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Abstract: Accurate prediction of the binding affinity of a protein-ligand complex is essential for
efficient and successful rational drug design. Therefore, many binding affinity prediction methods
have been developed. In recent years, since deep learning technology has become powerful, it is
also implemented to predict affinity. In this work, a new neural network model that predicts the
binding affinity of a protein-ligand complex structure is developed. Our model predicts the binding
affinity of a complex using the ensemble of multiple independently trained networks that consist
of multiple channels of 3-D convolutional neural network layers. Our model was trained using the
3772 protein-ligand complexes from the refined set of the PDBbind-2016 database and tested using the
core set of 285 complexes. The benchmark results show that the Pearson correlation coefficient between
the predicted binding affinities by our model and the experimental data is 0.827, which is higher than
the state-of-the-art binding affinity prediction scoring functions. Additionally, our method ranks the
relative binding affinities of possible multiple binders of a protein quite accurately, comparable to the
other scoring functions. Last, we measured which structural information is critical for predicting
binding affinity and found that the complementarity between the protein and ligand is most important.

Keywords: protein-ligand binding affinity; convolutional neural network; ResNext; deep learning;
binding affinity prediction; docking score

1. Introduction

Predicting the binding affinity of a protein-ligand complex plays a central role in drug design
and discovery. For a molecule to be a lead molecule for drug discovery, generally, it is required to
bind with a target protein tightly. However, the experimental measurement of protein-ligand binding
affinity is difficult and time-consuming, which is one of the major bottlenecks of the drug discovery
process. If one can predict the affinity of a specific ligand to a target protein quickly and accurately,
the efficiency of in silico drug discovery would be significantly improved. Thus, to accelerate the drug
discovery process, many computational binding affinity prediction methods have been developed [1–3].
Generally, traditional methods for binding affinity prediction are classified into three categories:
(1) physics-based, (2) empirical, and (3) knowledge-based methods.

The first approach, the physics-based scoring function, mainly uses theoretically rigorous binding
free energy calculations based on molecular mechanics models. For this purpose, the most widely used
approach is to perform free energy perturbation (FEP) calculations to estimate relative and absolute
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binding free energies. The strongest advantage of physics-based methods is that, with the help of
state-of-the-art forcefield models, they predict the binding free energies of arbitrary small-molecule
ligands to a protein accurately. Wang et al. demonstrated that a series of relative free energy calculations
yield the binding free energy values of more than 200 protein-ligand complexes with an average error of
about 1~2 kcal/mol [1,4,5]. It should be noted that this level of accuracy is achievable for well-behaving
protein-ligand complexes. For more challenging systems, where entropic effects are large or water
molecules play critical roles in determining binding affinity, the accuracy becomes worse, and obtaining
converged free energy calculation results within a reasonable time frame is not guaranteed [6–8].
In general, rigorous free energy calculations require a significant amount of computational resources.
With state-of-the-art molecular dynamics (MD) and FEP programs running on a graphics processing
unit (GPU), binding free energies of only one or two ligands can be calculated within a day or two
depending on the sizes of a ligand and a protein. Such computational burden hinders the extensive
use of free energy calculations for high-throughput screening of drug-like molecules.

Several studies showed that MD simulations can be used for improving docking results with
reasonably fast computation speed due to the improvements of GPUs and MD programs. Combined
with fast theoretical methods, such as linear interaction energy [9,10], MD simulations are routinely
applied to a large number of protein-ligand complexes [11,12]. Rastelli et al. used MD simulations
together with the MM-GBSA and MM-PBSA approach to refine the docking pose of scores obtained
with conventional ligand-docking programs [11]. They showed that refinement using MD improved
the accuracy of docking poses and the enrichment of docking results. Tatum et al. combined rigid
docking, MD, and the linear interaction approach to calculate relative binding affinities of multiple
binding poses of EthR inhibitors [12].

Empirical scoring functions have been extensively used in many protein-ligand docking programs
and virtual screening processes [13,14]. They approximate protein-ligand interactions using equations
consisting of several physics-based terms, mimicking van der Waals interaction, solvation free energy,
electrostatic interactions, etc. The parameters of the physics-based terms are generally fitted with
experimental data to reproduce measured binding affinity values. Because of the simplicity of
calculation and their close relationship with physics-based interactions, empirical scoring functions are
still actively developed. The empirical scoring functions have been implemented to various docking
programs: DOCK [15,16], AutoDock [17], AutoDock Vina [18], Glide [19], GOLD [20], FlexX [21],
and Surflex-DOCK [22]. There are also popular scoring functions to re-score docked poses to get better
results: X-Score [23], ChemScore [24], and ChemPLP [25].

Knowledge-based scoring functions are derived from protein-ligand complex structures. The basic
assumption of the knowledge-based method is highly frequent atomic pairs contribute more to a
binding affinity than the less frequent ones. To obtain the frequencies, distances between protein-ligand
interacting atomic pairs from the 3-D structures are statistically analyzed. These data are further
converted to a pseudopotential to predict a binding affinity. The advantage of knowledge-based
scoring functions is the computing cost since they only require distance calculation. However, it is
hard to set a reference state, an atom-randomized state, when converting the frequencies to the
pseudopotential, as pointed out by Thomas and Dill [26]. Examples of knowledge-based scoring
functions are DrugScore [27], IT-Score [28], SMoG [29], DFIRE [30], and PMF [31].

Recently, due to the emergence of deep-learning methods, more accurate data-driven predictions
have become possible in various scientific disciplines [32,33]. For protein-ligand binding affinity
prediction, many deep learning-based methods have been suggested [2,3,34]. Here, we briefly
review a few examples. Ragoza et al. suggested a small network consisting of three sequential
layers of a 3-D convolutional neural network (3-D-CNN) with pooling layers [35]. Similarly,
Stepniewska-Dziubinska et al. developed a binding affinity prediction model consisting of three
consecutive 3-D-CNN layers followed by three dense layers [36]. Jimeńez et al. developed a binding
affinity prediction model, KDEEP, based on the SqueezeNet architecture [37], which was originally
designed for image classification [38]. The KDEEP model consists of multiple 3-D-CNN with about
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1.3 million parameters. Zhang et al. developed the DeepBindRG model [39], which uses the 2-D
representation of a protein–ligand interface and the ResNet architecture [40]. Similarly, Zheng et al.
also converted a protein-ligand binding structure into a 2-D tensor with a single channel and processed
it through three 2-D-CNN layers and four dense layers [41].

In this paper, we present a new protein-ligand binding affinity prediction model, which estimates
the binding affinity of a complex based on a given 3-D structure. Our model was inspired by the ResNext
architecture [42], which uses an ensemble of CNN filters and showed an improved image classification
accuracy compared to its precedents. In addition to using a novel network architecture compared to
previous models, we demonstrate that an ensemble-based approach, using an average of multiple
predictors instead of a single predictor, significantly improves prediction quality. The advantage of
an ensemble approach is that it does not require further modification of network architectures and
can be readily applicable to most existing models. The benchmark results using the Comparative
Assessment of Scoring Functions 2016 (CASF-2016) dataset [43] show that the performance of our model
is comparable to the best existing scoring functions. We also analyzed the relative feature importance
to gain insights on which physical properties are most essential in determining binding affinity.

2. Results and Discussion

2.1. Binding Affinity Prediction Accuracy

We performed two different types of scoring schemes based on AK-score architecture: AK-score-single,
and AK-score-ensemble. AK-score-single uses a single prediction network as shown in Figure 1.
AK-score-ensemble uses an average of 20 independently trained networks as the final prediction
value. The mean absolute error (MAE) and root mean squared error (RMSE) between predicted
and experimental values of various models trained with different learning rates are listed in Table 1.
For comparison, the results of the other 3-D-CNN-based deep-learning model, the KDEEP model,
implemented by our group are also provided.

The benchmark results show that the AK-score-ensemble model yields the most accurate prediction
results. Among the tested models, AK-score-ensemble has the lowest accuracy metric values with
an MAE of 1.01 kcal/mol and an RMSE of 1.29 kcal/mol. Compared with a single model, the average
errors of the ensemble model are lower by about 0.1 kcal/mol. Besides, when compared with the
KDEEP model, AK-score-ensemble has a lower average error by 0.2 kcal/mol. Our results also show
that choosing the best learning rate improves MAE by about 0.05 kcal/mol and RMSE by 0.10 kcal/mol.

Table 1. Assessment of prediction accuracy of ResNext-ensemble, ResNext, and KDEEP using the
PDBbind-2016 dataset and mean absolute error and root mean square error metrics.

Model Learning Rate MAE (kcal/mol) RMSE (kcal/mol)

KDEEP 0.0001 1.131 1.462
0.0005 1.200 1.519
0.0006 1.164 1.534
0.0010 1.219 1.536

AK-score-single 0.0001 1.159 1.511
0.0005 1.101 1.415
0.0007 1.130 1.425
0.0010 1.110 1.406

AK-score-ensemble 0.0007 1.014 1.293

The lowest values are shown in bold.

We also assessed the performance of our models based on three criteria used in the CASF-2016
dataset, scoring, ranking, and docking power (Table 2). In all three criteria, the AK-score-ensemble
model shows the best performance. Scoring power is indicated by the Pearson correlation coefficient
between predicted and experimental values. Overall, AK-score models result in higher correlation
values than the KDEEP model. Among all the tested models, only AK-score-ensemble yields a correlation
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coefficient value higher than 0.8. In terms of ranking power, the AK-score models outperform the
KDEEP model on average. Among them, the AK-score-ensemble model results in the highest rank
correlation coefficients. For docking power, the difference in prediction performance of the KDEEP and
the AK-score-single model is not as prominent as in the other criteria. However, the prediction results
of the AK-score-ensemble model are better than those of the KDEEP model.
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Figure 1. (a) The overall architecture of the network. The complete network mainly consists of
15 stacked layers of an ensemble-based residual layer (RL) block. The parentheses in the RL blocks
denote (number of input channels, kernel size, stride, number of output channels). The numbers inside
parentheses in the Conv3D blocks represent (number of channels, kernel size, stride). (b) The structure
of each residual block is illustrated. A residual block consists of three stacks of convolutional layers
combined with batch normalization and ReLU activation layers and a residual sum. In the middle of
the block, each subset of channels is distributed to 16 separated 3-D-convolutional layers and processed
in a parallel way. After being processed by the parallel convolutional layers, the output tensors are
concatenated by the channel axis. Then, the agglomerated tensor is processed with a 3-D-convolutional
layer with a kernel size of one to adjust the number of channels and added with a shortcut tensor,
which is similar to an identical tensor of the original residual network (shown as the right path).
Abbreviations are defined as following: Conv3D: 3-D convolutional neural network layer, BN: Batch
Normalization layer, RL: Residual Layer.

Table 2. A comparison of prediction accuracy with the CASF-2016 dataset.

Model Scoring Ranking Docking

learning rate Pearson
(R)

Spearman
(SP)

Kendall
(tau)

Predictive Index
(PI) Top 1 (%) Top 2 (%) Top 3 (%)

KDEEP 0.0001 0.738 0.539 0.435 0.559 24.8 38.5 52.2
0.0005 0.709 0.486 0.389 0.535 29.1 39.9 49.6
0.0006 0.701 0.528 0.439 0.558 29.1 39.9 49.6
0.0010 0.715 0.479 0.400 0.492 24.8 36.3 44.6

AK-score-single 0.0001 0.719 0.572 0.456 0.600 34.9 48.6 56.1
0.0005 0.755 0.596 0.512 0.616 29.9 43.2 54.0
0.0007 0.759 0.616 0.526 0.640 31.3 47.1 57.9
0.0010 0.760 0.598 0.505 0.627 26.3 43.9 54.0

AK-score-ensemble 0.0007 0.812 0.670 0.589 0.698 36.0 51.4 59.7

The highest values are shown in bold.
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2.2. An Ensemble of Networks Improves the Quality of Prediction

We investigated the change of prediction quality by the number of networks. The results show
that overall the prediction accuracy increases as more networks are used. In both metrics, scoring,
and ranking power, the accuracy rapidly increases from a single network to five networks. In terms of
the scoring power, the Pearson R correlation coefficient between experiments and predictions increases
until the number of networks reaches 25 (Figure 2a). When a single network is used, the correlation
coefficient is less than 0.74. However, when the average of the five networks is used, the value becomes
higher than 0.80. After 10 networks, the improvement becomes modest but is kept until 25 networks
are used. Similarly, the ranking power keeps improving until 25 networks are used. All three ranking
measures (Spearman correlation coefficient (SP), Kendall tau, and Predictive index (PI)) are improved
consistently when the ensemble average of networks is employed (Figure 2b). These results clearly
show that using the ensemble of prediction networks significantly improves prediction quality, which is
a simple and straight-forward way to improve prediction accuracy without further exploration of
various network architectures.
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Figure 2. The change of prediction quality by the size of the ensemble of networks. (a) Scoring power
is measured by the Pearson correlation coefficient between the experimental and predicted binding
affinities. (b) Ranking power is measured by three rank correlation coefficients, Spearman (SP), Kendall
tau (tau), and predictive Index (PI).

2.3. Comparison with Other Scoring Functions

The benchmarking result of the AK-score shows that its prediction accuracy is comparable with
the best existing scoring functions based on the CASF-2016 dataset. The CASF-2016 dataset provides
the pre-calculated prediction results of known scoring functions, which allows a fair comparison of our
model with existing scoring functions using the same test set. The comparison results of scoring and
ranking with the top-scoring functions of each category are shown in Figure 3. Overall, the result of the
AK-score-ensemble model with 30 independently trained networks (green) shows the best correlation
coefficient, 0.827, among the tested scoring functions (blue) in the scoring power category (Figure 3a).
The correlation coefficient is a little higher than the best value obtained with ∆vina-RF20 (0.816),
which employs a random forest as a predictor, and much higher than the traditional scoring functions,
X-Score (0.631) and AutoDock-Vina (0.604, not shown in Figure 3a). Additionally, the ranking power
of the AK-score (0.736), measured by the PI, is slightly worse than the best value by ∆vina-RF20, 0.761,
which corresponds to the second place among the tested scoring functions (Figure 3b).
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Figure 3. Benchmark results of AK-score with existing protein-ligand binding affinity scoring functions;
(a) Scoring power (b) Ranking power. In each panel, AK-score is shown in green, and the other top 4
scoring functions from Su et al. [43] are shown in blue.

Interestingly, AK-Score correlates well with experimental binding affinity values compared to
all tested complexes while the Autodock-Vina and X-score, which are widely used scoring functions
for the docking program, show biases clearly (Figure 4). The two scoring functions significantly
underestimate absolute binding affinities, which is indicated by a small slope coefficient of a regression
line (Figure 4b,c). The correlation coefficient of AK-score predictions with the experiment is 0.827
while those of Autodock vina and X-score are 0.616 and 0.650, respectively. The RMSE of AK-score
predictions is 1.22 pKi unit, while those of Autodock vina and X-score are 2.62 pKi unit and 3.47 pKi
unit. The statistical significance of the differences between the correlation coefficients of multiple
predictions are investigated using bootstrapping samplings and t-tests; two-thirds of test set samples
are randomly sampled with a replacement for 1000 times and their metrics are calculated. The average
and the standard deviation of the correlation coefficients and the RMSE values of the bootstrapping
sets are calculated and their t-values are calculated. The t-value between the correlation coefficients of
AK-score and Autodock vina is 136.8. Additionally, the t-value between the AK-score and the X-score
results is 120.8. These t-values correspond to p-values of virtually zero, demonstrating that the quality
of AK-score regression is significantly better than those of the other scoring functions. In summary,
AK-score-ensemble outperforms the widely used empirical scoring functions in absolute binding
affinity prediction.
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Figure 4. The scatter plots of the experimental binding affinities and prediction results obtained
with (a) AK-score-ensemble, (b) Autodock-Vina, and (c) X-score are depicted. The predicted binding
affinities in kcal/mol were converted to pKi to compare with the experimental binding affinities.
The Pearson correlation coefficient and root-mean-squared-error (RMSE) value of the predictions and
their uncertainties are estimated using the bootstrapping analysis.
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2.4. Assessment with an Additional Dataset

To assess the transferability of AK-score, we predicted the binding affinities of protein-ligand
complexes that were not included in the training and test sets. The protein-ligand complexes that are
newly included in the PDBBind-2018 after the release of PDBBind-2016 were used for the additional
test. A total of 534 complexes were used as the additional test set and the list of the complexes is
presented in the Supplementary Materials.

The AK-score prediction results show the RMSE of the predicted values was 1.34 pKi unit, which is
comparable to the test set result. The correlation coefficient between the experimental and predicted
values was 0.69 and the coefficient of determination, R2, was 0.45, which is slightly lower than those of
the test set results. These results suggest that the performance of AK-score is transferrable to other
protein-ligand complex systems. The correlation coefficient is higher than X-Score (0.58) and ChemPLP
(0.56), which is consistent with the CASF-2016 benchmark result (Figure 5).
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2.5. Identifying Hot Spots for Binding Affinity Determination Using Grad-CAM

The gradient-weighted class activation mapping (Grad-CAM) is a widely used method to interpret
which features are responsible for determining outputs [44]. This approach detects the sum of the
magnitude of gradients that activated the nodes of the last layer. We utilized the Grad-CAM method
to identify a subset of atoms of protein-ligand binding sites that play important roles in determining
binding affinity values. To achieve this, we slightly modified the architecture of the AK-score network
by replacing the last single neuron with a fully connected layer with 20 nodes, which converts our
regression model to a classification model. We aggregated the weights of gradients to determine
important regions for protein-ligand binding.

The example cases of Grad-CAM analysis of the protein-ligand complexes with PDB ID of 1BCU
and 2E1W are illustrated in Figure 6. Figure 6a is the structure of vascular endothelial growth factor
receptor 2 complexed with a benzoxazole inhibitor (PDB ID: 2QU6). In the figure, Grad-CAM illustrates
important regions by the size and the color of circles. The size of the circle is proportional to the
magnitude of the sum of gradients and as it becomes larger, the color of the circle becomes red from
blue. In this example, the most important region that determines that binding affinity of the ligand is
clustered around the core aromatic fused ring. This suggests that the interactions between the protein
pocket and the aromatic ring play an important role in determining the binding affinity. Figure 6b
(PDB ID: 2E1W) shows an important region of adenosine deaminase and its potent inhibitor. In the
example, the most important structural motif was identified to be the naphthalene ring included in
the ligand and the hydroxyl group of the ligand. These examples show that combining CNN-based
prediction networks with the Grad-CAM analysis may help identify critical residues in determining
the binding affinity of a complex. The heatmaps of the Grad-CAM analysis of all complexes included
in PDBbind-2016 are provided as Supplementary Materials.
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2.6. Assessment of Feature Importance via Ablation Test

To obtain chemical and biological insights from the trained networks, it is necessary to identify
which atomic features play important roles in determining the binding affinity of a protein-ligand
complex. To achieve this goal, we performed additional experiments that perform predictions by (1)
making the values of a specific channel as zero, or (2) randomly shuffling the values of a channel,
which is called the ablation test [45]. The values of other channels are kept while the values of a specific
channel are zeroed or shuffled. The rationale of the second experiment is based on the conjecture that
making all values of a channel zero may be too drastic a loss of information and conserving the average
and variance of values of a channel may be important for making reasonable predictions. After zeroing
or shuffling a specific channel, we measured ∆MAE from the result of the original data. Large ∆MAE
means the error increases when specific channel values are zeroed or shuffled. Thus, we can get the
importance of a channel by measuring by ∆MAE from shuffling and zeroing experiments.

Overall, from both experiments, the excluded volumes of a ligand and a binding site are identified
to be the most important features in determining the binding affinity of a protein-ligand complex
(Figure 7). In other words, the shape complementarity between a binding site and a ligand is most
important in determining the binding affinity of a complex. When excluded volume information
of a ligand is missing, the average binding affinity prediction accuracy deteriorates by 1.4 kcal/mol
(Figure 7a). Following the excluded volume information, the hydrophobic atom information of a ligand
and a binding site is identified to be the second important factor. For a binding site, the hydrogen
acceptor atoms of a binding site play the third important role. Interestingly, for ligands, aromatic atoms
play the third important role. In the shuffling experiment, the overall trend is similar to that of the
zeroing experiment, but the average decrease in prediction accuracy is smaller (Figure 7b). The most
prominent difference is that, for a binding site, the relative importance of the hydrogen bond acceptor
atoms becomes larger than that of hydrophobic atoms.
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3. Methods

3.1. Data Preparation

The protein-ligand binding affinity data for training and testing the network was adopted from
the PDBBind-2016 database [46]. The database is composed of protein-ligand complex structures
in which their experimental binding affinities are known. All PDB structures in the database were
further filtered to obtain a refined set. Conditions to get the refined set are: (1) The resolution of
crystal structures are better than or equal to 2.5 Å, (2) the ligand binds to the receptor noncovalently,
(3) the stoichiometry between protein and ligand in crystal structure should be 1:1, (4) the experimentally
determined binding affinity is Ki or Kd, and (5) the ligand should be only composed of common
organic elements, i.e., C, N, O, P, S, F, Cl, Br, and I [46]. The set is composed of 4057 protein-ligand
complexes. The receptors in the refined set were further clustered with 90% of sequence similarity.
If the members of a cluster are larger than five, and the difference between the highest binding affinity
and the lowest binding affinity is larger than 100, then the cluster was selected as a member of the core
set [46]. In each cluster, five representative PDBs are selected: two complexes with the maximum and
the minimum binding affinities in the cluster and the other three have a binding affinity that differs by
at least one-fold (i.e., log2). The core set, composed of 285 protein-ligand complexes, was used as a test
set. The remaining 3772 complexes (refined set minus core set) were used as a training set.

3.2. Convolutional Neural Network

To utilize the power of the convolutional neural networks, the structures of protein-ligand
complexes were represented as three-dimensional (3-D) grids. We voxelized a binding pocket and a
ligand following Jimeńez et al. [37]. For each protein-ligand complex, the center of mass of the bound
ligand was set to the origin and the neighboring atomic environment was embedded into a 3-D grid
whose edge length was 30 Å. Along the X, Y, and Z-axes, 30 grid boxes were generated with a spacing
of 1.0 Å. To capture the pattern of protein–ligand interactions, for each grid box, atomic density was
calculated using the following density function (Equation (1)):

n(r) = 1− exp
[
−

( rVDW

r

)12
]
, (1)

where rVDW is the van der Waals radius of an atom and r is a distance between an atom and the center
of a 1 Å · 1 Å · 1 Å. n(r) ranges from 0 (no contribution by the atom) to 1 (fully occupied by the atom).
At each center of the grid box, the contributions from all atoms were summed up.
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Atoms were classified into 8 classes, and they were represented as the different channels of the
input data. We treated atoms from proteins and ligands separately, which leads to 16 real-valued
channels representing the aggregated number density of each protein-ligand complex. The atoms
were labeled the same as Jimeńez et al. [37]. Most of the atom types were determined after assigning
AutoDock4 atom types [17], except for positive and negative atom types. They were assigned by
following the sign of the Gasteiger charge of an atom. Gasteiger atomic partial charges were calculated
based on the atom and bond types, equalizing the electronegativity of orbitals [47]. The description of
the atom types used in this study is listed in Table 3.

Table 3. Atom types used to classify atoms forming protein-ligand binding sites.

Atom Type Definition

Hydrophobic Aliphatic or aromatic C
Aromatic Aromatic C

Hydrogen bond donor Hydrogen bonded to N, O, or S
Hydrogen bond acceptor N, O, and S with lone electron pairs

Positive Ionizable Gasteiger positive charge
Negative Ionizable Gasteiger negative charge
Metallic Mg, Zn, Mn, Ca, or Fe

Excluded Volume All atom-types

To reduce the orientation dependency of a complex structure, we augmented the number of data
by rotating a grid with all 24 possible rotational operations.

3.3. Network Architecture

The main component of our network is an ensemble-based residual network, which was used in
the ResNext model for image recognition. Compared to other deep learning models, ResNext has a
simple architecture but shows better performance in the image recognition benchmark [42]. The overall
structure of the network is illustrated in Figure 1a and the structure of each residual block is shown in
Figure 1b. At each residual block, each channel is distributed to multiple convolutional layers and
processed in a parallel way. The number of parallel residual networks is also called cardinality. In this
study, we used 16 3-D-convolutional layers (Conv3D) layers for each residual block, which corresponds
to a cardinality of 16. We called this network architecture AK-score (Arontier-Kangwon docking
scoring function).

The complete network mainly consists of 15 stacked layers of an ensemble-based residual layer
(RL) block (Figure 1). A single initial input tensor has information of 16 atom-types (channels) and a
30 Å · 30 Å · 30 Å cubic, corresponding to a tensor with a shape of (16, 30, 30, 30) in the channel-first
format. First, an initial tensor is processed with a 3-D-convolutional layer with 64 output channels,
a kernel size of 5, and a stride of 2, which converts the shape of the output tensor into (64, 15, 15, 15).
After the convolutional layer, the batch normalization and the activation layers follow. The resulting
tensor is put into a series of 10 residual blocks.

A single RL layer consists of three stacks of convolutional layers combined with the batch
normalization and the rectified linear unit (ReLU) activation function layer and a residual addition
(Figure 1b). First, an input tensor goes through the BN and ReLU layers. In the middle of the block,
each subset of channels of a tensor is distributed to 16 independent Conv3D layers and processed in a
parallel way, which corresponds to a cardinality of 16. For example, if the number of input channels is
64, such as RL1 to 10, the input tensor is separated into 16 tensors with only four channels. After being
processed by the parallel convolutional layers, the output tensors are concatenated by the channel axis.
Then, the agglomerated tensor is processed with a Conv3D layer with a kernel size of one to adjust the
number of channels and added with a shortcut tensor, which corresponds to an identical tensor of the
original residual network. The total number of parameters of the network is 1,294,925. Among them,
the number of trainable and non-trainable parameters is 1,293,447 and 1478, respectively.
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The ReLU activation function was used for all activation layers of the network. All weight
parameters were initialized with the He_normal initialization scheme. The model loss was calculated
with the MAE between the experimental and predicted binding affinities in a kcal/mol unit.
For parameter optimization, the Adam optimizer was used with the following parameters: beta-1 = 0.99
and beta-2 = 0.999. The model was trained with multiple learning rates to test the effect of the learning
rate on the final prediction quality. Learning rates of 0.0001, 0.0005, 0.0007, and 0.0010 were tested.
While training the network, the whole dataset was randomly permuted to avoid possible biases.

3.4. Ensemble Prediction

To enhance prediction accuracy, we employed an ensemble prediction scheme, obtaining
the final prediction value from the average of multiple independently trained models. In many
machine-learning tasks, the parameters of each prediction model are optimized from initial random
values. When the number of parameters is large, the final parameter set does not converge well in
general. To reduce possible such biases, we trained multiple networks independently and assessed
whether the average of multiple predictions yielded better predictions. We called this ensemble-based
model AK-score-ensemble. For comparison, a model based on a single network is called AK-score-single
in this paper.

3.5. Performance Assessment

To assess the performance of our model, we compared our model with the previously suggested
3-D-CNN based binding affinity prediction model. We implemented the KDEEP model, which is based
on SqueezeNet architecture, which was used for image classification [37]. The model was trained with
the same parameters reported in the reference. All models reported in this study were implemented in
Keras-2.2.4 with Tensorflow-1.13.1 backend (Google, Mountain View, CA, USA) [48].

As a benchmark set, we used the CASF-2016 benchmark dataset. The benchmark set has been used
as a common ground for a comparison of various scoring functions [43,49,50]. Wang and his colleagues
started comparing various scoring functions, called CASF, from 2007. Binding pose prediction of a
docking program depends on not only a scoring function but also a sampling algorithm it uses. Thus,
it is hard to evaluate the power of scoring function purely. The aim of the series of CASF benchmarks
is evaluating a pure performance of scoring functions by decoupling sampling and scoring.

The main purposes of scoring functions are (1) predicting near-native binding pose, (2) estimating
the binding affinity of a given pose, and (3) ranking compounds based on predicted binding affinities.
Thus, the CASF benchmark evaluates the accuracy of protein-ligand docking prediction in three
categories: scoring (correlation between predicted binding affinity and experimentally determined
binding affinity), ranking (correlation of ranked compounds by predicted affinities and experimental
values), and docking (ability to picking up native pose among decoys). The benchmark categories and
their metrics are summarized in Table 4.

Table 4. Summary of CASF-2016 benchmark categories.

Category Aim of a Category Metric

Scoring How well the scoring function correlates with the
experimental binding affinities? Pearson correlation coefficient

Ranking How relative order of binding affinities is
correctly predicted?

Spearman correlation coefficient
Kendall tau

Predictive index

Docking Can the scoring function find the native ligand
binding pose? Top 1 (%), Top 2 (%), Top 3(%)
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The first category is scoring. The aim of this category is how the scoring function correlates
well with the experimentally determined binding affinity. The scoring function predicts the binding
affinities of 285 crystal structures and the predicted values are compared with the experimentally
determined binding affinities. The metric used in the category is Pearson correlation coefficient R
(Equation (2)):

R =

n∑
i=1

(xi − x)(yi − y)√
n∑

i=1
(xi − x)2

√
n∑

i=1
(yi − y)2

, (2)

where xi and yi are the predicted and experimentally determined binding affinities of complex i. x and
y are the average values of the predicted and experimental binding affinities.

The second category is ranking. Apart from the correlation, it focuses on how accurately a scoring
function ranks a set of protein-ligand complexes by the predicted values when a set of protein-ligand
complex structures are given. In each receptor cluster of the core set, there are five crystal structures.
Thus, the ranking problem is reduced to how the scoring function correctly orders the five complexes.

To assess the ranking power, Spearman’s correlation coefficient, Kendall tau, and predictive index
(PI) values are used. These metrics are measurements of the rank correlation between compounds
ranked by experimentally determined affinities and by predicted affinities. All the three metrics range
from −1 (totally reversed order) to 1 (perfect ranking). Spearman’s correlation coefficient ρ is calculated
as below (Equation (3)):

ρ =

n∑
i=1

{[
R(xi) −R(x)

]
×

[
R(yi) −R(y)

]}
√{

n∑
i=1

[[
R(xi) −R(x)

]]2
}
×

{
n∑

i=1

[[
R(yi) −R(y)

]]2
} , (3)

where R(xi) and R(yi) are the ranks of complex i by its predicted binding affinity and experimental
binding affinity, respectively. R(x) and R(y) are the mean ranks, and n is the number of complexes.

The Spearman’s correlation coefficient is calculated based on deviations of ranking, while the
Kendall tau coefficient is proportional to a difference between concordant pairs and discordant pairs.
Two variable pairs (x1, y1) and (x2, y2) are called concordant if x1 > x2 and y1 > y2 (or x1 < x2 and
y1 < y2). Otherwise, the pairs are called discordant. The coefficient is computed as Equation (4):

τ =
Nconcord −Ndiscord√

(Nconcord + Ndiscord + T)(Nconcord + Ndiscord + U)
. (4)

where Nconcord and Ndiscord are the number of concordant and discordant pairs, respectively. T is the
number of ties in predicted binding affinity, and U is the number of ties in experimental binding affinity.

PI focuses on the ranking ligands correctly with high priority if the ligands have significantly
different experimental binding affinity [51]. The index is computed by two components, ωi j and Si j
(Equation (5)):

PI =

n∑
j>i

n∑
i
ωi jSi j

n∑
j>i

n∑
i
ωi j

, (5)
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where Si j is 1 if the predicted binding affinities and experimental binding affinities of two
complexes are concordant pairs. If they are discordant pairs, then Si j is set to 0. ωi j equals to the
experimental binding affinity difference between two complexes, so it acts as a weight for complex pairs.

The last category is docking. This benchmark tests whether a scoring function can find the native
ligand binding pose when it is mixed with 100 decoy ligand conformations. This category is assessed
by counting the number of cases that a scoring function ranks the native pose within the top 1, top 2,
and top 3, among the given ligand conformations.

Among the series of CASF benchmark datasets, we used CASF-2016, the latest one, to evaluate
AK-score performance. The set is composed of 285 protein-ligand complexes, the same as the core
set of PDBBind-2016. We compared the performance first with KDEEP and later with the 25 scoring
functions assessed in Su et al. [43].

4. Conclusions

We developed a new binding affinity prediction model, AK-score, by combining a multi-branched
deep-learning network architecture, ResNext, and an ensemble predictor approach. We first compared
the AK-score-ensemble model with AK-score-single, a single predictor model with ResNext, and KDEEP,
which employs ResNet as a deep learning architecture. The AK-score-ensemble model showed lower
MAE and RMSE than the others. Then, we also tested our predictor on the CASF-2016 dataset.
Our model predicts the binding affinity of a protein-ligand complex with a high accuracy, which is
comparable to the best existing scoring functions in terms of scoring and ranking power. In the scoring
category, our predictor showed the best Pearson correlation coefficient among the tested 26 scoring
functions, and in the ranking category, AK-score ranked second when the ranking power was measured
by PI. Additionally, we showed that the deep learning model could be transferred to a new complex,
by testing it with PDB structures included in PDBBind-2018, but not members of PDBBind-2016.
Our results suggest that an ensemble-based approach, using the average of multiple independently
trained models, is a straightforward but powerful approach. A similar approach may apply to existing
machine-learning-based models. Additionally, our study gives an insight into the relative importance
of atoms based on their chemical properties. The feature importance tests show that, for a ligand, the
excluded volume of atoms, the spatial distribution of hydrophobic and aromatic atoms, is critical in
determining binding affinity. For a protein, the excluded volume of atoms, and the distribution of
hydrophobic atoms and hydrogen bond acceptors are identified to be important factors. We believe
that our results provide useful guidelines for the development of next-generation deep-learning-based
protein-ligand scoring functions.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/22/8424/
s1. Supplement 1: A list of PDB IDs in PDBBind-2018, not included in PDBBind-2016; Supplement 2: Grad-CAM
results of PDBBind-2016 refined set.
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Abbreviations

FEP Free energy perturbation
MD Molecular dynamics
GPU Graphics processing unit
CASF Comparative assessment of scoring functions
3-D-CNN 3D convolutional neural network
Conv3D 3D convolutional neural network layer
AK-score Arontier-Kangwon docking scoring function
BN Batch normalization
RL Residual layer
ReLU Rectified linear unit
MAE Mean absolute error
PI Predictive index
RMSE Root mean squared error
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