
Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Introduction to Topics

Advanced Statistical Programming Camp
Jonathan Olmsted (Q-APS)

Day 1: May 27th, 2014
AM Session

ASPC Introduction to Topics Day 1 AM 1 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Administrative Issues

• Materials posted at blackboard.princeton.edu.
• Set up instructions to create Nobel and Adroit accounts and basic

setup for interacting with Nobel and Adroit.
• Syllabus, handouts, slides, datasets.
• Everyone should be pre-enrolled.

• Q&A at https://piazza.com/princeton/summer2014/aspc/home.

ASPC Introduction to Topics Day 1 AM 2 / 42

blackboard.princeton.edu
https://piazza.com/princeton/summer2014/aspc/home

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Schedule

• Location:
• Robertson Bowl 02
• except Friday PM, Corwin 127

• Morning session and Afternoon session: Tue Wed Thur Fri
• AM session: 9:30am – 10:30am
• PM session: 1:30pm – 2:30pm
• Office Hour session: 3:30pm – 4:30pm

• Extended Morning session: Sat
• 10:00am – 12:00pm (with lunch)

ASPC Introduction to Topics Day 1 AM 3 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Code Distribution

• Most R and C++ code will be distributed “in-text” for handouts and slides.

• This makes it easy to get all of the code you need by downloading one
file.

• Some chunks of code don’t copy perfectly from the PDF (e.g., multiple
columns). Code transcripts will be posted too.

Interactively:

> for (i in 1:4) {
+ print(i ^ 2)
+ }

[1] 1
[1] 4
[1] 9
[1] 16

In the slides:

for (i in 1:4) {
print(i ^ 2)

}

[1] 1
[1] 4
[1] 9
[1] 16

ASPC Introduction to Topics Day 1 AM 4 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Pairwise Calculations from Spatial data

Examples:
• Geo-coded event data: insurgent attacks, natural disasters
• Geo-coded administrative data: grant programs, voter files

• Some pairwise “distances” are simple to calculate from
network-like spatial data

• But, coordinate-based distance metrics have no simple linear
algebraic representation→ many individual pair-wise calculations

ASPC Introduction to Topics Day 1 AM 5 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

US Counties

3,109 Counties in the United States — ignoring Puerto Rico, Hawaii,
Alaska, American Somoa, the Virgin Islands, etc.

ASPC Introduction to Topics Day 1 AM 6 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Pairwise Distances between US Counties

• Start with a county Mercer County, NJ

ASPC Introduction to Topics Day 1 AM 7 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Pairwise Distances between US Counties

• Calculate the distance between Mercer County, NJ and Mercer
County, IL.

• Store it.

ASPC Introduction to Topics Day 1 AM 8 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Pairwise Distances between US Counties

• Then, calculate the distance between Mercer County, NJ and
Mercer County, WV.

• Store it.

ASPC Introduction to Topics Day 1 AM 9 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Pairwise Distances between US Counties

• Then, Mercer County, MO and store it.

ASPC Introduction to Topics Day 1 AM 10 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Pairwise Distances between US Counties

• Then, Mercer County, KY and store it.

ASPC Introduction to Topics Day 1 AM 11 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Pairwise Distances between US Counties

• Eventually, you would calculate the distance between Mercer
County, NJ and Naples County, FL.

• Then store that.

ASPC Introduction to Topics Day 1 AM 12 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Pairwise Distances between US Counties

• And, then, you would calculate the distance between Mercer
County, NJ and Napa County, CA.

• Then store that.

ASPC Introduction to Topics Day 1 AM 13 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Pairwise Distances between US Counties

• For Mercer County alone, thats 3,108 distance calculations.
• Without duplicate calculations: 3,109·3,108

2 = 4,831,386 distances.
• With duplicate calculations: 9,665,881 distances.

ASPC Introduction to Topics Day 1 AM 14 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Geo-Coded US County Data

head(dfCounties)

latitude longitude state county
1 34.22 -82.45 SC Abbeville
2 30.34 -92.35 LA Acadia
3 37.71 -75.66 VA Accomack
4 43.74 -116.41 ID Ada
5 41.44 -94.63 IA Adair
6 36.96 -85.40 KY Adair

mCounties <- as.matrix(dfCounties[, 1:2])
mCountiesSmall <- mCounties[1:400,]

• Main matrix with coordinates of 3,109 counties: mCounties

• Small matrix with coordinates of just 400 counties: mCountiesSmall

ASPC Introduction to Topics Day 1 AM 15 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Element-wise Calculation of Distances

• For the true distance across the surface of the Earth between two points:
use law of cosines or haversine formula.

• The Euclidean distance is not the true distance.

• But, it does approximate the structure of the computational task of
calculating the true distances.

• Goal: Populate an N by N matrix with element (i , j) corresponding
to the Euclidean distance (dij) between element i and element j .

• Where xi = latitudei and yi = longitudei :

dij =
√
(xi − xj)2 + (yi − yj)2

• Avoiding duplicate calculations↔ recognizing dij = dji .

ASPC Introduction to Topics Day 1 AM 16 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Strategy for Comparing Different Implementations

• We will compare the relative performance (speed) of different
implementations run in R.

• For each implementation, we will create an R function that takes
a matrix of coordinates as input and returns an N by N distance
matrix with pair-wise distances.

• We will make duplicate calculations.

• Every implementation will perform the same computational
task.

• We will use the microbenchmark package to compare
computation time.

ASPC Introduction to Topics Day 1 AM 17 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Explicit Element-wise Calculation in R

• The most immediate approach is to calculate each element of the
pair-wise distance matrix individually.

calcPWDe <- function(mat) {
out <- matrix(data = NA, nrow = nrow(mat), ncol = nrow(mat))

for (row in 1:nrow(out)) {
for (col in 1:ncol(out)) {

out[row, col] <- sqrt(((mat[row, 1] - mat[col, 1]) ^ 2 +
(mat[row, 2] - mat[col, 2]) ^ 2
)

)
}

}
return(out)

}

ASPC Introduction to Topics Day 1 AM 18 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Performance

• Note: small matrix of coordinates.
• 2 for() Loops in R.

library("microbenchmark")
microbenchmark(looploop = calcPWDe(mCountiesSmall),

times = 5
)

Unit: seconds
expr min lq median uq max neval
looploop 1.498 1.5 1.511 1.521 1.533 5

Is 1.5 seconds fast or is it slow?

ASPC Introduction to Topics Day 1 AM 19 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Implicit Element-wise Calculations via Vectors

• In R, it is much faster to work with vectors or vector-like objects
whenever possible.

• Operating on vectors of length > 1 is faster than repeated
operations on vectors of length 1.

system.time({
(1:200000)^2

})

user system elapsed
0.001 0.000 0.001

system.time({
for(i in 1:200000) i^2

})

user system elapsed
0.051 0.004 0.056

Where can we vectorize the code in calcPWDe()?

ASPC Introduction to Topics Day 1 AM 20 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Implicit Element-wise Calculations via Vectors

calcPWDv <- function(mat) {
out <- matrix(data = NA,

nrow = nrow(mat),
ncol = nrow(mat)
)

for (row in 1:nrow(out)) {
no loop over columns
one row elem vs *all* col elems
out[row,] <- sqrt(((mat[row, 1] - mat[, 1]) ^ 2 +

!^!
(mat[row, 2] - mat[, 2]) ^ 2
!^!
)

)
}
return(out)

}

ASPC Introduction to Topics Day 1 AM 21 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Performance

• Note: small matrix of coordinates.
• 2 for() Loops in R.
• 1 for() Loop in R.

microbenchmark(
looploop = calcPWDe(mCountiesSmall),
loop = calcPWDv(mCountiesSmall),
times = 5
)

Unit: milliseconds
expr min lq median uq max neval
looploop 1471.50 1489.41 1491.34 1495.34 1531.86 5
loop 19.29 19.44 19.57 19.61 20.53 5

Removing an unnecessary loop in R makes the code about 70 times
faster.

ASPC Introduction to Topics Day 1 AM 22 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Seemingly Vectorized Code: The apply Family

calc1row <- function(row, mat) {
return(sqrt(((row[1] - mat[, 1]) ^ 2 +

(row[2] - mat[, 2]) ^ 2
)

)
)

}

calcPWDv2 <- function(mat) {
out <- apply(mat,

MARGIN = 1,
FUN = calc1row,
mat = mat
)

return(out)
}

ASPC Introduction to Topics Day 1 AM 23 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Performance

• Note: small matrix of coordinates.

• 2 for() Loops in R.

• 1 for() Loop in R.

• 1 apply() in R.

Unit: milliseconds
expr min lq median uq max neval
looploop 1489.21 1489.74 1501.98 1506.33 1516.98 5
loop 17.81 18.50 18.87 19.15 62.75 5
apply 32.57 33.21 33.50 34.94 78.46 5

• Code can become more modular and easier to comprehend.
• Avoids explicit looping.
• But, performance cost.

ASPC Introduction to Topics Day 1 AM 24 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Parallel Execution with foreach

• The foreach package provides a new looping construct:
foreach().

• Some similarities with the standard for() loop.
• Dramatically simplifies parallelization across multiple cores on a

single computer of or multiple cores on a mutli-node HPC system
(e.g., Tukey, Della, Adroit).

library("foreach")
library("doParallel")

Loading required package: iterators
Loading required package: parallel

nProcs <- 8
cl <- makeCluster(spec = nProcs, type = "PSOCK")
registerDoParallel(cl)

ASPC Introduction to Topics Day 1 AM 25 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Parallel Execution with foreach

• In this application, we get better performance if we pre-assign
multiple rows to each worker process.

• Split the N total row-specific calculations across 8 workers.

mRanges <- matrix(NA, nrow = nProcs, ncol = 3)
initial #/per worker
mRanges[, 3] <- floor(nrow(dfCounties)/nProcs)
number short
nShort <- nrow(dfCounties) - sum(mRanges[, 3])
adj #/per worker
mRanges[, 3] <- mRanges[, 3] +

c(rep(1, nShort), rep(0, nProcs - nShort))
worker end points
mRanges[, 2] <- cumsum(mRanges[, 3])
worker start points
mRanges[, 1] <- mRanges[, 2] - mRanges[, 3] + 1

ASPC Introduction to Topics Day 1 AM 26 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Parallel Execution with foreach

• Each worker computes their part of the domain (1, . . . ,N).

mRanges

[,1] [,2] [,3]
[1,] 1 389 389
[2,] 390 778 389
[3,] 779 1167 389
[4,] 1168 1556 389
[5,] 1557 1945 389
[6,] 1946 2333 388
[7,] 2334 2721 388
[8,] 2722 3109 388

ASPC Introduction to Topics Day 1 AM 27 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Parallel Execution with foreach

calcPWDfe <- function(mat) {
mOut <- foreach(i = 1:nProcs,

.combine = rbind, .noexport = "dfCounties",

.export = c("mRanges", "mCounties")) %dopar% {
mTmp <- matrix(NA,

nrow = mRanges[, 3],
ncol = nrow(mat)
)

for(j in mRanges[i, 1]:mRanges[i, 2]) {
mTmp[i,] <- sqrt((mat[i, 1] - mat[, 1]) ^ 2 +

(mat[i, 2] - mat[, 2]) ^ 2
)

}
return(mTmp)

}
return(mOut)

}

ASPC Introduction to Topics Day 1 AM 28 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Performance

• Note: full matrix of coordinates.
• 1 for() Loop in R.
• 1 for() Loop in R + Parallel Execution via foreach().

microbenchmark("loop" = calcPWDv(mCounties),
"parloop" = calcPWDfe(mCounties),
times = 5
)

Unit: milliseconds
expr min lq median uq max neval
loop 1063.5 1113.9 1119.5 1154.2 1168 5
parloop 805.5 806.8 820.7 858.8 1543 5

The parallel R is 1.40 times faster than the fastest sequential R code
(and this is a problem ill-suited for foreach parallelization).

ASPC Introduction to Topics Day 1 AM 29 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Explicit Element-wise Calculation through Rcpp

• R has the ability to interface with instructions from compiled code.

• Although it executes faster, writing correct code in a compiled
language like C++ is more nuanced and less forgiving.

• The R package Rcpp does several things:
1 Creates complete C++ files from user-provided C++ snippets.
2 Provides handy object classes to make C++–level work seem

R–like.
3 Automates compilation of these files and creation of corresponding

R functions.

ASPC Introduction to Topics Day 1 AM 30 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Explicit Element-wise Calculation through Rcpp

library("Rcpp")
cppFunction("
NumericMatrix calcPWDcpp (NumericMatrix x) {

int nrows = x.nrow() ;
int ncols = x.nrow() ;
NumericMatrix out(nrows, ncols) ;

for(int arow = 0; arow < nrows; arow++) {
for(int acol = 0; acol < ncols; acol++) {

double LatDS = pow(x(arow, 0) - x(acol, 0), 2.0) ;
double LongDS = pow(x(arow, 1) - x(acol, 1), 2.0) ;
out(arow, acol) = sqrt(LatDS + LongDS) ;

}
}

return(out) ;
}
"

)

ASPC Introduction to Topics Day 1 AM 31 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Explicit Element-wise Calculation through Rcpp

• Rcpp creates the R–level function for us.

• Instead of seeing the source, the R function points to a piece of
the computer’s memory.

• This is where the instructions from our compiled code are stored.

calcPWDcpp

function (x)
.Primitive(".Call")(<pointer: 0x10d5e0b50>, x)

ASPC Introduction to Topics Day 1 AM 32 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Performance

• 1 for() Loop in R.
• 2 for() Loops in C++.

microbenchmark(
loop = calcPWDv(mCounties),
cpp = calcPWDcpp(mCounties),
times = 5
)

Unit: milliseconds
expr min lq median uq max neval
loop 1052.0 1057.3 1057.9 1063.5 1160.0 5
cpp 117.7 129.9 187.3 187.5 191.4 5

The C++ code is 6 times faster than the single R loop (sequential).

ASPC Introduction to Topics Day 1 AM 33 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Parallel Execution through Rcpp and OpenMP

• OpenMP is an API for parallel execution.
• API: a standard way of interacting with software that is not your

work
• Parallelizing your C++ code with OpenMP requires little work

beyond the original C++ snippet.
• With a compatible environment and OpenMP installed:

1 Instruct the compiler and linker to find the OpenMP API
2 Insert the OpenMP pragma for the compiler to handle

• pragma: an instruction for the compiler, not part of the language
itself.

Sys.setenv("PKG_CXXFLAGS" = "-fopenmp")
Sys.setenv("PKG_LIBS" = "-fopenmp")

ASPC Introduction to Topics Day 1 AM 34 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Parallel Execution through Rcpp and OpenMP

cppFunction("
NumericMatrix calcPWDcppOMP (NumericMatrix x) {

int nrows = x.nrow() ;
int ncols = nrows ;
NumericMatrix out(nrows, ncols) ;
omp_set_num_threads(8) ;

// just include the pragma
#pragma omp parallel for
for(int arow = 0; arow < nrows; arow++) {

for(int acol = 0; acol < ncols; acol++) {
double LatDS = pow(x(arow, 0) - x(acol, 0), 2.0) ;
double LongDS = pow(x(arow, 1) - x(acol, 1), 2.0) ;
out(arow, acol) = sqrt(LatDS + LongDS) ;

}
}

return out ;
}
",

include = "#include <omp.h>"
)

ASPC Introduction to Topics Day 1 AM 35 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Performance

• 1 for() Loop in R.
• 2 for() Loops in C++.
• 2 for() Loops in C++ + Parallel Execution with OpenMP.

microbenchmark(
loop = calcPWDv(mCounties),
cpp = calcPWDcpp(mCounties),
parcpp = calcPWDcppOMP(mCounties),
times = 5
)

Unit: milliseconds
expr min lq median uq max neval
loop 1055.43 1060.11 1079.77 1153.0 1185.5 5
cpp 131.43 137.42 138.68 187.3 192.6 5
parcpp 71.41 77.37 84.36 123.7 124.6 5

The parallel C++ code is over 15 times faster than the fastest R code
and is 2 times faster than the sequential C++ code.

ASPC Introduction to Topics Day 1 AM 36 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

The Big Picture

Scalability matters. The looploop (2 R loops) approach clearly doesn’t
scale. How do the others compare?

ASPC Introduction to Topics Day 1 AM 37 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

The Big Picture

Both C++ approaches scale very well. Choosing between parallel
foreach() and a sequential standard loop is problem–specific.

ASPC Introduction to Topics Day 1 AM 38 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

The Bigger Picture

ASPC Introduction to Topics Day 1 AM 39 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

The Bigger Picture

Relative to runtime of slowest method, "looploop".

ASPC Introduction to Topics Day 1 AM 40 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

This Morning

Case Study:
Performance of calculating (Euclidean) pairwise distances between all
US counties across under different approaches

• Overview of how methods apply to a conceptually straightforward
problem

• Narrow demonstration of possible performance gains

• Using R and freely available R packages

ASPC Introduction to Topics Day 1 AM 41 / 42

Motivation Nested Loops Loop Parallel R C++ Parallel C++ Summary

Coming Up. . .

• Dig deeper into each topic:

1 Monitoring performance

2 Simple performance
improvements

3 Parallel computing on local
and remote machines

4 Fast compiled code
through Rcpp

5 Complete Rcpp-based
packages

• Apply this suite of
programming approaches to
additional examples:

1 parametric, non-parametric
bootstrap

2 cross validation
3 MC analysis of statistical

properties
4 surface of the Earth

pair-wise distances
5 importance-sampling
6 sparse and dense linear

regression
7 EM and Bayesian Probit

regression

ASPC Introduction to Topics Day 1 AM 42 / 42

	Motivation
	Nested Loops
	Loop
	Parallel R
	C++
	Parallel C++
	Summary

