hub are, respectively, 

the lower and upper bounds of the hazard zone.  

  ̂ (   )   ∑  *      (   )     +

  

   

  (   ) 

 

(6) 

The discharge zone of the cell is defined in terms of a 

uniformly distributed hazard zone between 5.5% and 4.5% 

of remaining charge, becoming more critical when particles 

come near the lower bound. When calculating the 

distribution of the ToF of the prognosis scheme, the weight 

of each particle in Eq. (6) is modified as: 

  
 (   )    (   )     (

      | ̂   (   )|

           
  ) 

(7) 

where  ̂   corresponds to the estimated value for the second 

state (SOC) of the i
th

 particle. 

3.3. Battery Model 

The discharge equations of a lithium-ion cell shown in 

Eq. (5) have a small inconsistency when compared to a 

traditional space state model: the evolution of the second 

state depends on the output of the system. Since the model 

output is a function of the state and the input, the right 

manner to implement the battery model is by replacing  ( ) 

by its prior estimate, as shown in Eq. (8). The reason why 

the model of Eq. (5) is used in (Pola, et al., 2015) is simply 

because it is computationally less expensive, since it directly 

uses the acquired measurement instead of calculating the 

whole expression for each particle. In this approach, the 

algorithms are developed using the following model in order 

to describe the evolution of the states: 

  (   )    ( )    ( ) 

  (   )    ( )    

        (
   (     ) 

 (  ( )  )     (  ( )   )

 (   )  .       √  ( )/   ( )  ( )
) 

                                                                    ( )          
     ( ) 

 

 ( )     (     ) 
 (  ( )  )     (  ( )   )    

                (   )  .       √  ( )/   ( )  ( )   ( ) 

(8) 
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3.4. Unscented Kalman Filter  

The UKF that is implemented corresponds to the classic 

version of the algorithm with the exception that the square 

root of the covariance matrix is replaced by its Cholesky 

factor, since the calculation is much simpler 

computationally speaking. Additionally, an outer correction 

loop is incorporated. The specific values of the UKF can be 

seen in Table 2. 

 

It is important to mention that in the prognosis stage, the 

original structure described in (Pola, et al., 2015), which is 

based on empirical distributions, is maintained. Then, to 

prognosticate the EoD time it is necessary to sample the 

Gaussian probability density function (PDF) related to the 

state estimate. This is achieved by generating a sampling 

from the multidimensional Gaussian obtained by the UKF to 

represent the probability density distribution of the state, 

where each sample corresponds to the position of a particle 

and the weight is equal to all of the particles. 

3.5. Outer Feedback Correction Loops 

The implementation of OFCL aims to improve the 

performance of the estimation module, regardless of the 

main algorithm that is used for this purpose: UKF or PF. 

The OFCL designed for this case study affects the standard 

deviation of the process noise, which is assumed as 

Gaussian with a mean value of zero. This particular OFCL, 

though, is not based on short-term prediction results, but on 

the accumulated observation error instead. By observing the 

database, the voltage in the battery does not have 

considerable variations in small intervals of time (less than 

30 seconds) during almost all the discharge cycle. Even 

more, the typical voltage drop that the battery undergoes 

during small time intervals, due to changes in the SOC, is 

comparable to the observation noise. In this regard, short-

term predictions are not enough to evaluate the performance 

of the model. Increasing the prediction horizon is not a 

practical answer to this issue, since this generates algorithms 

lags and requires more memory. The use of the accumulated 

observation error solves the problem related to the required 

memory space; and also allows to evaluate the model 

performance, since it is able to detect inconsistencies 

between measurements and estimations of the output in 

previous time horizons. Thus, the proposed OFCL results: 

           
      

               |    | 

               

     (  ( ))     .      (  ( ))     / 

     (  ( ))     .      (  ( ))     /  

         

           

     (  ( ))        (  ( )) 

     (  ( ))        (  ( )) 

 

In this case,      corresponds to the instant in which the 

OFCL starts operating;      is the observation error (the 

difference between the acquired measurement for the output 

and the one expected by the estimation algorithm);        is 

a variable that accumulates the past observation errors with 

initial value of zero;     is the decision threshold to modify 

the process noise. In other words, if it is lower than the 

threshold, the standard deviation of the process noise is 

reduced, but if it is larger than the threshold, it increases. 

Also    and    are constants with values between 0 and 1, 

while    and    are constants bigger than 1. Finally,      

and      are the lower bounds which indicate the minimum 

standard deviation accepted value.  

It is important to mention that the decision to increase the 

process noise includes a reset of the accumulated error, in 

order to allow the algorithm to have a time interval to 

correct its estimation before continuing to increase the 

uncertainty. In case that the observations do not meet the 

likelihood requirements, the accumulated error will become 

bigger than the threshold and the OFCL will increase the 

process noises. On the other hand, if small observation 

errors, accumulated during a prolonged time horizon, are 

able to surpass the activation threshold, the augmentation of 

the noise will only be done one time on that time horizon, 

and its effect will not be determinant on the performance of 

the method. 

Table 3 summarizes the values of the parameters for the 

correction loops. The numeric differences for both methods 

are because the nature of each algorithm, basically the PF 

sensitivity to adjust its estimation, since the particles move 

quickly towards a zone with more likelihood with the 

observation. The reason because    has a bigger value than 

   is the decision of penalizing a higher uncertainty of the 

internal impedance estimation, since there is not available a 

good transition model for it.  

 

Table 2. UKF Parameter values. 

 

Symbol Description Value 

𝑵 Battery model parameter       

𝜶 Battery model parameter   

𝜷 Battery model parameter        

𝜿 Battery model parameter       
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Table 3. Parameter values for the OFCL in UKF and FP. 

 

Symbol Description Value 

           

              

             

             

           

             

               

               

 

3.6. Prognosis Performance 

To evaluate the prognosis capability offered by the model 

and the outcomes of the estimation stage, the indices 

mentioned in Section 2 are used. Since these indices are 

functions of time, every value (at each time instant) requires 

to compute the output of the prognostic routine, conditional 

to the available information, until the end of the prediction 

horizon. To lower computational costs, one EoD prognosis 

result is computed every 10 iterations of the estimation 

module. When using the UKF within the estimation module, 

only one execution of the code is required (since it is a 

deterministic algorithm). However, in the case of PF 

algorithms, all results consider an average of 30 realizations 

of the code. 

4. RESULTS 

This research effort presents a comparison between filtering 

stages based on either PF or UKF, using OFCLs, and 

measuring the impact on the subsequent prognosis stage. 

For completeness purposes, and to measure the impact of 

OFCLs on filtering stages, we have also included results 

where classical version of the aforementioned filters are 

used during the estimation stage. Analysis is focused on 

estimation and prognosis of battery internal impedance, 

voltage and SOC. Experimental data were obtained from 

fully-charged cells (initial SOC is 100%), although initial 

condition always assumed 85% for the cell SOC to 

incorporate the effect of incorrect initial conditions. 

4.1. PF-based Estimation and Prognosis 

To establish a comparison between different estimation 

algorithms, it becomes convenient to establish a base 

scenario, which in this case corresponds to a classical 

implementation of PF-based estimation and prognosis 

modules. Since one execution of the PF code corresponds to 

a realization of a stochastic process, all conclusions require 

to analyze several realizations of the code. Figures show 

only one particular realization of the algorithm. 

 PF-based Estimation Results 4.1.1.

Figure 2 shows PF-based estimates of the SOC, internal 

impedance, and voltage of the lithium-ion cell. The initial 

SOC of the battery is 100%, while for the PF the initial 

condition assigned is a uniform random sample between 

76.5% and 93.5% (mean value of 85%) to evaluate if the 

algorithm is capable of correcting errors in the initial 

conditions. The initial condition assigned to the internal 

impedance is a Gaussian distribution sample of mean value 

of 0.1 and a variance of 2.5e-5. These values were 

determined experimentally in (Pola, et al., 2015), as shown 

in Table 1. The set of points plotted around the solid lines 

correspond to realizations associated with each particle, 

previous normalization of its weights through resampling.  

 

 

Figure 2 a). PF Internal impedance estimation 

 

 

 

 

 

 

Figure 2 b). PF Voltage measurement and estimation 

 

Figure 2 c). PF SOC estimation results 
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 PF-based Prognosis Results 4.1.2.

Figure 3 shows one execution of the PF estimation and 

prognosis routine for a complete discharge cycle. On 

Figure 3 a), the filtered impedance value can be observed, as 

well as the value for each particle during the first stage. 

Later, the prognosis stage assumes that the impedance value 

is constant, while the 95% confidence level (thinner lines) 

increases in time. On Figure 3 b), it becomes notorious that 

the predicted voltage becomes fully discharged before the 

real data, hence a bad adjustment of the model towards the 

end of the discharge. Figure 3 c) shows the estimation and 

prognosis as well as the actual SOC value. Also, the 

discharge zone and the exact point when the battery is fully 

discharged (ground truth EoD). Finally, Figure 3 d) presents 

the probability density distribution for the time of failure or 

discharge, with a 95% confidence interval. 

 

 

Figure 3 a). PF Internal impedance estimation and prognosis 

 

 

Figure 3 b). PF Voltage estimation and prognosis  

 

  

Figure 3 c). PF+OFCLs SOC estimation and prognosis with 

95% confidence intervals 

  

Figure 3 d). PF+OFCLs Prognosis EoD probability density 

function 

It is possible to notice that the procedure allows to 

implement a satisfactory prognosis scheme, in which no 

overestimation of the EoD time occurs. Moreover, the 

uncertainty is characterized in an adequate manner, which 

translates into a conservative approach. 

4.2. Estimation and Prognosis results based on a 

combination of PF and OFCL 

This section presents the results obtained when combining 

Outer Feedback Correction Loop (OFCLs) with the classical 

PF implementation. Once again, and since this is a 

stochastic algorithm, different results are obtained at each 

realization. Figures illustrate the average performance of the 

method, without perjury of realizations with better or worse 

results. 

 PF+OFCLs Estimation Results 4.2.1.

Figure 4 shows the estimation using a PF+OFCLs when the 

initial SOC is of the battery is 100% and the assumed initial 

value is 85%. On Figure 4 a) the internal impedance module 

is shown. Here the dispersion of the particles is smaller, 

which implicates a smoother behavior.  

Also, it is possible to notice on Figure 4 b) the status of the 

OFCL, and when it switches from “off” to “on”. Finally, 

Figure 4 c) shows the filtered and the offline SOC. It is 

possible to notice that the OFCL is able to quickly correct 

the initial condition, and correctly estimate the SOC ground 

truth. 

 

Figure 4 a). Internal impedance estimation 
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Figure 4 b). PF+OFCLs Voltage measurement and 

estimation with OFCL 

 

Figure 4 c). PF+OFCLs SOC estimation results 

 PF+OFCL Prognosis Results 4.2.2.

The results obtained for this approach are similar when the 

OFCL was not included. The main difference is shown in 

Figure 5a), since there is a reduction of the particle 

dispersion during the estimation stage, translated in a 

smaller 95% confidence intervals when doing prognosis. 

Figure 5b) shows the OFCL action. This action is defined as 

a two possible numbers: a number 1 indicates an increase of 

the standard deviation of the process noise, and a number 0 

indicates a decrease of the same concept due to the good 

estimation performance. It is possible to note, that the 

prognosis of the discharge time is more accurate than the 

previous case. In other words, the distribution of the EoD 

time is closer to the ground truth. 

 

 

Figure 5 a). PF+OFCLs Internal Impedance estimation and 

prognosis  

 

Figure 5 b). PF+OFCLs Voltage estimation and prognosis 

with OFCL 

 

Figure 5 c). PF+OFCLs SOC estimation and prognosis with 

95% confidence intervals 

 

Figure 5 d). PF+OFCL Prognosis EoD probability density 

function 

4.3. UKF Estimation Module 

Similarly to the previous case, results for the estimation and 

prognosis of the internal impedance, voltage, and battery 

SOC based on UKF schemes are now described. To 

measure the impact of OFCL on filtering stages, we have 

also included results where those correction loops were not 

activated.  It is important to note that the UKF is used just 

for the estimation stage, since the prognostics are obtained 

using a PF-based scheme. In other words the estimation 

stage is performed using a UKF-based module, while the 

prognosis follows a classic PF-based implementation. 
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 UKF Estimation Results 4.3.1.

When using the UKF in the estimation module, the initial 

value of the state vector is characterized through a Gaussian 

distribution. This is intended to create similar conditions as 

the ones determined on the PF base scheme. Figure 6 shows 

the estimation realized with a UKF during one single 

discharge cycle. The dotted lines correspond to a 95% 

confidence interval, while the solid line indicates the 

estimation of the internal impedance and SOC. Figure 6c) 

shows that even though the UKF estimation quickly 

converges to actual SOC value during early stages of the 

algorithm execution, then eventually the filter diverges.  

 

Figure 6 a). UKF Internal impedance estimation 

 

Figure 6 b). UKF Voltage measurement and estimation  

 

Figure 6 c). UKF SOC estimation results 

It is important to mention that this poor performance 

condition coincides with periods in which larger currents 

values are demanded from the battery. In this situation, non-

modeled dynamics of the battery affect measurements more 

evidently, reflecting on larger discrepancies for the results 

of the prognosis module. This fact is also reflected on large 

variances of the state vector 

4.4. Estimation and Prognosis based on a combination of 

UKF and OFCLs 

 UKF+OFCLs Estimation Results 4.4.1.

The same procedure as before is applied to this new scheme, 

in which the OFCL is combined with an UKF-based 

estimation module. Figure 7 shows the results for this 

framework. 

 

Figure 7 a). UKF+OFCLs Internal impedance estimation 

 

Figure 7 b). UKF+OFCLs Voltage measurement and 

estimation 

 

Figure 7 c). UKF+OFCLs SOC estimation results 

The addition of the OFCLs improves considerably the 

performance, thus achieving more accurate SOC estimates.  

The reason for which the combination of UKF+OFCLs 

provides good results is that the empirical model obtained 

for the Li-Ion cell describes in a good way the real behavior 

during a large part of the discharge cycle. In this regard, the 

diminishment of the process noise is a result of the addition 

of the OFCLs, which allows the UKF to have a bigger 

robustness to measurements errors and certain flexibility to 

adapt when the observations do not match the one-step 

ahead predictions. 
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Figure 8 a). UKF+OFCLs Internal impedance estimation 

 

Figure 8 b). UKF+OFCLs Voltage measurement and 

estimation 

 

Figure 8 c). UKF+OFCLs SOC estimation results 

Another factor to consider is the larger variance on the 

estimation of the state when obtaining voltage 

measurements that are not similar to the model prediction. 

This effect can be reduced with a smaller covariance matrix, 

combined with a smaller process noise associated with the 

SOC evolution in time, considering the risk that estimates 

may be biased, since the assumed initial conditions are 

dissimilar to the actual conditions in the battery. 

 UKF+OFCL Prognosis Results 4.4.2.

Figures 9a) to 9d) show the results for one realization of the 

prognosis module when using the UKF+OFCLs scheme 

during the filtering stage. It is possible to note an adequate 

performance according to what is expected. The results are 

similar to the ones obtained with the PF and the PF+OFCLs 

schemes, with the benefit that the accuracy of determining 

the discharge time is higher, associated to a good previous 

estimate of the battery SOC. 

 
Figure 9 a). UKF+OFCLs Internal impedance estimation 

and prognosis 

 
Figure 9 b). UKF+OFCLs Voltage estimation and prognosis 

with OFCLs  

 
Figure 9 c). UKF+OFCLs SOC estimation and prognosis 

with 95% confidence intervals 

 
Figure 9 d). UKF+OFCLs Prognosis EoD probability 

density function 
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5. PERFORMANCE COMPARISON 

Although graphic information is helpful to understand the 

performance and effectiveness of the different algorithms, it 

is not enough to evaluate the specific performance from a 

numeric point of view, so objective comparisons cannot be 

made. Even more, in the case of PF, one realization is not 

able to capture its real behavior, making it necessary to use 

the average of different realizations in order to stablish an 

adequate characterization. 

The following results correspond to three estimation 

experiments. Experiment #1 corresponds to the one shown 

on the previous figures, where the mean value of the initial 

condition is 85% of the SOC, while the real value is 100%. 

Similarly, Experiments #2 and #3 correspond to a SOC of 

65% and 50%. Not all these results are shown in this article, 

since results from Experiments #2 and #3 exhibited similar 

performance as Experiment #1. The UKF without the 

OFCLs is left out of the experiments due to its poor 

performance. For the PF-based algorithms the average of 50 

realizations is considered. The measurements were made at 

four time instants of the discharge period: near the 

beginning (200 seconds), two at the central area (1200 and 

2700 seconds) and near the end (4100 seconds). 

Additionally, a prognosis experiment is made where the 

performance indices explained before are accounted. These 

indices are time functions, so they require long term 

predictions at every instant during the whole discharge. To 

decrease the computational requirements, the predictions are 

made every 10 iterations. Also, since the computational cost 

is elevated, the numbers of realizations for the PF are 

reduced to 30. 

5.1. Estimation Stage: 85% SOC initial charge assumed 

The Tables 4, 5, 6 show the results for the different 

schemes. The SOC error is presented with a 95% confidence 

interval. 

Table 4. Experiment #1: PF (average of 50 realizations). 

Time T=200 T=1200 

Mean 0
      
      

1 0
      
      

1 

Covariance 

(    ) 
0
            
            

1 0
            
            

1 

SOC error                             

Time T=2700 T=4100 

Mean 0
      
      

1 0
      
      

1 

Covariance 

(    ) 
0
            
            

1      0
            
             

1      

SOC error                             

Table 5. Experiment #1: PF+OFCLs (average of 50 

realizations). 

Time (s) T=200 T=1200 

Mean 0
      
      

1 0
      
      

1 

Covariance 

(    ) 
0
            
            

1 0
            
            

1 

SOC error                              

Time (s) T=2700 T=4100 

Mean 0
      
      

1 0
      
      

1 

Covariance 

(    ) 
0
            
            

1 0
            
            

1 

SOC error                             

 

Table 6. Experiment #1: UKF+OFCLs. 

Time (s) T=200 T=1200 

Mean 0
      
      

1 0
      
      

1 

Covariance 

(    ) 
0
          
          

1 0
            
            

1 

SOC error               

Time (s) T=2700 T=4100 

Mean 0
      
      

1 0
      
      

1 

Covariance 

(    ) 
0
            
            

1 0
            
            

1 

SOC error                

 

It is possible to note that the use of the OFCLs generates 

more accurate (smaller error) and more precise (smaller 

variance) estimations than the base PF used for comparison. 

In particular, the UKF+OFCLs is the algorithm with the 

highest accuracy, although its inability to represent 

multimodal distributions as the ones observed on the results. 

It is important to mention the considerable reduction of the 

variance of the internal impedance estimation module. 

5.2. Performance measures 

This section presents results obtained in terms of the 

evaluation of performance indices such as: precision, 

accuracy-precision, and on-line steadiness for prognosis. 

Figures 10a) to 10c) show the obtained values of the 

aforementioned performance indices, for the following 

cases: Base PF, PF+OFCLs and UKF+OFCLs.  
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Figure 10 a). EoD Precision Index 

 

Figure 10 b). EoD Accuracy-Precision Index  

 

Figure 10 c). EoD online Steadiness Index  

The PF+OFCLs has a notorious improvement in its 

precision and accuracy-precision indices when compared to 

the base case. However the UKF+OFCLs scheme is the one 

that presents better performance. From the Accuracy-

Precision index, it becomes clear that is the only scheme 

with a tendency to the value of 1, when the end of the 

discharge is almost complete. In other words, the predicted 

EoD is smaller with every time instant that passes.  

6. CONCLUSIONS 

Even though the UKF has a Square-Root version, which is 

reported as computationally more stable, and more efficient 

in times, this variant is not convenient for the treated 

problem. The realized implementations showed a more 

elevated execution time, given the model dimensionality. 

That is to say, for a two state characterization it is more 

efficient to calculate at each iteration of the UKF la square 

root of a matrix, which can be done with a Cholesky 

decomposition or in the analytical way for case of 2   2 

matrices. 

The effectiveness of the programmed algorithms 

(performance in estimation and prognosis) is improved 

when the OFCLs are incorporated in all cases of study. The 

UKF without the OFCL has a poor performance, and is not 

recommended, but if the OFCL is added, the performance is 

even better than the PF schemes, as long as there is a 

reliable model. This means that the process and ideally the 

observation noises have to be small enough or be able to 

allow its diminishment thorough OFCLs. 

The results of the UKF are favored since the observation 

model and the state transition have a mainly linear behavior 

during the intermediate part of the discharge. 

The PF schemes, with or without the OFCLs have 

acceptable results with SOC estimation errors that are below 

a 4% of the real value, except when the assumed and real 

initial condition are very different. The proposed structure 

of OFCLs allows an improvement on the performance of the 

different estimation algorithms. This means that the 

accumulated observation error is a useful index to make 

decisions of how to modify the model hyper parameters. 

This means that when facing a SOC estimation problem, it 

is highly recommended to start the study with a PF scheme 

to verify that the model is able to describe the 

phenomenology of the battery. If good results are obtained, 

the implementation of an UKF+OFCLs can help improve 

the consistency and quality of the results, and even the 

execution time depending on the platform that is 

implemented. 
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