Strongly Non-U-Shaped Learning Results by General Techniques

John Case1 \hspace{1cm} Timo Kötzing2

1 Computer and Information Science, University of Delaware
2 Max Planck Institute for Informatics

June 28, 2010
Examples for Language Learning

We want to learn correct programs or programmable descriptions for given languages, such as:

16, 12, 18, 2, 4, 0, 16, ... “even numbers”

1, 16, 256, 16, 4, ... “powers of 2”

0, 0, 0, 0, 0, ... “singleton 0”
Examples for Language Learning

We want to learn correct programs or programmable descriptions for given languages, such as:

16, 12, 18, 2, 4, 0, 16, ... "even numbers"

1, 16, 256, 16, 4, ... "powers of 2"

0, 0, 0, 0, 0, ... "singleton 0"
Examples for Language Learning

We want to learn correct programs or programmable descriptions for given languages, such as:

- 16, 12, 18, 2, 4, 0, 16, ...
 “even numbers”

- 1, 16, 256, 16, 4, ...
 “powers of 2”

- 0, 0, 0, 0, 0, ...
 “singleton 0”
Examples for Language Learning

We want to learn correct programs or programmable descriptions for given languages, such as:

16, 12, 18, 2, 4, 0, 16, ... “even numbers”

1, 16, 256, 16, 4, ... “powers of 2”

0, 0, 0, 0, 0, ... “singleton 0”
Examples for Language Learning

We want to learn correct programs or programmable descriptions for given languages, such as:

16, 12, 18, 2, 4, 0, 16, ... "even numbers"

1, 16, 256, 16, 4, ... "powers of 2"

0, 0, 0, 0, 0, ... "singleton 0"
Examples for Language Learning

We want to learn correct programs or programmable descriptions for given languages, such as:

16, 12, 18, 2, 4, 0, 16, ...
“even numbers”

1, 16, 256, 16, 4, ...
“powers of 2”

0, 0, 0, 0, 0, ...
“singleton 0”
Examples for Language Learning

We want to learn correct programs or programmable descriptions for given languages, such as:

16, 12, 18, 2, 4, 0, 16, ... “even numbers”
1, 16, 256, 16, 4, ... “powers of 2”
0, 0, 0, 0, 0, ... “singleton 0”
Examples for Language Learning

We want to learn correct programs or programmable descriptions for given languages, such as:

16, 12, 18, 2, 4, 0, 16, ... “even numbers”

1, 16, 256, 16, 4, ... “powers of 2”

0, 0, 0, 0, 0, ... “singleton 0”
Let $\mathbb{N} = \{0, 1, 2, \ldots\}$, the set of all natural numbers.

A language is a set $L \subseteq \mathbb{N}$.

A presentation for L is essentially an (infinite) listing T of all and only the elements of L. Such a T is called a text for L.

We numerically name programs or grammars in some standard general hypothesis space, where each $e \in \mathbb{N}$ generates some language.
Language Learning from Positive Data

- Let $\mathbb{N} = \{0, 1, 2, \ldots \}$, the set of all natural numbers.
- A language is a set $L \subseteq \mathbb{N}$.
- A presentation for L is essentially an (infinite) listing T of all and only the elements of L. Such a T is called a text for L.
- We numerically name programs or grammars in some standard general hypothesis space, where each $e \in \mathbb{N}$ generates some language.
Let $\mathbb{N} = \{0, 1, 2, \ldots\}$, the set of all natural numbers.

A language is a set $L \subseteq \mathbb{N}$.

A presentation for L is essentially an (infinite) listing T of all and only the elements of L. Such a T is called a text for L.

We numerically name programs or grammars in some standard general hypothesis space, where each $e \in \mathbb{N}$ generates some language.
Let \(\mathbb{N} = \{0, 1, 2, \ldots\} \), the set of all natural numbers.

A language is a set \(L \subseteq \mathbb{N} \).

A presentation for \(L \) is essentially an (infinite) listing \(T \) of all and only the elements of \(L \). Such a \(T \) is called a text for \(L \).

We numerically name programs or grammars in some standard general hypothesis space, where each \(e \in \mathbb{N} \) generates some language.
Language Learning from Positive Data

- Let $\mathbb{N} = \{0, 1, 2, \ldots\}$, the set of all natural numbers.
- A **language** is a set $L \subseteq \mathbb{N}$.
- A **presentation for** L is essentially an (infinite) listing T of all and only the elements of L. Such a T is called a **text** for L.
- We numerically name programs or grammars in some standard general **hypothesis space**, where each $e \in \mathbb{N}$ generates some language.
Success: TxtEx-Learning

- Let L be a language, h an algorithmic learner and T a text (a presentation) for L.
- For all k, we write $T[k]$ for the sequence $T(0), \ldots, T(k-1)$.
- The learning sequence p_T of h on T is given by

$$\forall k : p_T(k) = h(T[k]).$$

- Gold 1967: h TxtEx-learns L iff, for all texts T for L, there is i such that $p_T(i) = p_T(i + 1) = p_T(i + 2) = \ldots$ and $p_T(i)$ is a program for L.
- A class \mathcal{L} of languages is TxtEx-learnable iff there exists an algorithmic learner h TxtEx-learning each language $L \in \mathcal{L}$.
Success: TxtEx-Learning

- Let L be a language, h an algorithmic learner and T a text (a presentation) for L.
- For all k, we write $T[k]$ for the sequence $T(0), \ldots, T(k-1)$.
- The learning sequence p_T of h on T is given by

\[\forall k : p_T(k) = h(T[k]). \]

- Gold 1967: h TxtEx-learns L iff, for all texts T for L, there is i such that $p_T(i) = p_T(i + 1) = p_T(i + 2) = \ldots$ and $p_T(i)$ is a program for L.
- A class \mathcal{L} of languages is TxtEx-learnable iff there exists an algorithmic learner h TxtEx-learning each language $L \in \mathcal{L}$.
Success: TxtEx-Learning

- Let L be a language, h an algorithmic learner and T a text (a presentation) for L.
- For all k, we write $T[k]$ for the sequence $T(0), \ldots, T(k - 1)$.
- The learning sequence p_T of h on T is given by

 $$\forall k : p_T(k) = h(T[k]).$$

- Gold 1967: h TxtEx-learns L iff, for all texts T for L, there is i such that $p_T(i) = p_T(i + 1) = p_T(i + 2) = \ldots$ and $p_T(i)$ is a program for L.
- A class \mathcal{L} of languages is TxtEx-learnable iff there exists an algorithmic learner h TxtEx-learning each language $L \in \mathcal{L}$.

June 28, 2010
Success: TxtEx-Learning

- Let L be a language, h an algorithmic learner and T a text (a presentation) for L.
- For all k, we write $T[k]$ for the sequence $T(0), \ldots, T(k-1)$.
- The learning sequence p_T of h on T is given by

$$\forall k : p_T(k) = h(T[k]).$$

- Gold 1967: h TxtEx-learns L iff, for all texts T for L, there is i such that $p_T(i) = p_T(i + 1) = p_T(i + 2) = \ldots$ and $p_T(i)$ is a program for L.
- A class L of languages is TxtEx-learnable iff there exists an algorithmic learner h TxtEx-learning each language $L \in L$.
Success: TxtEx-Learning

- Let L be a language, h an algorithmic learner and T a text (a presentation) for L.
- For all k, we write $T[k]$ for the sequence $T(0), \ldots, T(k-1)$.
- The learning sequence p_T of h on T is given by

$$\forall k : p_T(k) = h(T[k]).$$

- Gold 1967: h TxtEx-learns L iff, for all texts T for L, there is i such that $p_T(i) = p_T(i+1) = p_T(i+2) = \ldots$ and $p_T(i)$ is a program for L.
- A class \mathcal{L} of languages is TxtEx-learnable iff there exists an algorithmic learner h TxtEx-learning each language $L \in \mathcal{L}$.
Success: TxtEx-Learning

- Let L be a language, h an algorithmic learner and T a text (a presentation) for L.
- For all k, we write $T[k]$ for the sequence $T(0), \ldots, T(k - 1)$.
- The learning sequence p_T of h on T is given by
 \[
 \forall k : p_T(k) = h(T[k]).
 \]
- Gold 1967: h TxtEx-learns L iff, for all texts T for L, there is i such that $p_T(i) = p_T(i + 1) = p_T(i + 2) = \ldots$ and $p_T(i)$ is a program for L.
- A class \mathcal{L} of languages is TxtEx-learnable iff there exists an algorithmic learner h TxtEx-learning each language $L \in \mathcal{L}$.
Success: TxtEx-Learning

- Let L be a language, h an algorithmic learner and T a text (a presentation) for L.
- For all k, we write $T[k]$ for the sequence $T(0), \ldots, T(k-1)$.
- The learning sequence p_T of h on T is given by
 \[\forall k : p_T(k) = h(T[k]). \]

Gold 1967: h TxtEx-learns L iff, for all texts T for L, there is i such that $p_T(i) = p_T(i+1) = p_T(i+2) = \ldots$ and $p_T(i)$ is a program for L.

- A class \mathcal{L} of languages is TxtEx-learnable iff there exists an algorithmic learner h TxtEx-learning each language $L \in \mathcal{L}$.
Restrictions

- An (algorithmic) learner h is called **set-driven** iff, for all σ, τ listing the same (finite) set of elements, $h(\sigma) = h(\tau)$.

- A learner h is called **partially set-driven** iff, for all σ, τ of same length and listing the same set of elements, $h(\sigma) = h(\tau)$.

The above two restrictions model learner local-insensitivity to order of data presentation.

- A learner h is called **iterative** iff, for all σ, τ with $h(\sigma) = h(\tau)$, for all x, $h(\sigma \diamond x) = h(\tau \diamond x)$.1

1This is equivalent to a learner having access only to the current datum and the just prior hypothesis.
Restrictions

- An (algorithmic) learner h is called **set-driven** iff, for all σ, τ listing the same (finite) set of elements, $h(\sigma) = h(\tau)$.

- A learner h is called **partially set-driven** iff, for all σ, τ of same length and listing the same set of elements, $h(\sigma) = h(\tau)$.

The above two restrictions model learner local-insensitivity to order of data presentation.

- A learner h is called **iterative** iff, for all σ, τ with $h(\sigma) = h(\tau)$, for all x, $h(\sigma \diamond x) = h(\tau \diamond x)$.\(^1\)

\(^1\)This is equivalent to a learner having access only to the current datum and the just prior hypothesis.
Restrictions

- An (algorithmic) learner h is called **set-driven** iff, for all σ, τ listing the same (finite) set of elements, $h(\sigma) = h(\tau)$.

- A learner h is called **partially set-driven** iff, for all σ, τ of same length and listing the same set of elements, $h(\sigma) = h(\tau)$.

The above two restrictions model learner local-insensitivity to order of data presentation.

- A learner h is called **iterative** iff, for all σ, τ with $h(\sigma) = h(\tau)$, for all x, $h(\sigma \diamond x) = h(\tau \diamond x)$.\(^1\)

\(^1\)This is equivalent to a learner having access only to the current datum and the just prior hypothesis.
Restrictions

- An (algorithmic) learner h is called set-driven iff, for all σ, τ listing the same (finite) set of elements, $h(\sigma) = h(\tau)$.

- A learner h is called partially set-driven iff, for all σ, τ of same length and listing the same set of elements, $h(\sigma) = h(\tau)$.

The above two restrictions model learner local-insensitivity to order of data presentation.

- A learner h is called iterative iff, for all σ, τ with $h(\sigma) = h(\tau)$, for all x, $h(\sigma \diamond x) = h(\tau \diamond x)$.\(^1\)

\(^1\)This is equivalent to a learner having access only to the current datum and the just prior hypothesis.
Restrictions

- An (algorithmic) learner h is called **set-driven** iff, for all σ, τ listing the same (finite) set of elements, $h(\sigma) = h(\tau)$.

- A learner h is called **partially set-driven** iff, for all σ, τ of same length and listing the same set of elements, $h(\sigma) = h(\tau)$.

The above two restrictions model learner local-insensitivity to order of data presentation.

- A learner h is called **iterative** iff, for all σ, τ with $h(\sigma) = h(\tau)$, for all x, $h(\sigma \diamond x) = h(\tau \diamond x)$.\footnote{This is equivalent to a learner having access only to the current datum and the just prior hypothesis.}
U-Shapes

For learning with any of the above restrictions we investigate the necessity of (two kinds of) U-shapes. U-shaped learning occurs empirically in human child development: learn, unlearn, relearn.

- A learner h is said to be non-U-shaped on a class of languages \mathcal{L} iff, for each language $L \in \mathcal{L}$, h, when learning L, never semantically abandons a correct hypothesis.

- A learner h is said to be strongly non-U-shaped on a class of languages \mathcal{L} iff, for each language $L \in \mathcal{L}$, h, when learning L, never syntactically abandons a correct hypothesis.
U-Shapes

For learning with any of the above restrictions we investigate the necessity of (two kinds of) U-shapes. U-shaped learning occurs empirically in human child development: learn, unlearn, relearn.

- A learner h is said to be non-U-shaped on a class of languages \mathcal{L} iff, for each language $L \in \mathcal{L}$, h, when learning L, never semantically abandons a correct hypothesis.

- A learner h is said to be strongly non-U-shaped on a class of languages \mathcal{L} iff, for each language $L \in \mathcal{L}$, h, when learning L, never syntactically abandons a correct hypothesis.
U-Shapes

For learning with any of the above restrictions we investigate the necessity of (two kinds of) U-shapes. U-shaped learning occurs empirically in human child development: learn, unlearn, relearn.

- A learner h is said to be **non-U-shaped** on a class of languages \mathcal{L} iff, for each language $L \in \mathcal{L}$, h, when learning L, never semantically abandons a correct hypothesis.

- A learner h is said to be **strongly non-U-shaped** on a class of languages \mathcal{L} iff, for each language $L \in \mathcal{L}$, h, when learning L, never syntactically abandons a correct hypothesis.
U-Shapes

For learning with any of the above restrictions we investigate the necessity of (two kinds of) **U-shapes**. U-shaped learning occurs empirically in human child development: learn, unlearn, relearn.

- A learner h is said to be **non-U-shaped** on a class of languages \mathcal{L} iff, for each language $L \in \mathcal{L}$, h, when learning L, never **semantically** abandons a correct hypothesis.

- A learner h is said to be **strongly non-U-shaped** on a class of languages \mathcal{L} iff, for each language $L \in \mathcal{L}$, h, when learning L, never **syntactically** abandons a correct hypothesis.
U-Shapes

For learning with any of the above restrictions we investigate the necessity of (two kinds of) U-shapes. U-shaped learning occurs empirically in human child development: learn, unlearn, relearn.

- A learner h is said to be non-U-shaped on a class of languages \mathcal{L} iff, for each language $L \in \mathcal{L}$, h, when learning L, never semantically abandons a correct hypothesis.

- A learner h is said to be strongly non-U-shaped on a class of languages \mathcal{L} iff, for each language $L \in \mathcal{L}$, h, when learning L, never syntactically abandons a correct hypothesis.
Results

- For **set-driven** learning, we can assume strongly non-U-shaped learners.
- For **partially set-driven** learning, we can assume strongly non-U-shaped learners.
- Surprisingly, for **iterative** learning, we cannot assume strongly non-U-shaped learners.

From Case and Moelius 2007, we know that, for **iterative** learning, we can assume (not necessarily strongly) non-U-shaped learners.
Results

- For **set-driven** learning, we *can* assume strongly non-U-shaped learners.
- For partially set-driven learning, we *can* assume strongly non-U-shaped learners.
- Surprisingly, for **iterative** learning, we *cannot* assume strongly non-U-shaped learners.

From Case and Moelius 2007, we know that, for **iterative** learning, we *can* assume (not necessarily strongly) non-U-shaped learners.
Results

- For **set-driven** learning, we **can** assume strongly non-U-shaped learners.
- For **partially set-driven** learning, we **can** assume strongly non-U-shaped learners.
- Surprisingly, for **iterative** learning, we **cannot** assume strongly non-U-shaped learners.

From Case and Moelius 2007, we know that, for **iterative** learning, we **can** assume (not necessarily strongly) non-U-shaped learners.
Results

- For **set-driven** learning, we can assume strongly non-U-shaped learners.
- For **partially set-driven** learning, we can assume strongly non-U-shaped learners.
- Surprisingly, for **iterative** learning, we cannot assume strongly non-U-shaped learners.

From Case and Moelius 2007, we know that, for iterative learning, we can assume (not necessarily strongly) non-U-shaped learners.
Results

- For **set-driven** learning, we **can** assume strongly non-U-shaped learners.
- For **partially set-driven** learning, we **can** assume strongly non-U-shaped learners.
- Surprisingly, for **iterative** learning, we **cannot** assume strongly non-U-shaped learners.

From Case and Moelius 2007, we know that, for **iterative** learning, we **can** assume (not necessarily strongly) non-U-shaped learners.
Techniques

How did we get those results?

- For unnecessary U-shapes, we give a general scheme for how to remove them.
- We apply this scheme for both set-driven and partially set-driven learning.
- We use an different (self-referential or self-learning) approach for showing the necessity of U-shapes.
Techniques

How did we get those results?

- For unnecessary U-shapes, we give a general scheme for how to remove them.
- We apply this scheme for both set-driven and partially set-driven learning.
- We use an different (self-referential or self-learning) approach for showing the necessity of U-shapes.
Techniques

How did we get those results?

- For unnecessary U-shapes, we give a general scheme for how to remove them.
- We apply this scheme for both set-driven and partially set-driven learning.
- We use an different (self-referential or self-learning) approach for showing the necessity of U-shapes.
Techniques

How did we get those results?

- For unnecessary U-shapes, we give a general scheme for how to remove them.
- We apply this scheme for both set-driven and partially set-driven learning.
- We use an different (self-referential or self-learning) approach for showing the necessity of U-shapes.
Surprise re Self-Learning Technique

- We have a very general result employing self-learning classes of languages to completely epitomize or characterize any strict learning power difference between two learning criteria.
- Suppose \(\mathcal{L} \) is a self-learning class for this result. Each language of \(\mathcal{L} \) contains only programs which completely specify how the corresponding learner of \(\mathcal{L} \) is to transform its data into output programs.
- This technique applies well beyond criteria featuring presence or absence of U-shapes.
We have a very general result employing self-learning classes of languages to completely epitomize or characterize any strict learning power difference between two learning criteria.

Suppose \mathcal{L} is a self-learning class for this result. Each language of \mathcal{L} contains only programs which completely specify how the corresponding learner of \mathcal{L} is to transform its data into output programs.

This technique applies well beyond criteria featuring presence or absence of U-shapes.
We have a very general result employing self-learning classes of languages to completely epitomize or characterize any strict learning power difference between two learning criteria. Suppose \mathcal{L} is a self-learning class for this result. Each language of \mathcal{L} contains only programs which completely specify how the corresponding learner of \mathcal{L} is to transform its data into output programs. This technique applies well beyond criteria featuring presence or absence of U-shapes.
Surprise re Self-Learning Technique

- We have a very general result employing self-learning classes of languages to completely epitomize or characterize any strict learning power difference between two learning criteria.
- Suppose \mathcal{L} is a self-learning class for this result. Each language of \mathcal{L} contains only programs which completely specify how the corresponding learner of \mathcal{L} is to transform its data into output programs.
- This technique applies well beyond criteria featuring presence or absence of U-shapes.
Conclusion and Future Work

- We added to the picture regarding the necessity of U-shapes.
- In the future, we will try to get an even better understanding wrt the necessity of U-shapes for other learning criteria.
- Regarding self-learning classes of languages, we currently work on a considerable expansion of the surprising result that self-learning classes characterize learning power differences.
Conclusion and Future Work

- We added to the picture regarding the necessity of U-shapes.
- In the future, we will try to get an even better understanding wrt the necessity of U-shapes for other learning criteria.
- Regarding self-learning classes of languages, we currently work on a considerable expansion of the surprising result that self-learning classes characterize learning power differences.
Conclusion and Future Work

- We added to the picture regarding the necessity of U-shapes.
- In the future, we will try to get an even better understanding wrt the necessity of U-shapes for other learning criteria.
- Regarding self-learning classes of languages, we currently work on a considerable expansion of the surprising result that self-learning classes characterize learning power differences.
Conclusion and Future Work

- We added to the picture regarding the necessity of U-shapes.
- In the future, we will try to get an even better understanding wrt the necessity of U-shapes for other learning criteria.
- Regarding self-learning classes of languages, we currently work on a considerable expansion of the surprising result that self-learning classes characterize learning power differences.
Thank You.