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Introduction
Every species depends on adaptation to survive. Humans have 

managed to survive and flourish while directly influencing the 
environment of the entire planet, encompassing all other forms 
of life. While there may be philosophical disagreements as to the 
inadvertent harm to our natural surroundings, the human species, 
homo sapiens, has been the only survivor of the hominins [1]. The 
biology of this success is intertwined in the coevolution of homo 
sapiens and the associated holobiome [2,3]. Chronic illnesses and 
debilitations appear to be increasing, requiring reflection into the 
evolutionary process, and the perturbations that have recently 
occurred creating this environment of now-declining health [4]. 
Current research would point to the “Hygiene hypothesis”, overuse 
of anti-microbials, dietary shifts and the resultant decrease in 
human microbiome diversity [5,6]. The old model of looking for 
an increase in pathogens is flawed. Indeed, the fault lies with the 
decrease in commensals that not only compete directly with the 
pathogens, but also modulate the immune response of the host 
[7]. To improve the health of children, we must first improve the 
microbiome of the mother. The maternal microbiome sets the stage 
for the child’s microbiome [8,9].

Pre-natal intervention has been studied with positive results 
reported by the supplementation of the mother with probiotics 
or polyols [10,11]. Published studies using xylitol that involve 
the nursing mother and child have demonstrated the decrease in 
the maternal transmission of mutans streptococci [12]. Certainly,  

 
intervention may be desired even earlier, preferably before 
pregnancy because it is also reported that antecedent use of 
antibiotics by the mother will influence the maternal microbiome 
[13]. The placental microbiome is most closely related to the 
maternal oral microbiome [14]. The presence of commensal 
bacteria in the placenta and developing fetus is essential to fetal 
immunological maturation [15]. The oral health of the expectant 
mother should then be considered primarily important to the oral 
systemic health of the fetus and later, the child. In addition, the 
placental microbiome appears to be developed quite early in the 
pregnancy, by maternal imprinting [14]. This maternal imprinting 
involves the transportation of viable commensals via circulating 
monocytes, properly creating a fetal microbiome to program the 
developing child [16]. Animal studies have demonstrated the 
transmission of maternal breast commensals into the amniotic 
fluid [17]. All this depends upon the mother actually having 
a healthy microbiome [18]. The maternal microbiome can be 
influenced in numerous ways including diet, exercise and probiotic 
supplementation [19-22]. Limiting added dietary sugar and the 
regular addition of polyols can help decrease the prevalence of 
pathogens before they are passed on to the child [12,23-25]. In the 
case of Early Childhood Caries, the reduction of maternal Candida 
albicans will reduce the biofilm formation by Streptococcus mutans 
potentially reducing the incidence of dental caries [26,27]. Some 
Lactobacilli, all probiotics such as Lactobacilli rhamnosus, have 
been demonstrated to inhibit Candida albicans [28-30]. Other 
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supplements, such as N-acetyl cysteine, also have a reducing effect 
on Candida albicans levels [31-32]. Coconut oil in the form of 
Medium Chain Triglycerides (MCT) supplements has also been used 
to reduce levels of Candida albicans and is reportedly as effective as 
ketoconazole [33-35]. But it has also been reported that coconut 
oil has more beneficial components than just MCT, giving pause 
as to why whole coconut oil isn’t utilized more [36]. Regardless, 
MCT may increase exercise endurance and encourage weight loss 
[37]. In addition, another natural product, propolis has also been 
demonstrated to inhibit Candida albicans and other oral pathogens 
[38-40]. If the expectant mother increases exposure to coconut 
oil or N-AC, the inhibitory effects may be beneficial in preventing 
the onset of ECC or, possibly Candida albicans systemic disease if 
prematurely born [41]. 

Vitamin K2 has also been reported as being very beneficial as 
an anti-caries agent and for activation of proper bone and dentin 
formation in concert with vitamins A and D [42]. This research isn’t 
new, but recently furthered explored and reported [43]. Insufficient 
levels of Vitamin D have been linked to S-ECC in a number of studies 
[44-47]. With increased publications of the beneficial properties of 
these supplements, it is surprising that the dental profession has 
not enthusiastically adopted a more fully energetic policy on their 
role in preventing ECC, especially considering the lack of important 
micronutrients in the typical American fast food diet [48]. The 
method of birth has been greatly researched demonstrating that 
C-section results in an increase in childhood allergies and asthma 
[49]. The research implicates the lack of exposure to the bacteria 
of the birth canal and anus as being causative with the neonate’s 
microbiome lacking maternal commensals [50]. After birth, either 
by vaginal delivery or C-section, breast feeding provides the infant 
with Human Milk Oligosaccharides which are much more than 
just food for bacteria as originally proposed for the child [51]. The 
HMOs also are antiadhesive antimicrobials that serve as soluble 
decoy receptors, preventing pathogens attachment to the infant’s 
mucosal surfaces and thereby lowering the risk for viral, bacterial 
and protozoan parasite infections [52,53]. 

HMO’s also reportedly modulate epithelial and immune cell 
responses, reducing excessive mucosal leukocyte infiltration and 
activation, lowering the risk for necrotizing enterocolitis and 
providing the infant with sialic acid, a potentially essential nutrient 
for brain development and cognition [54,55]. Formula does not 
have the same protective properties that breastmilk does and sadly, 
many pediatric dentists criticize breast feeding as being cariogenic, 
even though published research links the associated dental caries 
to additional carbohydrate intake and night feeding [56,57]. The 
benefits of breast feeding have been well documented, and the 
need to adjust the preventive dentistry protocol to accommodate 
breast feeding should be evident [58]. Although the World Health 
Organization recommends two years, mothers probably should 
breast feed their infants for a least a year, the time interval reported 
to be the found in early hominins, Australopithecus africanus 
[59]. Another benefit from breast feeding, besides developing 
the microbiome and immune modulation, could be regulation 

of metals, especially zinc and copper, protecting the neurological 
development of the infant [60-62]. 

Streptococcus mutans has long been considered the key 
pathogen for the development of dental caries, the most prevalent 
chronic disease of humans [63-65]. Efforts to reduce the levels 
of Streptococcus mutans in infants and children with xylitol and 
preventing dental caries have been successful, raising the question 
as to why this is not standard dental practice. 66-67 However, other 
bacterial and fungal organisms have now been closely identified 
with the development of dental caries [68]. Scardovia wiggsiae 
is a Bacillus bacterium found extensively associated with Severe-
Early Childhood Caries [69]. Scardovia wiggsiae and Slackia exigua 
have been reported to be involved in the early caries development 
[70]. Candida albicans, a fungal organism, helps with the biofilm 
production by increasing the extracellular polysaccharide matrix 
which protects Streptococcus mutans from anti-microbials 
and commensals such as Streptococcus oralis [71]. Lactobacilli 
inhibit the colonization of Candida albicans, hence decreasing 
the polysaccharide matrix, exposing the Streptococcus mutans to 
the bactericins or hydrogen peroxide of its natural competitors, 
other Streptococcus species [72]. Streptococcus oralis produces 
hydrogen peroxide that inhibits the anaerobic Streptococcus 
mutans growth [73,74]. Indeed, Probiora probiotic, a commercially 
available probiotic product, contains Streptococcus oralis, uberis 
and rattus, and claims to inhibit several key dental pathogens [75-
77]. Probiotics have been reported to be an important adjunct in 
preventive dental care [78-80].

Erythritol and xylitol are polyols that have been extensively 
researched and demonstrated to have notable anti-cariogenic and 
anti-periodontal disease properties [81,82]. Polyols (particularly 
the non-hexitol alditols or sugar alcohols erythritol and xylitol) 
have been found effective in inhibiting the transition to and 
maturation of biofilms from planktonic cells [83]. Xylitol clearly 
inhibited the formation of mixed species biofilms, which included 
Porphyromonas gingivalis in vitro [84]. Erythritol suppressed the 
maturation of gingivitis biofilms and contributed to a healthier 
oral ecosystem [85]. Porphyromonas gingivalis takes advantage 
of early colonizers (Streptococci and Candida) to provide 
attachment and protection within the biofilm matrix. Polyols can 
reduce extracellular polysaccharide production and interfere 
with biofilm matrix elaboration, thereby reducing adherence and 
biofilm development [86-88]. Streptococci and Candida utilize 
common dietary sugars sucrose and D-glucose for preferred 
energy sources, as well as for polysaccharide production. Higher 
glucose concentrations stimulate Candida growth. Compared with 
common D-sugars, xylitol induced the lowest adhesion and biofilm 
formation on either Streptococcus mutans or Candida albicans 
[89]. In addition, xylitol has been demonstrated to decrease the 
levels of cariogenic bacteria while having little effect on beneficial 
bacteria [90]. The discovery of bacteriophages specific for certain 
strains of Streptococcus mutans also show great promise in the 
management of pediatric oral health [91]. With the costs of dental 
disease rapidly escalating, now (2010) estimated at 442 billion US 
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dollars, all effective measures to prevent oral disease should be 
urgently started in the pediatric population [92].

The Airway evaluation of the infant/toddler is of paramount 
importance during the first Age One examination [31]. Airway 
issues in children have been linked to future obesity, diabetes 
and behavioral issues [94,95]. Mouth breathing increases the oral 
microbiome pathogenic potential, as the incoming air will reduce 
the protective nature of the saliva [96]. Studies have demonstrated 
the correlation between oral disease and airway pathology [97,98]. 
Sleep Disturbed Breathing in children has been extensively reviewed 
in the literature, describing an ever-increasing pathologic chain of 
events [99,100]. Amongst the deleterious effects of mouth breathing 
are lower and mid-facial adaptations, orthodontic malocclusions, 
potential speech issues, esthetic concerns, sleep disturbed bruxism, 
and future temporomandibular joint dysfunctions [101-104]. The 
key to the future health of children is effective preventive care. What 
becomes a serious morbidity in adulthood started in childhood. 
Now more than ever, pediatric health care providers need to 
emphasize the connection between the oral health of children and 
their systemic health, with all the future ramifications now clearly 
reported in the scientific literature. The importance of the oral 
microbiome, its role as a “gateway” microbiome, and the systemic 
connection need to be more fully explained to patients, parents and 
all health care professionals. 

Interestingly, the oral health care of the child starts before birth, 
requiring the participation of all involved in pre-natal care. It is 
now obvious that what is most important may be the microbiome, 
and how it is affected by the environment, diet, sleep, exercise, 
antibiotics, polyols and probiotics. The microbiome then modulates 
the immune system, allergies, resistance to pathogens, auto-
immune responses, and ultimately patient health and longevity. At 
last, there seems to be great interest in the importance of pediatric 
and general oral health due to the crisis that poor oral health is 
bringing upon us [105]. We should be concerned that research 
studies from several countries have all reported neurotoxicity 
effects from relatively low levels of fluoride in children [106-
111]. Our over reliance on fluoride to create fluorapatite to inhibit 
decay seems inadequate at best. Perhaps this means that the time 
has come to treat a bacterial disease, as a bacterial disease. After 
all, dental caries and periodontal disease, and to a great extent 
downstream comorbidity including atherosclerosis, diabetes, 
strokes, inflammatory Alzheimer’s, diabetes, and many systemic 
illnesses, can be traced back to a “dysbiosis” started in infancy. 
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