
Stochastic Optimization for Multiview Representation Learning
using Partial Least Squares

Raman Arora ARORA@CS.JHU.EDU
Poorya Mianjy MIANJY@JHU.EDU

Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218

Teodor V. Marinov T.V.MARINOV@SMS.ED.AC.UK

School of Informatics, University of Edinburgh, Edinburgh UK, EH8 9AB

Abstract

Partial Least Squares (PLS) is a ubiquitous sta-
tistical technique for bilinear factor analysis. It
is used in many data analysis, machine learning,
and information retrieval applications to model
the covariance structure between a pair of data
matrices. In this paper, we consider PLS for rep-
resentation learning in a multiview setting where
we have more than one view in data at training
time. Furthermore, instead of framing PLS as a
problem about a fixed given data set, we argue
that PLS should be studied as a stochastic opti-
mization problem, especially in a “big data” set-
ting, with the goal of optimizing a population ob-
jective based on sample. This view suggests us-
ing Stochastic Approximation (SA) approaches,
such as Stochastic Gradient Descent (SGD) and
enables a rigorous analysis of their benefits. In
this paper, we develop SA approaches to PLS
and provide iteration complexity bounds for the
proposed algorithms.

1. Introduction
Learning useful representations of data is one of the most
basic challenges in machine learning. Unsupervised repre-
sentation learning techniques capitalize on unlabeled data
which is often cheap and abundant and sometimes virtu-
ally unlimited. The goal of these ubiquitous techniques
is to learn a representation that reveals intrinsic low-
dimensional structure in data and dis-entangles underlying
factors of variation. This paper focuses on new theory and
methods for large-scale multiview representation learning.
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Representation learning is typically phrased as a ques-
tion about a fixed data set. For instance, partial least
squares (PLS), a ubiquitous procedure in data science, is
often posed as the following problem: given a data set of
n samples of two set of variates (or views), x ∈ Rdx and
y ∈ Rdy , respectively, what is the k-dimensional subspace
that captures most of the covariance between the two views.
It is well known that this subspace is given by the leading
k components of the singular value decomposition of the
cross-covariance matrix E[xy>]. And so, the study of com-
putational approaches for PLS has mostly focused on meth-
ods for finding the singular value decomposition (SVD), or
leading components of the SVD, for a given dx×dy matrix.

We argue that if we aim to capitalize on massive amounts
of unlabeled data, we must also develop appropriate com-
putational approaches and study them in the “data laden”
regime. Accordingly, in this paper, we take a stochastic
optimization view of representation learning rather than
thinking of them as dimensionality reduction techniques
for a given finite data set. In this paper, we argue that in
the data laden (“big data”) regime, representation learning
techniques, including PLS, and other related problems, are
better studied as stochastic optimization problems, where
the goal is to optimize a “population objective” based on
i.i.d. draws from the population. That is, in the case of PLS,
we consider a setting in which we have some unknown
source (“population”) distribution D over Rdx × Rdy , and
the goal is to find the k-dimensional subspace maximiz-
ing the (uncentered) covariance of D inside the subspace
based on i.i.d. samples from D. The main point here is
that the true objective is not how well the subspace cap-
tures the sample (i.e. the “training error”), but rather how
well the subspace captures the underlying source distribu-
tion (i.e. the “generalization error”). Furthermore, we are
not concerned here with capturing some “true” subspace,
and so do not measure the angle to it, but rather at finding a
“good” subspace, that is almost as good as the optimal one.
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This allows our analysis to be independent of any eigengap
(though if an eigengap does exist, a “good” subspace is also
necessarily close to the “correct” one).

Of course, finding the subspace that maximizes the sample
covariance, that is, that minimizes the “training error”, is a
very reasonable approach to PLS on the population. This
is essentially an Empirical Risk Minimization (ERM) or
Sample Average Approximation (SAA) approach. How-
ever, when comparing it to alternative, perhaps cheaper,
computational approaches, we argue that one should not
compare the error on the sample, but rather the population
objective. Such a view can justify and favor computational
approaches that are far from optimal on the sample, but are
essentially as good as the ERM/SAA approach on the pop-
ulation. This formalizes and quantifies the intuition that
there is no point in spending much effort in being exact on
the sample, if in any case it just estimates the population.

Such a population-based view of optimization has recently
been advocated in machine learning, and has been used
to argue for crude stochastic approximation approaches
(online-type methods) over sophisticated deterministic op-
timization of the empirical (training) objective (i.e. “batch”
methods) (Bottou & Bousquet, 2007; Shalev-Shwartz &
Srebro, 2008). A similar argument was also made in
the context of stochastic optimization, where (Nemirovski
et al., 2009) argue for stochastic approximation (SA) ap-
proaches over SAA. Accordingly, SA approaches, mostly
variants of Stochastic Gradient Descent (SGD), are often
the methods of choice for many learning problems, es-
pecially when very large data sets are available (Shalev-
Shwartz et al., 2007; Collins et al., 2008; Shalev-Shwartz
& Tewari, 2009).

Most work on stochastic approximation approaches in
learning so far has been in the context of supervised learn-
ing. Here, we would like to take carry the same view over
to unsupervised learning, and develop stochastic approxi-
mation approaches for partial least squares.

In our analysis, we focus on the “data laden”
regime (Shalev-Shwartz & Srebro, 2008), where we
have access to as many samples as we would like. That
is, we focus on the runtime required to achieve a good
(population) objective value, given access to as many sam-
ples as we want. Our runtime analysis therefore doesn’t
depend on the “data set size” (and certainly runtime does
not increase if we have access to more data). This is the
relevant regime in many modern “big data” problems,
where we have access to effectively infinite amounts of
data (e.g. images, speech recordings, text, videos, etc),
and is especially true for unsupervised problems that use
unlabeled data.

Furthermore, we focus on multiview representation learn-

ing where multiple “views” of the data, possibly from dif-
ferent measurement modalities are readily available. For
instance, in web-page classification, one view may be the
text of the page and the other the hyperlink structure; in
automatic speech recognition, the views may be the acous-
tics and articulatory measurements such as tracks of flesh
points (Bharadwaj et al., 2012). In such multiview learn-
ing problems, a common representation of the two views is
provided by the shared semantic space.

A common approach to extracting this space is through
canonical correlation analysis (CCA), which finds pairs of
maximally correlated projections of the data in the two
views. CCA has been successfully applied to various
tasks in speech (Arora & Livescu, 2012; Bharadwaj et al.,
2012; Arora & Livescu, 2013; Wang et al., 2015b), natural
language processing (Haghighi et al., 2008; Dhillon et al.,
2011; Wang et al., 2015a; Benton et al., 2016), and com-
puter vision (Blaschko & Lampert, 2008; Hardoon et al.,
2004). CCA admits a non-standard stochastic optimization
problem where not only the objective but the constraints
are stochastic, or equivalently the objective is a ratio of
two expectations rather than an expectation of a loss func-
tion (Arora et al., 2012; Wang et al., 2015c; 2016). Con-
sequently, the CCA objective does not decompose over the
sample and designing stochastic approximation algorithms
for CCA remains a challenging open problem.

A related approach to multiview representation learning is
based on PLS which finds pairs of maximally covarying
projections of the data in the two views. PLS has been
applied to a host of problems in various areas including
chemometrics, bioinformatics, medicine, social sciences,
physiology (Rosipal & Krämer, 2006). Furthermore, as-
suming that the data is whitened in each view (after pre-
processing), CCA reduces to PLS. More importantly, since
the covariance objective decomposes over samples, PLS
is amenable to standard stochastic optimization. How-
ever, the optimization problem associated with PLS is non-
convex and stochastic approximation approaches recently
proposed for PLS do not enjoy any theoretical guaran-
tees (Arora et al., 2012).

In this paper, we present a convex relaxation of the stochas-
tic optimization problem for PLS and study two stochas-
tic approximation algorithms, which may be viewed as in-
stances of stochastic mirror descent for different choices of
potential functions. We provide rigorous theoretical guar-
antees for both of these algorithms in terms of the number
of iterations needed to guarantee an ε-suboptimal solution
to PLS. Furthermore, we empirically compare and evalu-
ate the proposed algorithms with other standard stochastic
approximation approaches including the stochastic power
method and the incremental singular value decomposition
(SVD) algorithm for PLS (Arora et al., 2012).



Stochastic Optimization for Multiview Representation Learning

2. Partial Least Squares (PLS)
Formally, we can phrase partial least squares as the fol-
lowing stochastic optimization problem. Consider a joint
distribution D over pairs of vectors x ∈ Rdx and y ∈ Rdy .
We represent the k-dimensional subspace that captures the
maximal covariance in the distribution D by a pair of basis
matrices U ∈ Rdx×k and V ∈ Rdy×k, where the corre-
sponding columns of U and V represent corresponding co-
varying directions. The PLS problem can now be expressed
as finding U,V that:

maximize
U∈Rdx×k, V∈Rdy×k

Ex,y
[
x>UV>y

]
subject to U>U = Ik,V>V = Ik

(1)

The columns of U and V are the singular vectors of the
covariance matrix Σxy = E[xy>]. The sample average ap-
proximation (SAA) or empirical risk minimization (ERM)
approach to PLS amounts to finding top-k singular vectors
of the empirical covariance matrix Σ̂xy = 1

T

∑T
t=1 xty>t .

Like most other learning problems, PLS is an optimization
of an expectation subject to fixed constraints, and is there-
fore amenable to a stochastic approximation approach.
Several SA methods have been proposed for PLS (Arora
et al., 2012); While these algorithms work great in prac-
tice, we need a better theoretical understanding of these al-
gorithms, in terms of the total runtime needed to find an
ε-suboptimal solution to Problem 1, which is the focus of
this paper. We next briefly describe SA algorithms for PLS
proposed by Arora et al. (2012).

Stochastic Power Method for PLS: The PLS objec-
tive can be written in terms of the trace operator as
Tr
(
U>ΣxyV

)
, which has gradients ΣxyV with respect to

U and Σ>xyU with respect to V. This motivates the fol-
lowing simple alternating minimization approach based on
stochastic gradient descent (Arora et al., 2012):

Ut = Porth
(
Ut−1 + ηtxty>t Vt−1

)
Vt = Porth

(
Vt−1 + ηtytx

>
t Ut−1

)
,

where the operator Porth(·) projects onto the set of orthog-
onal matrices. The stochastic power method for PLS re-
quires minimal computational resources – the space com-
plexity of the resulting algorithm is the sum of the sizes of
U and V: O (k (dx + dy)). Ignoring the cost of the projec-
tion1, the computational cost is dominated by the matrix-
vector multiplications of the update equation which costs
O (k (dx + dy)) operations per iteration. However, there
are no theoretical guarantees on the convergence of the
stochastic power method for PLS.

Incremental PLS: Perhaps the most straightforward ap-
proach to PLS in the stochastic setting is motivated by the

1Performed for purely numerical reasons, and only very infre-
quently (Arora et al., 2012).

follow the leader algorithm, where, at every step t we take

Ĉ
(t+1)

xy = 1
(t+1) (tĈ

(t)

xy + xty>t ) to be the empirical cross-
covariance matrix of all the samples seen so far, calcu-
late its singular value decomposition (SVD), and compute
the top-k left and right singular vectors. This essentially
requires finding the ERM solution at each iteration, and
is far from being practical – it requires O(dxdy) opera-
tions just to update the covariance matrix. However, we
can instead perform an approximate ERM at much lower
computational cost by explicitly constraining the rank of
the empirical cross-covariance matrix, and performing a
rank-one update incrementally, as each new sample is ob-

served. This results in the following update: Ĉ
(t+1)

xy =

1
(t+1)Prank-k(tĈ

(t)

xy + xty>t ). Furthermore, this update can
be implemented efficiently by simply storing and manipu-
lating the singular vectors and singular values of a rank-
k matrix requiring space complexity of O (k (dx + dy))
and computational cost of O

(
k2 (dx + dy)

)
(Arora et al.,

2012).

Online PLS: Finally, the online randomized PCA algo-
rithm of Warmuth & Kuzmin (2008) can be adapted to PLS
by reducing the PLS problem to an equivalent PCA-like
problem (Arora et al., 2012), the goal of which is to find
the top eigenvectors of a self-adjoint dilation of the ma-
trix Σxy (Tropp, 2011). We formally study the online PLS
algorithm as an instance of matrix exponentiated gradient
(MEG) algorithm in Section 3.2.

3. Stochastic approximation for PLS
We present two algorithms for stochastic optimization of
PLS, the first one consists of additive updates and we re-
fer to it as Matrix Stochastic Gradient (MSG), the second
one is based on multiplicative updates and is referred to as
Matrix Exponential Gradient (MEG). These algorithms can
be viewed as instances of stochastic mirror descent with
different choices of potential function, Frobenius norm for
MSG and von Neumann entropy for MEG. Both algorithms
can be justified in an online setup where we process a single
data point at each iteration as follows. Given an estimate of
the parameter matrix Mt−1 representing the maximally co-
varying subspace, computed on previously observed data,
and a new data pair (xt, yt) at time t, we update the pa-
rameter matrix by solving the following optimization prob-
lem: Mt = arg minM d(M,Mt−1) + η`(M, xt, yt), where
d(M,Mt−1) is a divergence function that encourages next
iterate to stay close to the current iterate while `(M, xt, yt)
is the loss on the current instance pair. The parameter η
provides the trade-off between the instantaneous loss func-
tion and our summary of the past observations encoded as
the parameter matrix. The divergence functions for MSG
and MEG are generated by Frobenius norm and von Neu-
mann entropy, respectively, and the loss function for both
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MSG and MEG is −〈M,Ct〉 = −Tr
(
M>Ct

)
where Ct

corresponds to the instantaneous estimate of the covariance
matrix for MSG and its dilation for MEG.

3.1. Matrix Stochastic Gradient

The PLS optimization problem in equation (1) is a non-
convex optimization problem; both the objective and con-
straints are non-convex. In this section, we consider a con-
vex relaxation of Problem 1 and analyze the SGD algorithm
for the same. We first introduce a simple variable substitu-
tion, M = UV>, which allows us to reformulate the prob-
lem as:

maximize
M∈Rdx×dy

Ex,y
[
x>My

]
subject to σi(M) ∈ {0, 1}, i ∈ [d′]

‖M‖∗ =
d′∑
i=1

σi(M) = k,

(2)

where d′ = min{dx, dy}, σi(M) are the singular values of
matrix M with σ1 ≥ σ2 ≥ · · · ≥ σd′ , and ‖M‖∗ denotes the
nuclear norm of matrix M. We now have a convex (linear,
in fact) objective, but the constraint set is still non-convex.
We consider the following convex relaxation of the first set
of constraints: σi(M) ∈ [0, 1], i ∈ [d′], or equivalently,
σ1(M) = ‖M‖2 ≤ 1, where ‖M‖2 denotes the spectral
norm of matrix M. Furthermore, we relax the non-linear
equality constraints to give us the following convex pro-
gram:

maximize
M∈Rdx×dy

Ex,y
[
x>My

]
subject to ‖M‖2 ≤ 1, ‖M‖∗ ≤ k.

(3)

Since the objective Ex,y
[
x>My

]
is linear in M, the maxi-

mum will always occur at the boundary of the convex body
of the feasible region given by constraints in (3), so that at
any optimum we have ‖M‖2 = 1 and ‖M‖∗ = k.

This problem can now be solved using projected stochastic
gradient method with the following update rule:

Mt = PF (Mt−1 + ηtxty>t )

where PF projects onto the convex feasible set of Problem
(3) with respect to the Frobenius norm, i.e. PF (M′) solves:

minimize
M

∥∥M−M′
∥∥2

F

subject to ‖M‖2 ≤ 1, ‖M‖∗ ≤ k.
(4)

If the solution to the relaxed Problem 3 is not rank-k, and
hence not a feasible point of Problem 2, we can sample a
rank-k solution from it, which gives the same objective in
expectation. Algorithm 2 of Warmuth & Kuzmin (2008)

describes an efficient procedure to express any solution of
Problem 3 as a convex combination of at most d feasible
solutions of Problem 2, from which we can sample a rank-
k solution. We refer to this procedure as rounding. The
pseudocode for MSG is given in Algorithm 1.

Algorithm 1 Matrix Stochastic Gradient

Input: M0, {(xt, yt)}Tt=1, η
Output: M̃

1: for t = 1, · · · , T do
2: M̂t = Mt−1 + ηxty>t
3: Mt = PF (M̂t) given by lemma 3.1
4: end for
5: M̄ = 1

T

∑T
t=1 Mt−1

6: M̃ = rounding(M̄)

Efficient Implementation and Projection: A naive im-
plementation of the MSG update requires O(dxdy) mem-
ory and O

(
d2
xdy
)

operations per iteration only for the up-
date. We follow (Arora et al., 2012) to perform updates
efficiently by maintaining an up-to-date SVD decomposi-
tion of M(t), so that the rank-1 update at each iterate costs
O
(
k2(dx + dy)

)
. Furthermore, we show in Lemma 3.1,

that the projection step can be performed efficiently, since
the projection operates only on the singular values, leav-
ing singular vectors intact. Following Algorithm 2 in
(Arora et al., 2013), we can perform the projection step in
O(k log (k)) operations, using a shift-and-clip procedure,
which involves finding the smallest ν (see Lemma 3.1) such
that after decreasing the singular values by ν and clipping
them to [0, 1], the result is feasible. The overall compu-
tational complexity of the proposed algorithm is linear in
input dimension (dx + dy).
Lemma 3.1. Let M′ ∈ Rdx×dy , dx ≤ dy , be a real matrix,
with singular value decomposition {σ′i, ui, vi}

dx
i=1 where

singular values are sorted in descending order, and ui and
vi are the corresponding left and right singular vectors.
Let M = PF (M′) be a projection of M′ onto the feasible
region of Problem (3) with respect to the Frobenius norm.
Then, M is the unique feasible matrix which has the same
set of singular vectors as M′, with the associated singular
values σ1, . . . , σdx satisfying:

σi = max(min(σ′i − ν, 1), 0)

with ν ∈ R≥0 the smallest shift such that
∑dx
i=1 σi ≤ k.

Proof. The objective in Problem (4) is strongly convex, and
the feasible set is convex, so the problem has a unique so-
lution. First, we show that the singular vectors of M are the
same as that of M′. Note that∥∥M−M′

∥∥2

F
= ‖M‖2F +

∥∥M′
∥∥2

F
− 2 Tr

(
M>M′

)
.
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Let M = UΣV>. By a change of variable, we can state
Problem 4 in terms of U,Σ,V:

mininize
Σ

‖Σ‖2F − sup
U,V

2 Tr
(
M′UΣV>

)
subject to ‖Σ‖2 ≤ 1, ‖Σ‖∗ ≤ k.

(5)

Now, for any square real matrix A ∈ Rdx×dx , and for any
i ∈ [dx], we have that ((Horn & Johnson, 1991), pp. 151)

σk(A) ≥ λk

(
A + A>

2

)
,

where σk(·) and λk(·) denote the kth largest singular and
eigenvalue respectively. Therefore,

Tr(A)=Tr

(
A + A>

2

)
=

dx∑
i=1

λi

(
A + A>

2

)
≤

dx∑
i=1

σi(A).

This gives Tr(M>M′) ≤
∑dx
i=1 σi(M>M′). We next use

the following inequality on the sum of the singular values
of product of matrices ((Horn & Johnson, 1991), pp. 176-
177):

k∑
i=1

σi(M>M′) ≤
k∑
i=1

σi(M)σi(M′), k ∈ [dx], (6)

where the equality holds when M and M′ have the same set
of singular vectors. Therefore, we can see that

∥∥M−M′
∥∥2

F

is minimized when M and M′ have the same set of singu-
lar vectors and Problem 4 can be reduced to solving the
following problem:

minimize
σ

1

2
‖σ − σ′‖2

subject to 0 ≤ σi ≤ 1, i ∈ [dx],

dx∑
i=1

σi ≤ k.
(7)

To solve this problem, we first form the Lagrangian:

L(σ,α,β, ν) =
1

2
‖σ − σ′‖2 +α>(σ − 1)

− β>σ + ν

(
dx∑
i=1

σi − k

)
,

whereα,β, ν are (non-negative) dual variables. KKT con-
ditions require that the derivative of the Lagrangian with
respect to σ vanishes at the optimum. Hence,

σi − σ′i + αi − βi + ν = 0, i ∈ [dx]. (8)
Further, by complementary slackness, we have

ν

(
dx∑
i=1

σi − k

)
= αi(σi − 1) = βiσi = 0.

Complementary slackness together with equation (8) im-
plies that if 0 ≤ σ′i − ν ≤ 1, then αi = βi = 0 and
σi = σ′i − ν, otherwise, αi and βi will “clip” σi to the
active constraint:

σi = max(min(σ′i − ν, 1), 0).

Primal feasibility with respect to the constraint
∑dx
i=1 σi ≤

k together with the complementary slackness ν(
∑dx
i=1 σi−

k) = 0 gives that ν is non-zero (positive) only if the con-
straint is violated, where ν “shifts” the solution towards the
active constraint

∑dx
i=1 σi = k, completing the proof.

Convergence rate: Our first main result gives a bound
on the ε-suboptimality of the MSG on the PLS objective
in terms of the number of iterations of the algorithm. We
assume without loss of generality that the data are scaled in
such a way that E[‖x‖2] ≤ 1 and E[‖y‖2] ≤ 1.

Theorem 3.2. After T iterations of Algorithm 1 with step

size η =
√

k
T , and starting at M(0) = 0,

E
[
Ex,y

[
x>M̃y

]]
≥ Ex,y

[
x>M∗y

]
− 1

2

√
k

T
, (9)

where the expectation is w.r.t. the i.i.d. samples
{(xt, yt)}Tt=1 ∼ D and the rounding, and M∗ is the op-
timum of (2).

Proof. Standard SGD analysis of (Nemirovsky & Yudin,
1983) yields that

E
[
x>M∗y−x>M̄y

]
≤ η

2
Ex,y

[
‖g‖2F

]
+

∥∥∥M∗ −M(0)
∥∥∥2

F

2ηT
,

where g = xy> is the gradient of the PLS objec-
tive. Now, Ex,y

[
‖g‖2F

]
≤ Ex,y

[
‖x‖2 ‖y‖2

]
≤ 1 and∥∥∥M∗ −M(0)

∥∥∥2

F
= ‖M∗‖2F = k. In the last equality, we

used the fact that M∗ has k singular values of value 1 each,
and hence ‖M∗‖F =

√
k.

Equivalently, the number of iterations of MSG to achieve
an ε-suboptimal solution to the PLS objective is O

(
k
ε2

)
.

3.2. Matrix Exponentiated Gradient
In this section, we consider an alternate formulation for
the PLS problem based on a self-adjoint dilation and sym-
metrization of the cross-covariance matrix. This formula-
tion leads to a multiplicative update which we refer to as
matrix exponentiated gradient or MEG. MEG is essentially
the same as the online PLS algorithm presented in (Arora
et al., 2012). Here, we motivate MEG as an instance of
SGD for a convex relaxation of an alternate formulation of
PLS, and give a convergence analysis.

Consider a self-adjoint dilation (Tropp, 2011) of the empir-
ical covariance matrix xty>t based on a single sample,

Ct :=
(

0 xty>t
ytx
>
t 0

)
=

1

2

(
xt
yt

)(
xt
yt

)>
− 1

2

(
xt
−yt

)(
xt
−yt

)>
Then C := Ext,yt [Ct] is the symmetrization of the pop-
ulation cross-covariance matrix Σxy = Ex,y

[
xyT

]
. Let
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WΛW> be the rank-k eigendecomposition of matrix C and
let USV> be the truncated rank-k SVD of Σxy. Then, as-
suming that Σxy does not have repeated nonzero singular
values, the positive eigenvalues of C are precisely the sin-
gular values of Σxy and the optimal value of the objective
in Problem (1) is obtained by taking the sum of the top-k
eigenvalues of C. Furthermore, the solution to the stochas-
tic PLS Problem (1), i.e. the top-k left and right singular
vectors of Σxy, are embedded in the top-k eigenvectors of
matrix C as follows:

W :=
1√
2

(
U U
V −V

)
. (10)

In other words, if we take the first k columns of W, i.e. the
top-k eigenvectors of C, then the first dx rows correspond
to the left singular vectors of Σxy and the next dy rows
correspond to the right singular vectors of Σxy. Defining
d = dx + dy , PLS can be formulated as

maximize
W∈Rd×k

Tr(WW>C)

subject to W>W = I
, (11)

While the problem above is not convex, it admits a simple
convex relaxation. Substitute M = 1

d−k (I−WW>), to get
minimize

M∈Rd×d
Ext,yt [Tr(MCt)]

subject to M � 0, ‖M‖2 ≤
1

d− k
,Tr(M) = 1

(12)

Following Warmuth & Kuzmin (2008) we consider a
stochastic mirror descent algorithm for Problem (12) with
quantum relative entropy as the Bregman divergence. This
results in the following multiplicative matrix exponentiated
gradient updates:

M̂t=
elog(Mt−1)−ηCt

Tr
(
elog(Mt−1)−ηCt

) , Mt=PRE

(
M̂t

)
(13)

where eX and log (X) denote matrix exponential and matrix
logarithm, respectively, and PRE(·) is the Bregman pro-
jection onto the convex set of constraints w.r.t. the quan-
tum relative entropy. Algorithm 4 of (Warmuth & Kuzmin,
2008) gives an efficient procedure for this projection. Pseu-
docode for MEG is given in Algorithm 2.

Efficient Implementation and Projection: The capping
step in Algorithm 2 takes O(d) time (Warmuth & Kuzmin,
2008) and the rank-2 update, assuming we keep an up-to-
date SVD, takes O

(
k2d
)

time (Arora et al., 2012). We
analyze the MEG algorithm for average of the iterates
M̃ = rounding( 1

T

∑T
t=1 Mt). We get same rates if we

sample uniformly one of the iterates. In practice, we use
the parameter matrix from the final iterate.
Convergence rate: The standard analysis of Algorithm 2
would require stochastic gradients Ct to be positive semi-
definite, which does not hold in general. However, it is

Algorithm 2 Matrix Exponentiated Gradient

Input: M0, {(xt, yt)}
T
t=1, η

Output: M̃
1: for t = 1, · · · , T do

2: Ct =

(
0 xty>t

ytx
>
t 0

)
3: M̂t = e

log(Mt−1)−ηCt

Tr

(
e
log(Mt−1)−ηCt

)
4: Mt = PRE(M̂t) given by Algorithm 4 (Warmuth &

Kuzmin, 2008)
5: end for
6: M̄ = 1

T

∑T
t=1 Mt−1

7: M̃ = rounding(M̄)

easy to check that the update in (13) is invariant to adding
a scaled identity matrix to Ct, i.e.

elog(Mt−1)−ηCt+αI

Tr
(
elog(Mt−1)−ηCt+αI

) =
elog(Mt−1)−ηCt

Tr
(
elog(Mt−1)−ηCt

) .
In other words, we can always replace Ct by its “spectrum-
shifted” version C̃t = Ct − λmin(Ct)I such that 0 � C̃t �
rI. We next present our analysis of the MEG algorithm.

Theorem 3.3. After T iterations of Algorithm 2 start-
ing from M0 = 1

d I with a step size of η =

1
r log

(
1 +

√
2r log(d)
LT

)
, we have that

E
[
Tr
(
M̃C
)]
− Tr (M∗C) ≤

√
2rL log (d)

T
+
r log (d)

T

where the expectation is w.r.t. the i.i.d. samples
{(xt, yt)}Tt=1 ∼ D and the rounding, M∗ is the opti-
mum of (12), and Tr (M∗Ct) ≤ L for all t ∈ [T ], and r is
chosen such that 0 � C̃t � rI.

Proof. We will need the following lemma which follows
from Theorem 2 of Warmuth & Kuzmin (2006); For com-
pleteness sake, we include a proof in the supplement.

Lemma 3.4. With the same assumptions as in Theorem 3.3,
the following regret bound holds

T∑
t=1

Tr (Mt−1Ct)−
T∑
t=1

Tr (M∗Ct)

≤
√

2rLT log (d) + r log (d) (14)

We now take the expectation on both sides of (14) with
respect to {xt, yt}Tt=1. For a more compact notation, let
E(τ) [·] and Eτ [·] denote the expected value with respect
to {xt, yt}τt=1 and {xτ , yτ}, respectively. Then, for the sec-
ond term on the left hand side, we have

E

[
T∑
t=1

Tr (M∗Ct)

]
= T · Tr (M∗C) (15)
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Figure 1. Comparisons of the incremental, SGD with proposed algorithms, MSG and MEG for stochastic PLS optimization on a synthetic
dataset, in terms of the objective value as a function of iteration (top) and as a function of CPU runtime (bottom).

and for the first term we get:

E(T )

[
T∑

t=1

Tr (Mt−1Ct)

]
=

T∑
t=1

Tr
(
E(t) [Mt−1Ct]

)
=

T∑
t=1

Tr
(
E(t−1)E(t)

[
Mt−1Ct|{xi, yi}

t−1
i=1

])
=

T∑
t=1

Tr
(
E(t−1) [Mt−1]Et [Ct]

)
=

T∑
t=1

Tr
(
E(t−1) [Mt−1] C

)
= E(T )

[
T∑

t=1

Tr (Mt−1C)

]
(16)

where the second equality above follows from the law
of total expectation, and the third equality holds because
Mt−1 depends only on {xi, yi}

t−1
i=1 while Ct depends only

on {xt, yt}. Finally, we use (15) and (16) in (14) after tak-
ing expectation and divide both sides by T .

4. Experimental Results
In this section, we evaluate the performance of our methods
against other stochastic baselines discussed in Section 2, in
terms of the progress made on the objective as a function
of the number of iterations as well as the CPU runtime, on
both synthetic and real-world datasets.

4.1. Synthetic dataset

For synthetic experiments, we generate data from a pair
of elliptical normal distributions with exponentially decay-
ing variances. In particular, we draw a d × 3n data ma-
trix X from the standard normal distribution N(0, I), com-
pute its SVD, X = USV>, specify the spectrum by set-
ting S̃ii = (1.2)−i and normalizing it to sum to one, and
reconstructing the data matrix as X̃ = US̃V>. Next, we
sample two random orthogonal matrices U1 ∈ Rd×dx and
U2 ∈ Rd×dy . We project the data points onto the sub-
spaces spanned by U1,U2 and perform random rotations in
those subspaces giving us the two views X1 = R1U>1 X̃
and X2 = R2U>2 X̃, for some random rotation matrices
R1 ∈ Rdx×dx and R2 ∈ Rdy×dy . Finally, we add i.i.d.
zero-mean isotropic Gaussian noise. Each view is split into
training, tuning and testing sets, each of size n. We set
(d, n) = (50, 1000), dx = dy = 10.

Our experiments compare performance in terms of the ob-
jective function value. Figure 1 shows the PLS objective
as a function of the number of iterations (samples pro-
cessed) as well as CPU runtime, for target dimensionality
k ∈ {2, 4, 8}. We tune the initial learning rate parameter
η0 for each algorithm over the set {0.001, 0.01, 0.1, 1, 10}.
All algorithms were run for only one “pass” over the train-
ing data. All results are averaged over 50 random train/test
splits. It is evident from the plots, that incremental PLS
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Figure 2. Comparisons of the incremental, SGD with proposed algorithms, MSG and MEG for stochastic PLS optimization on the
XRMB dataset, in terms of the objective value as a function of iteration (top) and as a function of CPU runtime (bottom).

is the fastest algorithm both in terms of the runtime and
progress-per-iteration. MSG and MEG offer, in some
sense, best of the both worlds, since they enjoy good the-
oretical guarantees, but also compare well with incremen-
tal PLS on the empirical performance. We emphasize that
a better theoretical understanding of incremental PLS was
what led to the development of MSG and MEG in the first
place.

4.2. Real world dataset

In this section, we discuss experiments on the University
of Wisconsin X-ray Microbeam (XRMB) Database (West-
bury, 1994). XRMB contains simultaneously recorded
acoustic and articulatory measurements. We use roughly
225, 000 examples from four different speakers. The di-
mensionality of the acoustic and the articulatory views are
dx = 1638 and dy = 1008, respectively. All experiments
include pre-normalization, consisting of mean-centering
the feature vectors and then dividing each coordinate by
its standard deviation times the square root of the length of
the feature vector.

In order to ensure a fair comparison with the parameter-
free incremental PLS algorithm, we deliberately set all ini-
tial learning rates η0 = 1, choosing ηt = 1/

√
t uniformly

for all experiments. All algorithms were run for only one
“pass” over the training data. Our experiments compare
performance in terms of the objective function value. Be-
cause we cannot evaluate the true population objective for

Problem 1, we instead approximate them by evaluating on
a held-out testing sample (half of the dataset, with the other
half being used for training). All results are averaged over
50 random train/test splits.

Figure 2 shows the PLS objective, as a function of the
number of samples processed (iterations) as well as CPU
runtime, for ranks k ∈ {2, 4, 8}. As expected, SGD is
the fastest, but also makes the least progress, per iteration.
Both MEG and MSG make better progress than SGD per
iteration, in a comparable runtime. Amongst the stochas-
tic algorithms, the incremental algorithm is consistently the
best in terms of both runtime and progress-per-iteration,
and generally attains an objective close to the optimum
faster than the batch algorithm.

5. Conclusion
We study PLS as a stochastic optimization problem, with
the goal of optimizing the population objective. This view
motivates computationally cheaper algorithms that are vari-
ants of SGD in a big data setting. We give theoretical guar-
antees for online PLS and for a new algorithm called MSG.
Our study is motivated by the desire to better understand
incremental PLS which enjoys excellent empirical perfor-
mance but can get stuck at a sub-optimum. MSG and MEG
promise best of the both worlds, marrying theoretical guar-
antees with empirical performance similar to incremental
PLS as confirmed by our experiments on both real and syn-
thetic datasets.
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