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Abstract: It has been observed that in the urban center of Shanghai, land subsidence has accelerated,
and the groundwater level has continued to drop even though the net withdrawn volume (NWV)
of groundwater has remained unchanged since 1980. An analysis of monitoring data shows that
drawdown of the groundwater level is one of the factors that have influenced land subsidence
since 1980. The NWV of groundwater in urban areas, however, is not the critical factor controlling
the drawdown of the groundwater level. Since the 1980s, there have been many underground
works constructed in the unique strata of Shanghai, which has an interlayered structure known
as a multi-aquifer-aquitard system (MAAS). Investigation into land subsidence caused by urban
construction is now receiving much attention. Based on the principle of a strategic environmental
assessment (SEA) for sustainable urban development, this paper presents a discussion and analysis of
the factors which can influence the development of land subsidence during continued urbanization
in Shanghai. The main factors include the additional loading caused by the construction of structures,
the cut-off effect due to construction in aquifers, the drawdown of groundwater level caused by
leakage into underground structures, and the decrease of groundwater recharge from neighboring
zones. SEA is recommended for the future development of Shanghai.
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1. Introduction

Groundwater is the most important resource which is extracted worldwide for irrigation, industry,
and domestic use. Much research is conducted into maintaining sustainable levels of groundwater
extraction [1–3]. In Shanghai, groundwater pumping started in the early 1860s, and it has resulted
in serious land subsidence [4–7]. The average cumulative subsidence as of 2009 in the urban area
has reached 1.97 m [6]. Since 1966, measures relating to groundwater control have been adopted
(such as banning unnecessary groundwater withdrawal, changing the withdrawal source to deeper
aquifers, and adopting artificial recharge [7,8]). With these measures implemented, land subsidence
was controlled for a period of time. However, since the 1990s, land subsidence has again increased.

With the rapid expansion of urban development since the 1990s, a significant amount of municipal
infrastructure, such as water supply, gas pipelines, electric transmission lines, metro lines, underground
structures, and high-rise buildings, has been constructed. Environmental sustainability has become
a focal point in urban development [9,10]. Urbanization seriously affects the natural environment, not
only in terms of environmental pollution, but also in the deterioration of the geological environment,
which can induce geohazards.
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As depicted in Figure 1, the multi-aquifer-aquitard groundwater system (MAAS) in Shanghai
consists of a phreatic aquifer group (Aq0) and five confined aquifers (AqI–AqV), which are divided
by six aquitards (AdI–AdVI) [11–13]. The phreatic aquifer group, Aq0, has two secondary types: one
is the phreatic aquifer (Aq01) and the other one is the artesian aquifer (Aq02). Bedrock outcrops
have a total area of about 2.5 km2, and are generally distributed as separate mounds. The remaining
bedrock is primarily covered by Quaternary sediments and is also partially covered by Tertiary
deposits 300 m in thickness. The foundation-bearing soil strata and underground construction depths
are generally within a 100 m depth [11,13]. The presence of these underground structures will
change the hydrogeological characteristics of the strata and aquifers. Some researchers have accepted
that urban construction is now a significant factor for land subsidence [12,13]. The proportion of
subsidence caused by construction in the urban area is thought to be more than 30% of the overall land
subsidence [13]. However, the mechanism by which urban construction can accelerate land subsidence
in Shanghai has still not been adequately explained.
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Figure 1. Shanghai hydrogeological profile (cross-section I–I’) and location of urban areas.

As increasing subsidence can affect the normal operation of municipal infrastructure, the
municipal government has published a “Shanghai decree” to prevent and control land subsidence
so that the sustainable development of the city can be ensured [14,15]. However, the effectiveness
of this decree needs to be examined. It is necessary to verify whether the environmental impact
assessment (EIA) should be at the project level or at the level of SEA [16]. SEA, which takes the
environmental impact of policies, plans, and programs (PPPs) and their alternatives into account, is
generally recommended in EIA [17].

The objective of this study is (i) to provide a scientific assessment of the relationship between
land subsidence and constructed facilities based on data; (ii) to investigate the long-term mechanisms
leading to increasing subsidence; and (iii) to protect the geological environment based on the SEA level.
The term “environment” used in this paper specifically relates to the geological environment in which
the geohazards of land subsidence can arise. To ensure the sustainable development of Shanghai,
decision-making concerning PPPs must be based on SEA in the future.
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2. Methodology

2.1. Data Extraction

The land subsidence monitoring system includes monitoring of land subsidence levels and soil
deformation, and monitoring of the groundwater regime, and is supervised by the Shanghai Institute
of Geology Survey (SIGS). All data on land subsidence, soil deformation, groundwater levels, and
groundwater withdrawn volume were extracted from the records of the SIGS. The land subsidence
data were extracted from the land subsidence level monitoring network in Shanghai. The area covered
by this network includes the entire administrative region of Shanghai. The distance between each
leveling point is about 0.5 km in the urban center [14,18]. The leveling is checked against GPS survey
data to ensure the accuracy of the land subsidence data. All of the soil deformation data were extracted
from soil deformation monitoring stations, each one consisting of a bedrock benchmark and borehole
extensometers, which have been installed for decades, to form the soil deformation monitoring
system [18,19]. The benchmarks are protected by high-quality thick seamless steel tubing, and cement
mortar has been grouted into the joint between the boring holes and the steel tubes. Mineral exploration
theory and techniques were applied to design special borehole structures to convert the elevations
of formations at different depths to the ground level for correlating measurements. In this way the
monitoring stations can reflect the soil deformation at different depths. The data for groundwater
levels and groundwater withdrawn-recharged volume were extracted from a groundwater regime
monitoring network. The positions of groundwater level monitoring boreholes and the borehole
extensometers correspond to each other. All of the data on urban construction, including the distances
of metro lines from the operational floor area of buildings, were extracted from the archives of the
Shanghai Statistics Bureau (SSB) [20].

2.2. Data Analysis

Once the land subsidence data for each monitoring point had been extracted, they were treated as
a sample of a population [16]. Generally, within any monitoring data sample, there are some abnormal
data which have been caused by systematic errors and observation errors, and so the Grubbs test
method was used to identify and eliminate the abnormal data [17]. For a random sample of n items,
a parameter Ti is expressed as follows

Ti “
xi ´ x

s
(1)

where, x “ 1
n

n
ř

i“1
xi, s “

d

1
n

n
ř

i“1
pxi ´ xq2, and xi is an observation selected arbitrarily from the sample.

Once Ti is equal to or greater than the limit T(n, α), which can be found in a Grubbs’ table,
according to sample number (n) and confidence limits (α), xi is deemed to be abnormal data which
should be eliminated from the sample [21–23].

Testing to determine the deviation from the sample average value was done to identify
data samples from the urban center and the suburbs, based on the t-distribution method [24].
For two samples of n1 and n2 items, respectively, a parameter t is expressed as follows

t “
|x1 ´ x2|

s px1 ´ x2q
(2)

where x1, x2 = average value of Sample 1 and Sample 2; s2 px1 ´ x2q “
pn1´1qs2

1`pn2´1qs2
2

pn1´1q`pn2´1q , s1, s2 = standard
deviation of Sample 1 and Sample 2.

Once t is lower than the limit t(f,α), which can be found in t-distribution tables, according to
degrees of freedom (f ) and confidence limits (α), Sample 1 and Sample 2 are deemed to come from
one population.
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An analysis of the average subsidence in the urban center was then carried out based on
a triangulated irregular network (TIN) by considering the distribution density of monitoring points [19].
Each triangular shape in the TIN is formed by the shortest lines between two monitoring points.
The area average subsidence in the urban area can be expressed as follows:

∆h “
´

ÿ

Si ¨∆hi

¯

{
ÿ

Si (3)

where ∆h = the area average subsidence; Si = the area of each triangle in the TIN; and ∆hi = the average
subsidence of the center of the circle around each triangle.

3. Results

3.1. Increase in the Subsidence Rate since 1989

From 1921 to 1965, land subsidence and the net withdrawal volume (NWV), which equals the
groundwater withdrawal volume minus the groundwater recharge volume, both increased annually
in the urban area [4,7,8,10,25]. Since 1966, some measures related to groundwater control have been
adopted, such as the banning of unnecessary groundwater withdrawal, changing the withdrawal
source to deeper aquifers, and adopting artificial recharge; additionally, land subsidence has been
controlled within a small region [26]. However, after 1989, land subsidence increased again. Figure 2
shows the variation in average cumulative subsidence in Shanghai since 1966, with elapsed time in
years. For comparison, the variation in the total building floor area which is defined as the sum of the
area of all the floors of all the buildings is also plotted in Figure 2. As depicted in Figure 2, the annual
rate of land subsidence during each period reached 3.84 mm/year in 1980–1989 (vs1), 9.97 mm/year
in 1989–1995 (vs2), and 12.09 mm/year in 1995–2005 (vs3), while the rate of increase in floor area was
0.58 ˆ 106, 2.30 ˆ 106, and 13.17 ˆ 106 m2/year, respectively [5,26]. The values of vs2 and vs3 are
more than two and three times vs1, respectively, so that even if the annual net withdrawn volume
had decreased, land subsidence still accelerated during the 1990s. A regression analysis was carried
out taking account of three main parameters: the floor area, the length of the metro lines, and the
cumulative subsidence.
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Figure 2. Relationship between floor area and cumulative subsidence (based on Reference [25]). 
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3.2. Subsidence and Groundwater Withdrawal

The relationship between the average cumulative land subsidence and the cumulative NWV of
groundwater in the urban center is shown in Figure 3. Until 1979, the graphical relationship between
the cumulative land subsidence and the NWV is almost linear. During this period, the increase in land
subsidence corresponded to the increase in the net withdrawn volume. However, a shift occurred
around the year 1979. From 1980, since the annual recharged volume of the groundwater has been
greater than the withdrawn volume, the cumulative NWV has decreased. Even when the NWV was
decreasing, the rate of land subsidence began to accelerate rather than decrease, as had been the case
in the preceding period. If the NWV exceeded the critical value, it would show no correlation with the
variation in land subsidence in the urban area.
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Figure 3. Comparison of cumulative land subsidence and NWV of groundwater (based on Reference [25]).

The cumulative land subsidence and the detected piezometric level in AqII, AqIII, and AqIV
since 1980 are compared in Figure 4, respectively. According to the results of a regression analysis,
each group of data shows a clear relationship between the cumulative subsidence and groundwater
level. The correlation coefficients are 0.95 for AqII, 0.95 for AqIII, and 0.99 for AqIV. The increases in
cumulative subsidence in AqII and AqIII are more sensitive to the change in the groundwater level
than that in AqIV. As recorded in a similar situation in the Hong Kong region, a possible reason is the
cut-off effect caused by underground structures [27,28]. Where this effect is present, land subsidence
correlates more with the decline in the groundwater level than with the NWV.

This analysis implies that the groundwater level may be the most critical factor that controls land
subsidence and therefore it is important to study the reasons for the drawdown and the mechanism of
continuous drawdown of the groundwater level in the urban area.
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Figure 4. Comparison of cumulative land subsidence and detected piezometric level in each aquifer
since 1980 (based on Reference [25]).

3.3. Subsidence and Urban Construction

Comparing the change in building area in Shanghai and the average cumulative subsidence in
the urban area, a regression analysis was performed as shown in Figure 5. As a result of the regression
analysis, an exponential curve with a correlation coefficient of 0.997 can be drawn. The relationship
between the total length of the metro lines in operation and the average cumulative subsidence (see
Figure 5) has similar characteristics, with a correlation coefficient of 0.972 obtained by regression
analysis, which indicates that the length of the metro lines in operation, as well as the total floor area,
contribute to the accelerated land subsidence. However, before 1980, there is no correlation between
either the floor area or the length of the rail track in the metro system and the cumulative subsidence.
Based on this regression analysis, the construction of urban infrastructure such as metro lines has
become an important factor contributing to further land subsidence since 1980 in the urban area.
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According to the above analysis, cumulative land subsidence in Shanghai urban areas is correlated
with the construction of structures. The relationship between the total floor area or the total
length of the metro lines and cumulative subsidence fits exponential functions with high values
of correlation coefficients.

4. Discussion

4.1. SEA Principle

Shepherd and Ortolano [16] summarized the following six principles for SEA effectiveness in
promoting sustainable urban development: (1) considering the sustainability principles integrally
and systematically; (2) assessing projected environmental impact on the urban area due to
policy plans and construction; (3) considering multiple and correlated impacts comprehensively;
(4) paying more attention to the sustainability principles of projects rather than PPPs; (5) monitoring
and adopting measures to improve environmental management; (6) perfecting legal and public
monitoring mechanisms.

In order to mitigate the risk to the environment, the Shanghai municipal government published
a decree to prevent and control land subsidence [15] (referred to in this section as the Shanghai decree).
In this decree, an environmental impact assessment (EIA), particularly considering the effect on land
subsidence, must be conducted for certain construction projects, such as significant municipal projects,
where the depth of excavation is over 7 m, and for construction projects within a high subsidence region.
The evaluation is started during the planning of the project, and includes an expert evaluation program
for the construction project prior to its start on the site. However, on completion of the construction
project, the EIA is ended. In order to check the EIA level of the Shanghai decree, six principles of the
SEA are applied to quantitatively examine the Shanghai decree. As shown in Table 1, only 16 out
of a total of 30 points are met under the Shanghai decree. Most of the principles are just partially
considered in the Shanghai decree and there is no public involvement. Therefore, this decree is
still based on the principle of EIA at the project level [17], rather than at the SEA level. To ensure
sustainable urban development [17,29,30], SEA takes the environmental impacts such as policies, plans,
and programs (PPPs) and their alternatives into consideration simultaneously [15,16].

Table 1. Shanghai land subsidence decree vs. SEA six principles.

SEA Principle Establishment of Shanghai Land Subsidence Decree Score out of 5

1 Not perfect: there is no integrated framework for
considering sustainability principles. 2

2 Not perfect: mostly considered before the projects start. 3

3 Not perfect: many factors are not considered for the
cumulative impacts. 2

4 Need to ensure sustainability principles extend down
to projects. 3

5
Yes: monitoring of environment during construction.
However, during operation, no groundwater level
monitoring.

4

6 No public involvement or appraisal. 2

Note:
If SEA principles are fully adhered to, a full score of 5
is awarded for each principle; the total score following
SEA principles is 30.

16

4.2. Factor Identification Based on SEA

Based on SEA, the factors influencing land subsidence in Shanghai induced by urbanization are
summarized as follows: (i) additional load, involving building load and dynamic load; (ii) underground
structure construction, involving construction of tunnels and foundation pits; and (iii) drawdown
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of groundwater level in the long term, possibly caused by leakage in tunnels and reduction of
groundwater replenishment.

4.2.1. Additional Load

To date, most research has concentrated on additional building loads which result in land
subsidence. Since 1980, the number of high-rise buildings with pile foundations has exceeded 1000.
When the pile length reaches 45 m, piles will have reached AqI, and if the length is from 60 m
to 90 m, piles will have reached AqII. In order to analyze the effect of additional stresses due to
building loads, Tang et al. [31] conducted a model test which considered the influence of high-rise
buildings. Jie et al. [32] found that the increase in land subsidence is highly correlated to the rate of
development of urban construction, and involves the distribution density of buildings, the regional
scale of construction, and the construction speed. The distinctive soft deposits in Shanghai have high
compressibility, long-term primary consolidation and sensitivity to additional load. Xu et al. [26]
surmised that the maximum final settlement of a high rise building in the urban center is about
50–100 mm, which is related to the characteristics of the soil and the type of pile foundations.

Dynamic loads caused by the construction of pile foundations and traffic loading are also a factor
in land subsidence. When the seismic wave due to pile driving travels through the ground, deformation
of the strata will occur due to the compression of soils. Jongmans [33] suggested that an influence
radius of 50 m should be considered during pile driving. There can also be an additional load from
embankment construction during urbanization [34,35], and cyclic loading due to traffic can also lead
to the deformation of strata. According to an investigation made by Ling et al. [36], traffic loading at an
intersection of the Shanghai outer ring road could result in a residual settlement of 50 mm. Wu et al.’s
results [37] showed that the influential depth in the subsoil, in the soft Shanghai deposits, due to
train vibration was around 4.5 m, and the maximum residual settlement from train vibration is about
20 mm.

4.2.2. Ground Disturbance

Underground construction processes, such as the excavation of foundation pits, can cause
disturbance of strata and lead to the deformation of surrounding layers. In addition, ground
disturbance caused during the construction of tunnels may continue to have an effect on settlement
for a long period of time. After the operation of Metro Line No. 1 for 15 years, the annual differential
settlement of the tunnels was still significant. The average settlement was about 30 mm per year, but at
one stage the maximum value of cumulative subsidence reached 350 mm within one year [38].

The effects of foundation pit excavation on land subsidence have become more apparent in recent
times [39,40]. In order to maximize the use of underground space, excavations have become deeper and
larger. In Shanghai, excavation is generally done using the well-point dewatering method, which can
lead to the depression of the groundwater level with the withdrawal of groundwater. This can result
in the influence radius of land subsidence being as much as 15 times the excavation depth. Based on
engineering practice, the influence radius of dewatering in a foundation pit is about 130–180 m, and
for every 3.5 m reduction in groundwater level, there is 5–15 mm of ground settlement [39].

4.2.3. Long-Term Drawdown of Groundwater

Figure 3 shows that annual NWV, decreasing since 1980 in the urban area (marked in Figure 1),
gradually becomes a less critical factor influencing the drawdown of the groundwater level. However,
the drawdown of the groundwater level is still a major factor for land subsidence in the urban area
as shown in Figure 3. The potential factors for the drawdown of the groundwater level which arise
during the process of urbanization are as follows:

(i) the increase of NWV in the suburban area; (ii) the cut-off effect of underground works on the
recharge of groundwater from the suburban area to the urban area; (iii) the leakage of groundwater
into metro tunnels.
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When the drawdown of groundwater was the result of pumping in the urban area, groundwater
in the suburban area flowed to the urban area as recharge. In the early period, the NWV in the
urban area was much higher compared to that in the suburban area. However, the main region of
groundwater withdrawal gradually moved to suburban areas in the 1970s. The ratio of the volume of
groundwater withdrawn in urban areas to that in suburban areas was 1:70.7 in 1970, compared with 8:1
in 1949, and 1:0.98 in 1964. Thus, the groundwater in urban areas lost recharge from suburban areas.

The cut-off effect of existing underground structures, which can influence the seepage of
groundwater in aquifers, is another important reason for the reduction in recharge from suburban
areas to urban areas. For example, structures acting as diaphragm walls can hinder the groundwater
flowing in aquifers. Also, because of existing underground structures, groundwater in a hydrostatic
pressure condition may change into a condition with an unsteady downward flow. Because of the
cut-off effect of underground works, the steady flow in aquifers changes into turbulent flow, which
makes the groundwater head around the bottom of underground structures lower than that around
the top [41–43].

The shield method is widely adopted in the construction of Shanghai metro lines. Usually, the
lining in the metro tunnel consists of six segments, which means there are a lot of joints throughout
the tunnel. Field investigations have found that groundwater leakage occurred frequently in joints
and cracks in segments and grouting holes [44–46]. During the initial period of construction, the
volume of groundwater leakage and the deformation of the tunnel can be ignored. However, as the
leakage is developing, deformation of the tunnel and further leakage caused by differential settlement
perpetuate the process. Wu et al. [46] concluded that leakage in tunnels can cause a decline in the
groundwater level and result in tunnel settlement. Leakage occurs not only in tunnels but also in deep
excavation works [47–51]. However, the reduction in the groundwater level contributes more to land
subsidence. It was concluded that the rate of leakage in Shanghai metro tunnels averaged 0.1 L/m2/d
and the distribution of leakage locations was uniform along the tunnel. The expected magnitude of
land subsidence in the region with tunnels was only about 40 mm after 10 years.

Therefore, the potential factors contributing to land subsidence in the urban area include the
additional load caused by the construction of both above- and below-ground structures, well-point
dewatering in the excavation of foundation pits, groundwater leakage in metro tunnels during
construction and operation, and the reduction in groundwater recharge from the suburban area
to the urban area due to the cut-off effect of underground structures, which is considered to be the
main factor. Further research on the mechanisms of these factors causing land subsidence in the urban
area of Shanghai is still required.

5. Conclusions

In general, based on SEA for sustainable urban development, the influencing factors which may
lead to land subsidence during the urbanization of Shanghai are discussed. The conclusions are
summarized as follows:

(1) Land subsidence in Shanghai is closely correlated to construction in the urban area. The correlation
between cumulative subsidence and the building area is strong, as is the correlation between
cumulative subsidence and the total length of the metro lines.

(2) The Shanghai decree for land subsidence control does not closely follow the principles of SEA to
ensure sustainable urban development. Most of the principles are only partially considered in
the Shanghai decree, and there is no public involvement in the Shanghai decree.

(3) The influencing factors resulting in increasing land subsidence in the urban area include
additional load caused by construction, dewatering during excavation, groundwater leakage
into metro tunnels, and the reduction in groundwater recharge from the suburban area to the
urban area.
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