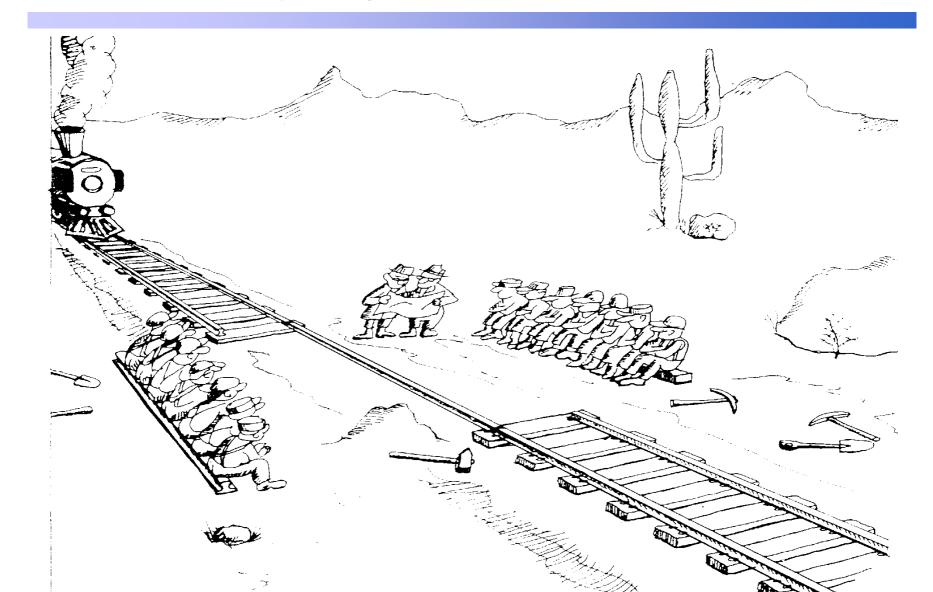


FMEA


失效模式與效應分析 簡介 <u>Failure Mode and Effect Analysis</u>

長宏高36學員 郭育廷

失效發現得太遲的後果……

失效發現得太遲的後果……

"早知道 …… 就不會 "

- ◆ 早知道 作好防震設計 就不會 造成大樓倒塌
- 中 早知道 改進電力輸配設計 就不會 造成全台大停電
- 中 早知道 不濫墾濫伐 就不會 造成土石流
- 申 早知道 作好橋樑維護 就不會 造成高屏大橋倒塌 有些 早知道 是必需的!有些 就不會 是不允許發生的
 - ► 核能電廠、水庫、衛星、飛機...... 有效運用 FMEA 可減少事後追悔

FMEA強調的是"事前的預防"不是"事後的追悔"

"我先 …… 所以沒有"

- ◆ 我先看了氣象預報 所以沒有 淋成落湯雞
- ◆ 我先 評估金融大樓高度 所以沒有 影響飛行安全
- ◆ 我先 設計電腦防火牆 所以沒有 被駭客入侵

有些 我先 是必需的! 有些 所以沒有 是預期可避免的

► 核能電廠、水庫、衛星、飛機······. 有效運用 FMEA 可強化事先預防

FMEA強調的是"事前的預防"不是"事後的追悔"

FMEA 發展歷程

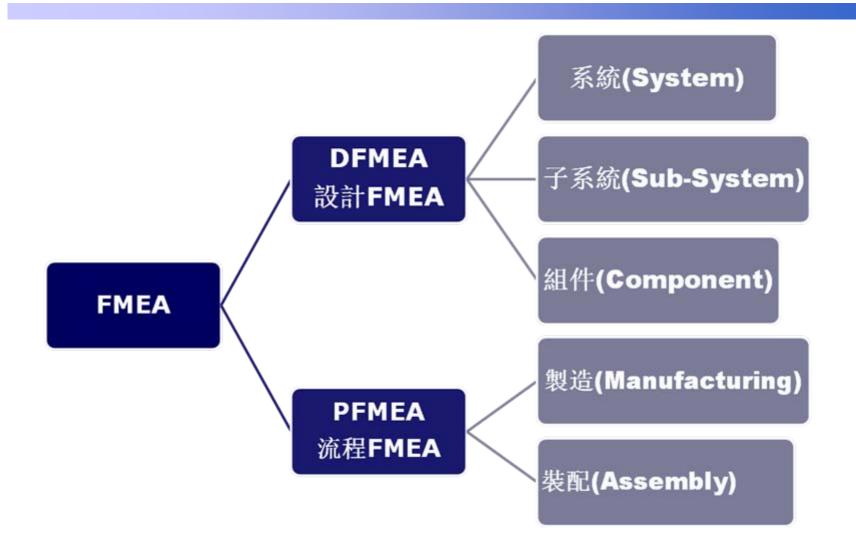
1950年

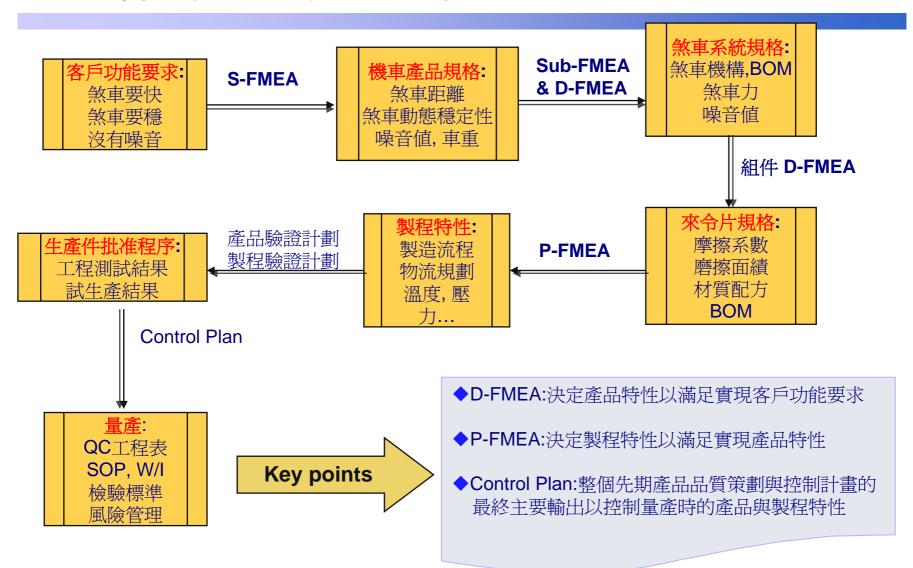
1957年

1960年初

1970年

□美國太 空總署 FMEA用 於阿波 計劃




FMEA類型

DFMEA v.s. PFMEA

Type	Design FMEA	Process FMEA	
Development	1. 從QFD展開 2. 製程是產品設計的客戶 3. 盡可能從設計弱點來做改善, 而不依賴製程管 制來解決產品設計的問題 4. 失效原因需爲設計因素 5. 體現客戶要求	1. 以 Process Flow 出發 2. 可和DFMEA聯結 3. 需假設產品設計是沒有問題 4. 失效原因需爲製程因素 5. 體現產品特性	
Structure	Product Characteristics	Operation	
	Product Function Items	Procedure	
	System Unit	Manufacturing Management	
	Design Control	Process Control	
Failure Mode	指定錯的物料	用錯物料	
	Recipe 條件不足	選錯 Recipe	
	歸咎於 Product	歸咎於 Process	
	Application Failure	Operation Failure	

品質機能一條龍展開

FMEA 展開

● DFMEA Example-汽車天窗:

耐2000次防夾作動

D/ P FMEA Interface

 傳動系統
 失效模式
 失效原因

 失效後果
 失效模式
 失效原因

 產品功能/ 經濟性無法保證
 次車無法前進
 傳動器功能失效

傳動器

汽車無法前進 傳動器功能失效 輸入軸功能失效

輸入軸

傳動氣功能失效 輸入軸功能失效

油封漏油

油封

輸入軸功能失效

油封漏油

接觸面磨損

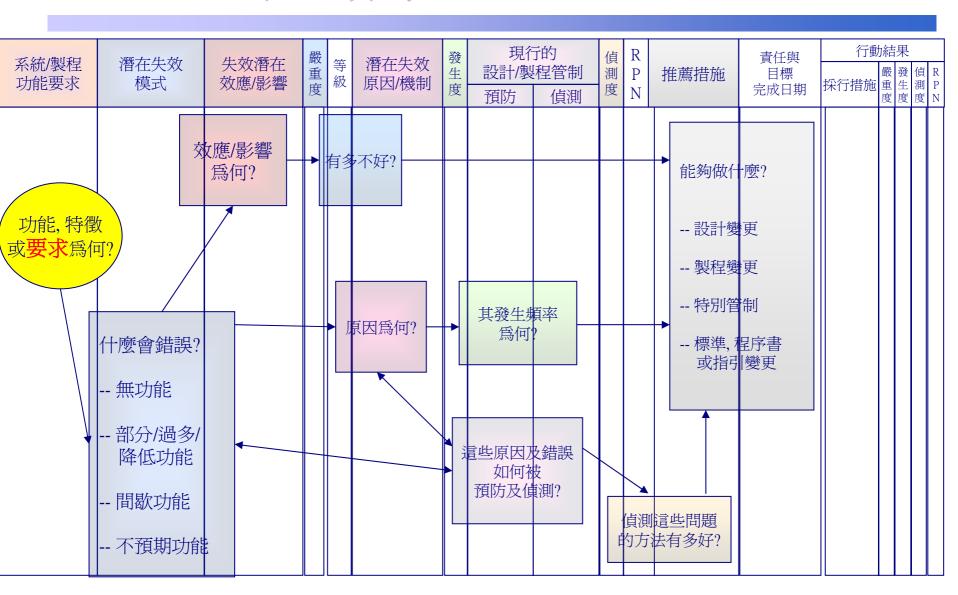
油封特性 (P-FMEA)

油封漏油

磨削製程不良

直徑不符合規格

Interface & Interaction


D-FMEA

DFMEA 失效 V.S. PFMEA 失效

不要混淆 DFMEA與PFMEA的起因和失效

DFMEA的失效	PFMEA的失效
潤滑能力不足	潤滑油使用不夠
錯誤的原料說明	錯誤的原料使用

FMEA 表格填寫說明

評估風險優先係數(RPN)

Risk Priority Number (RPN) = (S)x(O)x(D)

- S = Severity 嚴重度
- O= Occurrence 頻度(發生機率、發生度)
- D= Detection 探測度 (可偵測性、難檢度)

改善項目選擇最主要考量還是在風險與成本的平衡

風險優先係數(RPN)

- ◆ 第四版FMEA強調重點
 - ■不建議訂定一個RPN門檻值當成改善依據.
 - 第三版透過調整發生度 O值與難檢度 D值, 讓相乘得到的 RPN值低於改善門檻,藉以逃避改善工作.
 - RPN改善門檻值成了FMEA工具效力不彰的主要原因.
 - ■修正後好處可使無心致力於持續改善的廠商必須修正使用FMEA的方法.
- ◆ 第四版FMEA附錄提供額外RPN-想法1
 - ■只計算嚴重度S和發生度O的乘積.
- ◆ 第四版FMEA附錄提供額外RPN-想法2
 - ■只排列 S、O、D的值, 而不是將值相乘.
 - ■(例如: S=7, O=3, D=2, 得到的RPN值是732,而不是乘積42.)
- ◆ 保證嚴重度高; 客戶可能最在乎; 最常發生的問題會被公司優先處理

風險優先係數(RPN)

◆ 想法 7缺點

- ■以RPN值只採S乘O為例, 最高到最低值為100到2 (FMEA手冊載明:當嚴重度S等於1時, 不需要再分析發生頻率與偵測難易度)
- ■若將門檻訂為RPN>50,表示嚴重度未達6都不需採取對策,比較S、O、D各為6、9、3與6、8、8的A、B兩失效模式,結果是A需要對策,而很難偵測的B失效卻不需要對策,不合實際需求.

◆ 想法2缺點

- ■假設訂定RPN=733 為對策門檻,則RPN=734 時需要對策,但發生度與難檢度都相當高的RPN=688 的失效模式卻不需要處置,
- →這樣的FMEA過程結果能有效預防缺失, 保證產品品質嗎?

降低RPN分數準則

	Severity	Occurrence	Detection
DFMEA	設計變更	設計變更	設計變更 增加設計管制方法 增加設計驗證/確認
PFMEA	設計變更 製程變更 <i>(4M1E)</i>	製程變更 <i>(4M1E)</i> 防錯 <i>(</i> 防呆 <i>)</i> 人員訓練	製程變更 (4M1E) 增加製程管制 增加檢驗頻率 SPC運用 人員訓練

FMEA 本身也有 Failure Mode?

- ◆ Team Work 變成只有一個人在做 FMEA (一人 FMEA)
- ◆ 為滿足客戶要求及認證而作 FMEA
- ◆ Project 結束後, 再 Create FMEA, 非 設計循環的 Improvement
- ◆ FMEA 從未被 Update 及 Revise, Not a living Document
- ◆ 很多CA/PA/Nonconforming report/Engineering change vs 很少 FMEA item
- ◆ FMEA未納入文件管制. 被當做記錄管理
- ◆ Recommended Action---僅增加檢驗就改善了Severity and Occurrence
- ◆ Control Plan 完成之後才做 FMEA
- ◆ Engineering change 未 review and/or update FMEA
- FMEA doc indicates high RPN but feasibility report indicates OK
- ◆ 重要管制特性未註記
- ◆ 填寫不完整

FMEA第四版的主要變更與改進

- ◆ 使用名詞索引以及圖像標示重點來提高FMEA手册的可讀性
- ◆ 更多的案例說明, 尤其在系統/次系統/部件的層次關係以及其界面 與互動
- ◆ 強調管理階層對FMEA過程的支持與審查的重要性
- ◆ 設計多種FMEA表格以方便各種需求上的使用
- ◆ 加強說明D-FMEA與P-FMEA以及其他工具的串聯
- ◆ 改進嚴重度,發生度以及難檢度的評分表以利實務上的一致性判定
- ◆ 不建議只單純依賴RPN來決定改善的優先順序