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Abstract: The paper overviews the peculiarities of carbonyl stress in nucleus-free mammal red blood
cells (RBCs). Some functional features of RBCs make them exceptionally susceptible to reactive
carbonyl compounds (RCC) from both blood plasma and the intracellular environment. In the first
case, these compounds arise from the increased concentrations of glucose or ketone bodies in blood
plasma, and in the second—from a misbalance in the glycolysis regulation. RBCs are normally
exposed to RCC—methylglyoxal (MG), triglycerides—in blood plasma of diabetes patients. MG
modifies lipoproteins and membrane proteins of RBCs and endothelial cells both on its own and
with reactive oxygen species (ROS). Together, these phenomena may lead to arterial hypertension,
atherosclerosis, hemolytic anemia, vascular occlusion, local ischemia, and hypercoagulation pheno-
type formation. ROS, reactive nitrogen species (RNS), and RCC might also damage hemoglobin (Hb),
the most common protein in the RBC cytoplasm. It was Hb with which non-enzymatic glycation
was first shown in living systems under physiological conditions. Glycated HbA1c is used as a
very reliable and useful diagnostic marker. Studying the impacts of MG, ROS, and RNS on the
physiological state of RBCs and Hb is of undisputed importance for basic and applied science.

Keywords: red blood cells; hemoglobin; reactive carbonyl compounds; reactive oxygen species;
methylglyoxal; glycation; glycolytic enzymes

1. Introduction

The concept of “stress” may be considered as both the external impact on an organism
and the response to it. At the same time, stress is known to be a universal physiological
response to a sufficiently strong influence, characterized by certain symptoms and stages
(“general adaptation syndrome” according to Hans Selye) [1]. Further, the term “stress”
started to be used in biology and chemistry to describe the effects of certain chemical com-
pounds (or groups of compounds), most often chemically reactive ones, i.e., electrophiles
and oxidants.

Currently, metabolism is defined as a network of enzymatic and non-enzymatic
(spontaneous) chemical reactions. An integral part of non-enzymatic metabolism is the
formation and redox transformations of chemically reactive compounds. An excess of these
substances leads to a certain type of metabolic stress being developed: oxidative stress,
induced by reactive oxygen species (ROS), nitrosative—by the reactive nitrogen species
(RNS), carbonyl—by the reactive carbonyl compounds (or reactive carbonyl species) (RCC),
and halogenating—by the reactive halogen species etc.

The main RCC are the linear (non-cyclic) glucose and fructose forms, along with
various aldehydes, ketones, ketoaldehydes, and ketoacids, e.g., glyoxal, methylglyoxal
(MG), acrolein, malone dialdehyde, 3-deoxyglucosone, lipid oxidation products, etc. Every
RCC contains an electrophilic carbon atom of a carbonyl group capable of reacting with
nucleophilic nitrogen atoms in amino acids, amino peptides, and guanine bases (non-
enzymatic glycation reaction).
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Living organisms have evolved various ways to prevent the non-enzymatic glycation.
The most effective of these is the glyoxalase system [2,3]. However, when the antiglycemic
protection system does not cope with RCC overage, the state of carbonyl stress develops.
The concept of carbonyl stress was championed by Baynes in 1991 [4] based on several
lines of similarity with the concept of oxidative stress acknowledged in biology already in
1985 [5]. All eukaryotic cells are susceptible to carbonyl stress to a certain extent, including
the nucleus-free red blood cells (RBCs) that seem to be one of the most susceptible sensors
of the chemically active compounds in many organisms.

In the review, we tried to generalize the data on carbonyl stress in RBC, focusing
on metabolism of MG, which, along with glucose, is largely responsible for the negative
consequences of diabetic hyperglycemia. We paid special attention to the relationships of
carbonyl stress with oxidative and nitrosative stress, and the influences of these processes
on Hb.

2. Genesis of Carbonyl Stress in Red Blood Cells

There are two major pathways by which carbonyl stress may develop in RBC: exogenic
and endogenic (Figure 1). The first pathway is induced by an increased concentration
of glucose or ketone bodies in the blood plasma. The second is triggered by misbalance
in the glycolysis regulation in RBC itself. Some factors make minor contributions to the
development of carbonyl stress here. These include infection with malarial plasmodium,
glycolytic enzymopathies, and mutations in the glucose transporter (GLUT1).
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The levels of triglycerides, MG, and ROS were shown to increase in the blood plasma
of diabetes patients of the first and second types [3,6,7]. Experiments on the isolated
RBCs established that the intracellular MG concentration directly depends on the flow
of glucose metabolizing in the glycolytic pathway [2]. In the 5–100 mM range of glucose
concentration, dose-dependent increases of S-D-lactoglutathione and MG concentrations
were registered [2]. MG in plasma can exert several toxic effects: it modifies proteins and
lipoproteins, generates ROS, and acts on RBC and endothelial cells. These combined with
MG effects facilitate the development of arterial hypertension, atherosclerosis, hemolytic
anemia, vascular occlusion, and local ischemia [8,9].

RBC metabolism is defined by a huge role of glucose metabolism since all the necessary
energy the cell gets is obtained through the glycolysis reaction and pentose phosphate
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pathway. The intermediates of the glucose catabolism (glyceraldehyde-3-phosphate (G3P)
and dihydroxyacetone phosphate (DHAP)) represent the main sources of MG [10,11].

The glucose for glycolysis is delivered to RBCs in an insulin-independent way using
lightweight diffusion via the glucose transporter GLUT1. Thus, the glucose concentration
inside RBCs directly depends on its concentration in blood plasma. Therefore, RBCs are
among the first cells detecting hyperglycemia. At high concentrations of glucose, oxygen
couples with iron ions inside RBCs, leading to the formation of RCC. Although the RBC
contains powerful antioxidant and glyoxalase defense systems [3], there is a high probabil-
ity of carbonyl and oxidative stress development reinforcing each other [12,13]. The main
trigger of oxidative and carbonyl stress is that antioxidants and key glycolysis enzymes
get damaged by ROS and RCC [14]. For example, the non-enzymatic glycation of super-
oxide dismutase leads to enzyme inactivation [15,16]; thus, glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) becomes incapable of binding the substrate after oxidation or
nitrosylation of SH groups in its active center [17]. These spontaneous posttranslational
modifications of enzymes result in the accumulation of ROS and triosophosphates—the
main source of MG in the cell.

The largest contribution to the pool of endogenic MG is made by the non-enzymatic
hydrolysis reaction of the phosphate group of triosophosphates: DHAP and G3P [10,11].
Two enzymes of glycolysis are involved in this metabolism. They are triosophosphate
isomerase regulating DHAP and G3P interconversion, and GAPDH oxidizing G3P to
phosphoglyceric acid. Once the synthesis and functioning of these enzymes are bro-
ken, MG is excessively formed. RBCs with mutant triosophosphate isomerase contain
20–40 times higher amounts of DHAP than in the control variant [18]. The functioning of
these enzymes in RBC under carbonyl stress will be described in greater detail in Section 3.

Quite an exotic reason underlying the carbonyl stress developing in RBC can be
the malarial Plasmodium infection. Malaria was the first disease shown to be caused by
a protozoan (1880). Charles Louis Alphonse Laveran received the Nobel prize for this
discovery in 1907. Several species of the Plasmodium genus (P. malariae, P. falciparum,
and P. vivax) are known to cause this infection. This is a fairly rare case of an intracellular
infection, when the protozoan (eukaryote) develops inside such a small cell as a RBC.
Plasmodium feeds on the contents of the RBC, primarily Hb, as the main constituent
protein of this cell. Both in the drawings made by Laveran as early as in the XIX century
from a microscope, and in the modern photographs, one can see how the RBC interior
brightens in the course of malaria development.

Vander Jagt et al. have shown that RBCs after infection with the malarial Plasmodium
P. falciparum secrete ~30 times more D-lactate than as usual [19]. The malaria parasite
needs a large amount of glucose to ensure its rapid growth and reproduction inside the
RBC [20]. Therefore, the infected RBCs are forced to consume more glucose in order to
provide enough resources for the parasitic organism [21]. That is why we attributed this
cause of carbonyl stress in RBCs to an endogenic group (Figure 1). Meanwhile, an elevated
concentration of glucose in RBCs and a high rate of Plasmodium glycolysis contribute to
increased MG formation in the cell and the development of carbonyl stress.

One more exogenic cause of an increased MG level in blood plasma could be intestinal
bacteria [22,23]. In this case though, the increase in MG concentration is negligible, so this
reason is not indicated on Figure 1.

3. Inhibition and Inactivation of the Glycolytic Enzymes

The carbonyl stress affects many reactions and relevant enzymes in RBC. Figure 2
shows the scheme of reactions, futile cycles, and shunts of the glycolytic pathway in these
cells. The enzymes catalyzing different reactions of this pathway are labelled by numbers
on the scheme. In this section, some of the main glycolytic enzymes, glyceraldehyde-3-
phosphate dehydrogenase, triosophosphate isomerase, and enzymes of glyoxalase, system
will be addressed in greater nuance.



Antioxidants 2021, 10, 253 4 of 23

Antioxidants 2021, 9, x FOR PEER REVIEW 4 of 24 

 
Figure 2. Futile cycles and shunts of glycolytic pathway in red blood cells. Enzymes catalyzing these reaction are desig-
nated by numbers: 1—hexokinase, 2—glucose phosphate isomerase, 3—phosphofructokinase, 4—fructose 1,6-
bisphosphatase, 5—fructose diphosphate aldolase, 6—glyceraldehyde phosphate dehydrogenase (GAPDH), 7—
phosphoglycerate kinase, 8—oxidized GAPD (GAPD-SOH), 9—phosphoglycerate kinase, 10—bisphosphoglycerate mu-
tase, 11—non-phosphorylating glyceraldehyde phosphate dehydrogenase (GAPDH), 12—triose phosphate isomerase, 
13—glyoxalase i, 14—glyoxalase ii, 15—glucose 6-phosphate dehydrogenase, 16—fructose 2,6-bisphosphatase, 17—
aldose reductase, 18—sorbitol dehydrogenase, 19—hexokinase. 

3.1. Glyceraldehyde-3-Phosphate Dehydrogenase 
One of the main glycolytic enzymes—glyceraldehyde-3-phosphate dehydrogenase 

(EC 1.2.1.12)—catalyzes the oxidation of glyceraldehyde-3-phosphate (G3P) to 1,3-
diphosphoglycerate. Inhibition or inactivation of this enzyme leads to a significant ac-
cumulation of dihydroxyacetone phosphate (DHAP)—a G3P isomer. It is further spon-
taneously hydrolyzed, leading to MG formation. It can further react with lysine and cys-
teine residues in GAPDH [24,25], thereby impeding the proper enzyme activity. Normal-
ly 0.05–0.1% of triosophosphate intermediates go to MG formation [26]. 

The oxidative posttranslational modification of cysteine residues in the active center 
of GAPDH, which are very sensitive, might lead to inhibition of the enzyme. Their mild 
oxidation with hydrogen peroxide to sulfenic acid (-SOH) dampens GAPDH dehydro-
genase activity while stimulating the acylphosphatase one [27]. 

GAPDH can also be inactivated in cases of deep oxidation of the catalytic cysteines 
by ROS to sulfinic (-SO2) and sulfonic acids (-SO3) [28,29], S-nitrosylation by NO donors 
[30–32], and S-glutathionylation [32]. A ROS source in RBC can arise in the reaction of 
MG with amino acids [13,33], auto-oxidation of glucose [33], and auto-oxidation of ox-
yHb [34]. GAPDH disfunction is as well brought about by hypochloride-dependent oxi-
dation, when hypochloride triggers the radical’s formation on amino acid residues of the 
enzyme [35]. 

MG modifies a glycolysis enzyme, GAPDH, with lysine residues leading to a de-
crease in the enzyme activity [24,25]. A GAPDH substrate G3P can also act as a glycating 
agent for the enzyme [36]. However, G3P glycates GAPDH providing the enzyme is in-
activated or inhibited and thus unable to effectively convert G3P to 1,3-
diphosphoglycerate. As a result, we have an increased concentration of G3P, which is 
isomerized to dihydroxyacetone phosphate, which MG is further formed from. The 
causes of GAPDH disfunction are RCC and ROS (e.g., O2•−), those being formed under 
hyperglycemia conditions. GAPDH inhibition can disrupt the cell’s energy supply, 

Figure 2. Futile cycles and shunts of glycolytic pathway in red blood cells. Enzymes catalyzing these reaction are designated
by numbers: 1—hexokinase, 2—glucose phosphate isomerase, 3—phosphofructokinase, 4—fructose 1,6-bisphosphatase,
5—fructose diphosphate aldolase, 6—glyceraldehyde phosphate dehydrogenase (GAPDH), 7—phosphoglycerate kinase,
8—oxidized GAPD (GAPD-SOH), 9—phosphoglycerate kinase, 10—bisphosphoglycerate mutase, 11—non-phosphorylating
glyceraldehyde phosphate dehydrogenase (GAPDH), 12—triose phosphate isomerase, 13—glyoxalase i, 14—glyoxalase ii,
15—glucose 6-phosphate dehydrogenase, 16—fructose 2,6-bisphosphatase, 17—aldose reductase, 18—sorbitol dehydroge-
nase, 19—hexokinase.

3.1. Glyceraldehyde-3-Phosphate Dehydrogenase

One of the main glycolytic enzymes—glyceraldehyde-3-phosphate dehydrogenase
(EC 1.2.1.12)—catalyzes the oxidation of glyceraldehyde-3-phosphate (G3P) to 1,3- diphos-
phoglycerate. Inhibition or inactivation of this enzyme leads to a significant accumulation
of dihydroxyacetone phosphate (DHAP)—a G3P isomer. It is further spontaneously hy-
drolyzed, leading to MG formation. It can further react with lysine and cysteine residues
in GAPDH [24,25], thereby impeding the proper enzyme activity. Normally 0.05–0.1% of
triosophosphate intermediates go to MG formation [26].

The oxidative posttranslational modification of cysteine residues in the active center
of GAPDH, which are very sensitive, might lead to inhibition of the enzyme. Their mild ox-
idation with hydrogen peroxide to sulfenic acid (-SOH) dampens GAPDH dehydrogenase
activity while stimulating the acylphosphatase one [27].

GAPDH can also be inactivated in cases of deep oxidation of the catalytic cys-
teines by ROS to sulfinic (-SO2) and sulfonic acids (-SO3) [28,29], S-nitrosylation by NO
donors [30–32], and S-glutathionylation [32]. A ROS source in RBC can arise in the reaction
of MG with amino acids [13,33], auto-oxidation of glucose [33], and auto-oxidation of
oxyHb [34]. GAPDH disfunction is as well brought about by hypochloride-dependent
oxidation, when hypochloride triggers the radical’s formation on amino acid residues of
the enzyme [35].

MG modifies a glycolysis enzyme, GAPDH, with lysine residues leading to a decrease
in the enzyme activity [24,25]. A GAPDH substrate G3P can also act as a glycating agent for
the enzyme [36]. However, G3P glycates GAPDH providing the enzyme is inactivated or
inhibited and thus unable to effectively convert G3P to 1,3-diphosphoglycerate. As a result,
we have an increased concentration of G3P, which is isomerized to dihydroxyacetone
phosphate, which MG is further formed from. The causes of GAPDH disfunction are
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RCC and ROS (e.g., O2
•−), those being formed under hyperglycemia conditions. GAPDH

inhibition can disrupt the cell’s energy supply, which is especially critical for RBCs as
glycolysis is the sole source of energy for them. Thus, GAPDH modification and inhibition
largely contribute to the carbonyl stress in RBCs [36].

GAPDH modification activates the glycolysis futile cycle (Figure 2) and inhibits
glycolysis at the level of the triosophosphates conversion [37]. In this case, S-nitrosylation
of GAPDH decreases the enzyme affinity to the RBC membrane [31]. GAPDH inhibition
may subsequently uncouple oxidation and phosphorylation processes during glycolysis
and a decrease in ATP yield. This is especially critical for RBCs, which have no other energy
sources than glycolysis.

The decrease of ATP level leads to disruptions of the RBC shape, volume, and deforma-
bility, which all negatively affect their rheological characteristics. For example, the RBC
deformability of patients with type 2 diabetes is significantly lower than that of healthy
people [38]. Figure 3 shows the scheme of ATP-dependent processes in RBCs.
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MG was reported [39] to decrease not only the energy production, but also antioxidant
protection, which contributes to the eryptosis (apoptosis of RBCs [40]) of the circulating
cells. In general, there is a clear correlation between carbonyl and oxidative stress [12,41,42].
On the one hand, in the reaction of amino acids and proteins with MG, free-radical inter-
mediates (MG anion radical and cation radical of a Schiff base) are formed along with ROS
and RNS [13,34,43,44]. On the other hand, ROS and RNS themselves can contribute to
formation of new AGEs [45,46]. This situation was most aptly called “a vicious circle.”

In vitro experiments on RBC incubation with high glucose concentrations simulating
hyperglycemia showed significant increases in the levels of triosophosphate intermediates
(G-3-P and DHAP) and MG, proportional to the glucose concentration [2,47,48].
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In vivo experiments of type 1 and type 2 diabetes patients revealed an inverse correla-
tion between MG production and GAPDH activity. A 79% decrease in GAPDH activity in
the culture of human RBCs led to a six-fold increase in MG concentration [49]. Herewith,
MG in high concentrations inhibited glycolytic enzymes: GAPDH, phosphofructokinase,
fructose-1,6-diphosphatase, aldolase, and 3-phosphoglycerate mutase [37].

3.2. Triosophosphate Isomerase

The enzyme triosophosphate isomerase (TPI) (EC 5.3.1.1) catalyzes the DHAP con-
version to G3P (Figure 3). The lack of TPI or decrease in its activity leads to accumulation
of DHAP, which spontaneously decomposes, with MG being formed as an outcome [50].
Importantly, DHAP and the already formed MG act as glycating agents.

It was shown that TPI activity gradually decreases during the catalytic function unfold-
ing [51]. This accounts for the spontaneous deamidation of Asn15 and Asn71 residues, and
their conversion to aspartic or isoaspartic acid [51,52]. The modified enzyme dissociates
to monomers, which then undergo proteolytic degradation [53]. Hipkiss suggested that
continuous and excessive glycolysis promotes TPI deamidation [54,55]. This situation is
typical for diabetic hyperglycemia and a diet with a high glycemic index.

Since mature RBC are not able to synthesize new TPI as they do have neither nuclei
nor ribosomes, MG gets inevitably stored there with aging. A high activity of TPI from
RBCs, being several times higher than the activity of other glycolytic enzymes, might be
seen as an evolutionarily developed adaptation compensating for the decrease in the TPI
activity during a RBC’s life [55].

TPI dysfunction can also result from the nitration of two tyrosine residues in the active
center, induced by amyloid-β-peptide aggregates [56]. Phenylpyrrole fungicides, actively
used to prevent plant infection with various pathogens, also demonstrated an inhibitory
effect on TPI [57].

3.3. Glyoxalase System

The glyoxalase system is a highly conserved enzymatic system that evolved to main-
tain MG concentration in cells at a low (about nanomolar) non-toxic level [58]. In RBCs,
the glyoxalase pathway throughput is by two orders higher than that for glycolysis [59].

The glyoxalase system includes two enzymes: glyoxalase I (GloI, S-D-lactoylglutathione
lyase, EC 4.4.1.5), glyoxalase II (GloII, hydroxyacylglutathione hydrolase, EC 3.1.2.6) and
reduced glutathione (GSH) [2,3,60–62]. The system catalyzes the reaction continuity of
α-oxoaldehydes conversion to the corresponding α-hydroxy acids using GSH as the co-
factor. Thiohemiacetal is spontaneously formed in the reaction of α-oxoaldehydes with
GSH. GloI isomerizes it to S-D-lactoylglutathione, which is hydrolyzed to α-hydroxy acid
(to D-lactate in the case of MG) and reduced glutathione under the action of GloII.

GloI and GloII were isolated from human RBCs and characterized. GloI is a homod-
imeric protein containing Zn2+ with 46 kDa molecular weight of a dimer [63]; GloII is
29.2 kDa monomer [64]. The catalytic parameters of GloI and GloII from human RBC were
evaluated as well: for GloI Km = 192 ± 8 µm and Kcat = 10.9 ± 0.2 × 104 min−1 [63]; for
GloII Km = 146 ± 9 µm and Kcat = 727 ± 16 s−1 [64]. According to [65] native RBC GloI has
Km = 0.7 ± 0.1 mm and Vmax = 0.7 ± 0.04 µm/min. It is GloI that limits the speed of the
glyoxalase system.

Glyoxalases’ disruption leads to the MG accumulation in the cell. Glyoxalases are
inactivated or made dysfunctional in the process of oxidative posttranslational modifica-
tions. GloI activity can also be reduced under nitrosylation by physiological NO donor
S-nitrosoglutathione [66,67]. Another modification of the enzyme leading to its inactivation
is glutathionylation by Cys139 [65], but it is less possible. The ability of GloI to perform
reverse oxidative modification implies that enzyme activity depends on the red-ox state of
the cell. Since GloI activity is proportional to GSH concentration, another reason for high
intracellular MG concentration may be the depletion of the pool of reduced glutathione
due to oxidative stress [46].
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In this regard, the recent cycle of studies on ROS formation under the impacts of
various factors is also worth mentioning. Among these factors: nicotine in smokers [68],
wood dust [69], crystalline silica [70], and ionizing radiation from cancer treatment [71].
ROS formed lead to GloI inhibition, enhancement of the MG-induced formation of AGEs—
potent pro-apoptotic agents, and finally, to apoptosis of different cells in the organism.

In addition to some oxidative modifications, the GloI stability and activity can be
regulated by acetylation and phosphorylation processes [65]. Diabetic hyperglycemia
or a high-carb diet also promotes intense and persistent glycolysis, which increases the
MG concentrations [55]. The diabetic patients exhibited several signs of oxidative stress:
oxidation of lipids and SH- groups of erythrocyte membranes, and a decrease of GSH
level [72,73]. The increased MG concentration observed at diabetic hyperglycemia may be
associated both with increased MG production during glycolysis [39], and a decrease in
GloI activity, e.g., as a result of the oxidation by ROS [69,74,75]. Therefore, even at normal
glucose concentrations, patients with type 1 diabetes had a 25-fold increase of MG level,
and with type 2 diabetes—1a 5-fold increase [76].

The decreased GloI activity in RBC and MG accumulation was observed in Alzheimer’s
patients [77]. Moreover, it was accompanied with the accumulation of the lipid peroxida-
tion products and a decrease in the 20S proteasome activity. This means that there is a direct
correlation between a reduced glyoxalase activity and oxidative stress itself. The amplifi-
cation of dicarbonyl stress by oxidative one has been discussed in some papers [45,46,78].
High MG levels were found in RBCs of the end-stage renal failure patients undergoing
hemodialysis. It may be associated with impaired glycolysis in the cell [79].

Since glyoxalase activity decreases with age [80], the old RBCs are the most likely
source of MG, as MG can induce RBC lysis. Consequently, RBCs become a systemic source
of MG and glycated proteins [39]—in particular, glycated alpha-synuclein [55,81,82]. In the
course of a RBC’s life, the activity of the glyoxalase system changes [75], it is maximal in
mature cells, and during RBC aging the activity decreases. The decrease in the GloI activity
in RBC in this case seems to be connected with its oxidative modification [80,83].

Hereby, the MG accumulation in RBC can result from high glucose concentrations,
oxidative stress, and cell aging.

4. Effects of Methylglyoxal on Red Blood Cells
4.1. Methylglyoxal—Highly Reactive Dicarbonyl Metabolite

Special consideration should be given to the above mentioned α,β-dicarbonyl
compound—methylglyoxal (2-oxopropanal, pyruvate aldehyde, pyruvaldehyde). Its gly-
cating activity is 20 thousand times higher than that of glucose or fructose [11]. The
toxic effect of MG arises from its ability to react with amino and SH groups of protein
amino acid residues, forming covalently bound advanced glycation end products (AGEs):
Nε(carboxyethyl)lysine, Nε(carboxymethyl)lysine), imidazolones, argpyrimidines, MG-
derived lysine dimers, and thiohemiacetals [11,84]. These modifications are irreversible,
and induce changes in structure, charge, conformation, and ultimately, lead to protein
dysfunction [85].

Rabbani and Thornley proposed the term “dicarbonyl stress,” thereby emphasizing
that α-ketoaldehydes (mainly MG) are the main physiological precursors of AGEs and are
responsible for many pathological effects [11,84].

MG concentration in RBC increases during diabetic hyperglycemia [2,3,86] and ag-
ing [87]. Moreover, this metabolite can be formed both in RBC themselves, and come
from the blood plasma [88]. Depending on the concentration, MG may play either a toxic
or a regulatory role [89–92]. High doses of MG severely damage the biomolecules and
excessively activate the intracellular signaling pathways, while the ones can function as
signaling molecules, modulating different aspects of the cell behavior. In the eukaryotic
cells, MG has been shown to interact with the signaling pathways regulating proliferation,
apoptosis, growth factor production, and other physiological functions [91].
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At the molecular level, the signaling and regulatory MG actions are often realized
through changes in the so-called cysteine proteome—a complex of protein cysteine residues,
especially the reactive ones. The targets of MG in RBC are thiol groups of hemoglobin
(Hb) [93], glyceraldehyde-phosphate dehydrogenase (GAPDH) [94], and RBC membrane
anion transporter protein—the so-called band 3 protein (Band 3) [95]. These proteins
determine the level of cellular energetics, and RBC ability for gas transport largely depends
on their functioning. In addition, Band 3 is the main site of Hb binding to the RBC
membrane [96–99].

4.2. Pathological Effects Caused by MG Action on RBC

Many glycolytic enzymopathies were clinically revealed to accompany chronic
hemolytic anemia [39]. Reactive aldehydes and ROS induced by them play a signifi-
cant role in triggering their pathological consequences. In vitro experiments have shown
that RBC incubation with MG leads to membrane destabilization, accompanied by cell
lysis [7].

As mentioned above, there is a clear link between RCC and ROS formation. The
RCC are now considered to be the markers of oxidative stress and RBC aging [100]. The
chronic hyperglycemia and the associated metabolic disorders are known to affect the
membrane, which is important for RBC’s functional activity. RCC and ROS are mostly
dangerous for the RBC membrane structures, the lipid bilayer, receptors, ion channels,
transporters, and membrane-bound enzymes, as they are poorly protected by superoxide
dismutase [101]. High RCC concentrations in blood plasma positively correlate with the
amounts of carbonylated RBC membrane proteins [100].

It was shown that in rats with alloxazan diabetes, the number of irreversibly altered
RBC increased with the prolongation of hyperglycemia. One of these alterations is to RBC
form—their conversion to the so-called spherocytes. At the third-fourth week, the portion of
spherocytes was 55% compared to 20% in intact animals [102]. The injury of RBC membrane
components affects the elastic-mechanical properties of the membrane, which determines
the cell functionality [103,104], and it is a risk factor for the development of the arterial
hypertension [105]. One of the diabetes implications may be various microangiopathies
emerging from the destruction of RBCs and endothelial cells with RCC. The changes in the
elastic-mechanical properties of RBCs among diabetes patients were repeatedly reported.
Such RBCs have increased the membrane viscosity and stiffness [104]. It was demonstrated
in several model systems in vitro that the observed impairments of RBC properties arise
from the action of RCC on membrane components [102]. The membrane damage negatively
affects its mechanical properties and integrity, increasing the probability of hemolysis and
Hb release into the bloodstream. Both reactive blood plasma compounds (ROS, RNS, and
RCC) and Hb itself can affect a RBC’s membrane.

The above-described pathological effects caused by MG action on RBCs are generalized
and systematized on Figure 4.

In addition to affecting RBC, MG engages in non-enzymatic glycation reactions
with blood plasma proteins and factors, disrupting or inhibiting their functions. MG
inhibits the activity of anticoagulation factor antithrombin III, forming covalent bonds
with Arg393 [106]. This brings about a fibrinolytic activity phenotype in a diabetic hyper-
glycemia. An elevated MG level in plasma induces an inflammatory response via enhanced
expression of cell adhesion molecules, promoting the leukocyte interaction with the en-
dothelium. MG has been shown to activate SGK1 (serum and glucocorticoid-inducible
kinase 1) via ROS formation. Meanwhile, SGK1 regulates many endothelial ion channels,
including the Na+/H+ ion exchanger [107].
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5. Carbonyl Stress and Hemoglobin
5.1. Glycated Hemoglobin

Structural Hb changes can be both genetically determined and triggered by several
spontaneous reactions, e.g., non-enzymatic glycation (interaction with MG) and glycosyla-
tion (interaction with glucose). In the literature these terms are often confused and both
types of modification are referred to as glycation.

The reaction of RCC with nucleophilic nitrogen atoms in amino acids, peptides, and
proteins leads to the appearance of N-substituted glycosamines (so-called Shiff bases).
The latter undergo the Amadori rearrangement and form ketamines [84] subject to multi-
ple dehydration and precursors of advanced glycation end products (AGEs)—chemical
compounds including pyrrole, pyrazine, imidazole, and furan derivatives. The set of
reactions resulting in AGEs formation was first proposed by the French biochemist and
physician Louis Camille Maillard in 1912 [108], and then described in detail by John Hodge
in 1953 [109].

Although Maillard’s discovery is more than a century old (1912) [108], this reaction
was the subject of food chemistry for most of that time. The prospects of this non-enzymatic
reaction in biological systems were revealed with the discovery of the glycated Hb. It was
the first protein the non-enzymatic glycation of which was deliberately assessed in the
living systems under physiological conditions. As early as in 1958 several fractions were
detected during the chromatographic separation of human Hb [110,111]. Only 10 years
later, the minor fraction of “abnormal fast-moving hemoglobin band” was identified as the
Hb adduct with glucose and indicated as HbA1c [112]. The term HbA1c shows the location
of this Hb fraction when separating hemoglobin using cation exchange chromatography.
The mass spectrometry technique resulted in isolating more Hb subfractions [113]. The
proposed mechanism of Hb glycation is as follows. Firstly, the glucose binds to N-terminal
valine of β-HbA1 subunits, and then a subsequent rearrangement into 1-deoxy-1-N-valyl-
fructose leads to the formation of glycated Hb fraction.

Starting with 1968, studies into the glycated Hb accelerated dramatically. That year
Samuel Rahbar reported that the proportion of the glycated Hb increased in RBCs in
patients with diabetes [30,114], and in 1969 he published a detailed study of HbA1c in
patients with diabetes [115]. In 1975 several reactions leading to HbA1c formation were
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described [116]. A year later the Cherami group proposed the glycated Hb as a marker of
the glycemia level in diabetic patients [117].

Hb is a long-living protein, staying in RBCs for about 120 ± 20 days. This time
is sufficient enough for glucose to react with the terminal valine amino group and to
form a stable complex. The amount of HbA1c reflects the blood glucose level for a
4–6 weeks period [114,118], while a standard blood glucose test shows its level at the
time of measurement, which may not be related to hyperglycemia conditions.

The discovery of HbA1c gave rise to a new research area related to studying the
Maillard reaction in biological systems. The presence of glycated proteins and other
products of non-enzymatic glycation in biological fluids and tissues proves that these
processes take place in living organisms. It was shown both under normal conditions and
in various pathologies. Thus, under hyperglycemic conditions, the Amadori products
associated with amino groups of α- and β-Hb subunits appear [119].

In diabetes patients, a negative correlation between the level of HbA1c and the activity
of Na+/K+-ATPase in RBC has been established. This correlation is most likely associated
with the glycation of the membrane proteins in conditions of high sugar content [120].

The level of glycated proteins also increases with aging of the organism [121–124].

5.2. Hemoglobin in the Development of Carbonyl Stress Consequences

The extent to which RBCs can be damaged largely depends on the processes going on
with Hb. Hb is a “long-living” protein that extensively accumulates various posttransla-
tional modifications, including non-enzymatic ones. There are several known spontaneous
biochemical reactions with amino acids in proteins, i.e., not catalyzed enzymatically. They
are: (1) oxidation of cysteine, tyrosine, and tryptophan residues; (2) nitrosylation of cysteine;
(3) nitration of tyrosine, tryptophan, and methionine; (4) chlorination of lysine, methionine,
glycine, and arginine; (5) formation of labile (Schiff bases, Amadori products) and stable
amino acid adducts (AGEs).

The following posttranslational modifications of Hb were also identified: glycation
under diabetic hyperglycemia, acylation under alcoholism, chronic renal failure, formation
of a cyanate adduct under uremia, etc. Thus, specific forms of the modified Hb can be
diagnostic of several metabolic disorders. The complex data on different Hb forms, includ-
ing the modified forms, are proposed to be used in a computer expert system to diagnose
anemia and hemoglobinopathies and other diseases manifesting these symptoms [125].
This system, along with the artificial neural networks [126], was recognized as the most
promising direction for hematological diagnostics [127].

Hb in RBC can exist in both soluble and membrane-bound forms. The ratio between
them correlates with the Hb state and the conditions of RBC membrane. The reversible
binding of Hb to the membrane is an adaptive process and can adjust properties of the
membrane and carbohydrate metabolism if the conditions are changing, e.g., partial oxygen
pressure (pO2) [128,129]. In case of the oxidants’ action, irreversible covalent Hb binding
to the membrane components may take place, which destabilizes the membrane and leads
to Hb release into blood plasma. The binding of Hb to the membrane is also affected
by the MG and ROS-caused Hb modifications under carbonyl and oxidative stress [99].
The structural disorders in Hb are accompanied by the molecule destabilization, the loss
of a cooperative effect, and a decrease in the resistance to oxidants. As a result, Hb
accumulates in the perimembranous region, the damaged Hb forms aggregates (Heinz
bodies), heme is released, and binding to the membrane takes place. It was found that
HbA1c is bound to RBC membrane significantly more weakly than normal Hb (HbA0) [130],
and has a substantially higher affinity to oxygen [131]. The oxidative Hb modifications
may result in reduced hemolytic stability and deformability of RBC, and their hindered
movement through narrow capillaries. It was shown that the pathologically altered RBCs
have a tendency towards aggregation, apoptosis, and hemolysis [132,133]. RBC hemolysis
entailing the release of Hb into a vessel is an extremely undesirable phenomenon leading
to a number of physiological disorders in the cardiovascular system. However, it should
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be noted that the Hb transition to the membrane-bound state contributes to the realization
of several specific signal-regulatory functions [99].

There are three possible mechanisms of toxic Hb action. The first is the develop-
ment of vasoconstriction resulting from NO oxidation to nitrate during reactions with
oxyHb (NO-dioxygenase reaction). The second involves the formation of active radical
products—superoxide-anion radical, peroxynitrite, and ferryl- and oxoferrylHb—inducing
the oxidation of the low-density lipoproteins in plasma. The third mechanism is based
on the reactions of a free heme, inducing the ROS formation and emergence of inflam-
matory mediators via activating NF-kB transcription factor in endothelial cells [134] and
macrophages and neutrophils [135,136]. All these phenomena lead to impairments in
blood rheological properties and to vascular occlusion [136–138]. Therefore, to successfully
search for medications reducing the degree of hemolysis under carbonyl and oxidative
stress conditions, the mechanisms of RBC stabilization are to be investigated down to the
last detail.

5.3. HbA1 and MG—the Hyperglycemic Biomarkers

The toxic effects of elevated glucose result in microvascular (retinopathy, neuropathy,
and nephropathy) and macrovascular complications, ultimately leading to the development
of heart failure. To reduce the risk of microvascular and macrovascular consequences such
as diabetes, optimal glycemic control is required.

In 2009 a committee of the American Diabetes Association recommended HbA1c
as an official indicator for diagnosing diabetes. The glycated Hb proved to be a highly
reliable and useful diagnostic marker, since every 1% increase in HbA1c level correlates
with a 15–18% increase in the risk of developing cardiovascular diseases [139]. The level
of glycated Hb was called the “golden standard” for hyperglycemia and blood glucose
testing [140].

However, the use of HbA1c as an ideal glycemic marker is currently disputed [141].
The HbA1c test is not always applicable. Particularly, there are restrictions for aplastic
anemia patients with type 2 diabetes [142]. In addition, HbA1c does not reflect the degree
of the glycemic and glycooxidant damage under diabetes [143]. Better suited for this
purpose could be specific plasma AGE biomarkers, which are products of MG-caused
glycation: Nε(carboxyethyl)lysine, Nε(carboxymethyl)lysine, and MG-derived hydroimida-
zolones [140,144–146]. For instance, the level of these AGEs predicts the rapid progression
of the diabetic nephropathy [147]. It is supposed that detecting the autofluorescence of the
skin AGEs allows one to assess the risks of diabetic sequela [148,149]. Note that the fasting
plasma glucose level was significantly positively correlated with serum MG.

It is known that during glycation (interaction with MG), the most effectively modified
amino acid residue is the lysine located near the histidine imidazole ring, and an imidazole
group was found to catalyze the the Amadori rearrangement. This mechanism is used for
the glycation of free amino groups in Hb, and in albumin and some other proteins [150–152].

Recently, the role of MG as a biomarker for early detection and monitoring of long-term
metabolic complications has been actively discussed [153]. The MG plasma level is a risk
factor predicting the progress of macro- and microvascular disturbances of type 2 diabetic
patients, and the intima-media thickening, vessels rigidity, and systolic blood pressure [154].
It proves the clinical significance of MG as a biomarker for diabetic macroangiopathy. Tests
for MG in blood plasma are being developed, which will allow one to forecast vascular
impairment at the early stages of the disease [153].

There are several methods allowing for direct estimation of MG concentration in blood
plasma: high-performance liquid chromatography, electrochemical biosensors, electrospray
ionization-liquid chromatography-mass spectrometry, enzyme immunoassay, and capillary
electrophoresis [154–156]. Some of them are also applicable for intracellular MG detection.
In [155], a selective fluorescent sensor (methyldiaminobenzene-BODIPY) for MG identifi-
cation in the cells was proposed. Additionally, recently a fast, simple, and cost-effective
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method for MG quantitative detection in blood has been reported, based on the far-infrared
spectral analysis of the product of MG reaction with o-phenylenediamine [157].

For a more accurate assessment of the risk of cardiovascular diseases at the early
diabetes stages, the combined use of several parameters was suggested: fasting blood
glucose, blood pressure, the amount of glutathione in RBCs, and total cholesterol [158].
Gycated albumin, fuctosamine, and 1,5-anhydroglucitol were also proposed as alternative
glycemic markers [141]. These biomarkers are not yet used in the clinic practice due to the
lack of standardization.

6. Relationship of Carbonyl Stress with Oxidative and Nitrosative Stresses

When studying the effect of RCC on the biological system, it is crucial to take into
account their interactions with other reactive substances, primarily with ROS and RNS.
For example, excessive MG accumulation in cells can lead to the formation of ROS and
AGEs, inactivating the cell’s antioxidant systems [159]. Note that MG can participate in
a redox relationship with nitrogen oxide (NO) formed in the nitrite reductase reaction
catalyzed by deoxyHb [160]. MG can also react with superoxide anion radical (O2

•−)
released during Hb auto-oxidation [34]. These reactive compounds can interact with each
other, and with SH groups, heme, and non-heme iron, which leads to shifts in the thiol-
disulfide equilibrium and in Hb state [41,161]. Free iron ions and the ones included in
heme and non-heme complexes play an important role in the coupling of glycation and
ROS formation processes [162].

The worse the hypoxia and the larger the deoxyHb portion, the higher the O2
•− and

NO concentrations in RBCs [163]. Moreover, under the reduced oxygen concentration, the
intensity of glycolysis increases, which is accompanied by a rise in MG production [164].
Nitric oxide interacts with heme iron and cysteine residues, and Hb has eight binding
sites to the MG molecule [93]. Both MG and NO can act as allosteric effectors increasing
the Hb affinity to oxygen [165,166], and thereby shift the Hb equilibrium towards the
R-conformation.

The signal functions of superoxide and nitric oxide in RBC have been addressed in
several comprehensive studies [167]. However, there is still no clear evidence of a signal-
regulatory action of MG in these cells. We suppose that it can be manifested by interfering
with non-enzymatic reactions caused by O2

•− and NO.
We have previously investigated the effect of the NO donors on the non-enzymatic Hb

modification with MG [41,161]. It was found that S-nitrosoglutathione (GSNO) increased
the formation of radical intermediates of the lysine reaction with MG, which lead to Hb
reduction and nitrosylation. On the other hand, GSNO inhibits Hb modification by MG
and the protein crosslinking.

At the same time, GSNO does not provide any cytoprotective action for the RBCs
pre-treated with MG. GSNO in some cases is a source of RNS, causing an irreversible
modification of the porphyrin and the formation of nitrimetHb. The obtained results are
summarized in Figure 5. It reveals the main pathways in the formation of products and free-
radical intermediates occurring in the Hb−GSNO−MG system. This diagram illustrates
the transformations network that accompanies the exchange of the NO metabolites, RCC,
and Hb in normal and pathological conditions. The presence of oxygen and/or NO in the
system determines the degree of covalent Hb modifications.

Studying the impacts of MG and NO, being critical bioregulators of RBCs, on their
physiological state, is of undisputed importance for basic and applied science. These
substances are of particular interest because they can be both present in blood plasma and
be formed in the RBCs themselves. Depending on the concentration, they can display
either toxic or regulatory effects. The toxic effects are mostly elucidated; but the signaling
and regulatory actions are still largely unknown, which is especially true for MG [91]. Last
but by no means least, studying the role of these compounds, in implementing the program
of adaptation to various pathologies, seems to be a promising direction for future research.
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A positive correlation was found between the HbA1c level and the severity of oxidative
stress in RBC of diabetes patients [168,169]. In their blood, as compared to the control
group, the concentration of malondialdehyde—a product of lipid peroxidation—was
increased, and the content of GSH—a substrate of glutathione peroxidase and glutathione
reductase, was reduced [168–170]. In diabetic patients the activity of glucose-6-phosphate
dehydrogenase was reduced. This activity is involved in GSH redox cycle along with
glutathione peroxidase and glutathione reductase [169]. A decrease in the activity of these
enzymes leads to oxidative stress and the accumulation of the oxidized denatured Hb
forms, which trigger the eryptosis process (so-called quasi-apoptosis of RBC) [143]. It
promotes the development of hemolytic anemia [171], the prevalence of which in patients
with diabetes mellitus is estimated at 22% [170] or 18% [172].
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Oxidative and carbonyl stress promote the oxidation of intracellular GSH, which is
consumed in the reactions with antioxidant enzymes and glyoxalase system. Thus, in the
RBCs of patients with type 2 diabetes, the GSH pathway was more susceptible to oxidation,
if compare to the control group [173]. In RBCs of diabetic patients, depletion of GSH
levels was observed due both forming conjugates with MG, and interaction with lipid
peroxidation products (e.g., 4-hydroxy-2,3-nonenal) [174]. At the same time, under the con-
ditions of hyperglycemia, the synthesis of GSH in the RBCs was not disturbed [175]. RBC
morphology and functional state depends on the GSH pool [176]. GSH is also involved in
maintaining vascular tone and carbohydrate metabolism. Infusion of glutathione decreases
blood pressure and potentiates insulin secretion in patients with insulin resistance and
impaired glucose tolerance [177].

Hyperglycemia and the associated oxidative stress affect the RBC’s biochemistry
and morphology, which interfere with function and life duration. In RBCs both incu-
bated with glucose in vitro and isolated from the blood of diabetic patients, a decrease in
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deformability, increased susceptibility to hemolysis, increased ROS production, and accu-
mulation of oxidative damage were observed [178,179]. In such glycated RBCs, as a result
of eryptosis, phosphatidylserine was exposed on the cell surface, which leads to increased
phagocytosis by endothelial cells [179]. Biochemical shifts in RBC are accompanied by
morphological changes. Treating RBCs with MG in vitro leads to the transformation of
normal biconcave cells into echinocytic ones [180]. In RBCs obtained from the blood of
diabetic patients, hypochromia and anisopoikilocytosis (the spread of RBCs by size and
shape) were observed [181].

Altered structural and functional RBC states affect the hematological parameters.
Thus, in the diabetic patients the values of the RBC parameters were reduced: the average
Hb concentration, the average cell volume, and hematocrit [181,182]. At the same time,
the width of RBC distribution of diabetic patients was significantly increased. Changes in
hematological parameters facilitate vascular damage, which leads to long-term macro- and
microvascular impairment [183].

7. Pharmacological Interventions and Future Perspectives

There are several possible strategies to deal with carbonyl stress in RBCs. They include
using glyoxalase activators and anti-glycation agents (ACS traps), suppressing glycolysis,
and switching glucose metabolism from glycolysis to the pentose phosphate pathway.

Currently, low molecular weight compounds enhancing the activity or GloI expression
are of particular interest [74,184]. A synthetic substance (candesartan) and substances of the
natural origin (resveratrol and fisetin) can serve as these enhancers. Unlike GloI activators,
MG traps interact directly with the RCC, thereby reducing its concentration. These are
pyridoxamine, aminoguanidine, alagebrium, and benfotiamine [185].

A promising pharmacological agent slowing down pathological processes under
hyperglycemia is the natural dipeptide carnosine (β-alanyl-L-histidine). The concentration
of carnosine in RBCs is ~10 times higher than in blood serum [82]. Carnosine has been
shown to prevent the formation of MG-induced AGEs or even reverse AGEs previously
formed [186]. Carnosine also promotes the proteolysis of aberrant proteins and exhibits
viable antioxidant properties [187]. There is a point of view that carnosine affects glycolysis
by reducing ATP synthesis [187,188]. The reason behind it can be the ability of carnosine to
activate fructose 1,6-bisphospatase, which converts fructose-1,6-bisphosphate to fructose-
6-phosphate [189]. Thereby, carnosine starts the futile cycle, while reducing both energy
production and MG formation (Figure 3). Various studies have shown a positive effect
of carnosine on the morphology and deformability of RBCs [190–193]. It can be partly
explained by antioxidant properties of carnosine, which can protect RBCs against the ROS
action, which cause peroxidation of membrane lipids. Such peroxidation can decrease
RBC deformability and impair microcirculation. Moreover, the oxidative stress in RBCs
often stems from diabetic hyperglycemia [194]. Carnosine has been shown to reduce lipid
peroxidation, and to normalize RBC deformability in rats with streptozotocin-induced
diabetes [192]. Carnosine also prevents alterations in rheological characteristics of RBCs
incubated in glucose solutions [195].

In this regard, we would like to note the following. We have previously shown, that
physiological metabolites of NO—dinitrosyl iron complexes (DNICs) can protect both: Hb
against peroxide-caused oxidative stress [196,197] and RBCs against hemolysis induced
with hypochlorous acid [198]. Taking into account that we have obtained DNICs containing
carnosine as a ligand [199], it is possible to suggest that carnosine DNICs can protect RBCs
under carbonyl stress, by combining the protective properties of both components.

Another class of substances counteracting the glyco-oxidative stress is dietary polyphe-
nols [200–203]. In [197], it was shown on the culture of rat hepatocytes, that ferulic acid
and related polyphenols (caffeic acid, ρ-coumaric acid, methylferulate, ethylferulate, and
ferulaldehyde) decreased cytotoxicity and oxidative stress caused by glyoxal and MG.
Under the impact of these compounds, the formation of ROS and carbonylated proteins
was diminished, and mitochondrial membrane potential was improved. We can assume
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that dietary polyphenols will be effective in fighting the carbonyl stress in RBCs. Zinc oxide
nanoparticles (ZnO-NP) synthesized from an aqueous extract of Morus indica leaves were
also reported as promising pharmacological agents with therapeutic potential at diabetic
sequela [180].

One of strategies to circumvent carbonyl stress is to decrease the flow of glucose
metabolized via glycolysis. For RBC, it can be achieved through several strategies: either
by following a low-carb diet [82], or by switching glucose metabolism from glycolysis
to the pentose phosphate pathway. It was shown [47], that thiamine intake stimulates
the anaerobic pentose phosphate pathway by increasing the activity of transketolase. It
increases the glyceraldehyde-3-phosphate metabolism, and consequently decreases the
MG production.

All these strategies, sole or combined, can be used to prevent potential complications
in case of diabetes, obesity, cardiovascular diseases, and neurodegenerative disorders.

8. Conclusions

Carbonyl stress affects all tissues of the organism, including blood and RBCs. Cir-
culating RBCs are exposed to both RCC of blood plasma (exogenous carbonyl stress)
and intracellular RCC (endogenous carbonyl stress). A novel term “glycated RBC” has
been recently coined to refer to those cells, which are exposed to high glucose or MG
concentrations.

Since mature RBCs lack a biosynthetic apparatus, their proteins function as AGEs
accumulators. One of the main target proteins for RCC is Hb, which forms adducts with
glucose (modification by N-terminal valine), and with MG (modification by lysine and
cysteine residues). The glycation modification leads to a change in the structure and
function of Hb, which affects its oxygen-binding property and signaling functions, realized
through Hb binding to the membrane protein Band3. Both Band3 and GAPDH can be
glycated, and they are both responsible for the level of cellular energy, and hence the
physiological state of RBCs.

Carbonyl stress often increases the oxidative one. O2
•− is formed during the oxidation

of free radicals of endiols (intermediates of the Maillard reaction). ROS are also produced
during the co-oxidation of sugars and lipids. In the reaction of MG with amino acids, along
with MG anion radical, a dialkylamine cation radical is formed. The production of these
free radicals is stimulated by physiological NO derivatives, such as S-nitrosothiols. The
formation of free radical products leads to the oxidative modification of biomolecules. In
particular, the modified Hb forms such as nitriHb, oxoferrylHb and HbNOx adducts are
formed.

Finally, modifying the key RBC proteins via glycation and oxidation processes gives
rise to the cells with altered morpho-functional characteristics, predisposed to eryptosis.
The intensification of eryptosis occurs under diabetic hyperglycemia. Due to this process,
on the one hand, the defective RBCs are eliminated, and hemolysis is prevented, but on
the other hand, intensive eryptosis can lead to anemia and impaired microcirculation.
In addition, glycated RBCs become a source of toxic molecules: O2

•−, H2O2, MG and
glycation alpha-synuclein [204]. In this case, the export of O2 and ATP and NO signaling
molecules is disrupted. All this leads to the development of vascular pathologies. Therefore,
it is crucial to study those substances that can activate or inhibit eryptosis.

To normalize the RBCs’ physiological function, the effective glycemic control is re-
quired. A new promising glycemic biomarker is MG. Blood plasma MG, in contrast to the
generally accepted glycemic marker HbA1c, makes it possible to predict cardiovascular
disturbance at the early diabetes stages. A routine examination of hematological parame-
ters, including an assessment of abnormalities in RBC parameters, will also help to reduce
the negative effects of diabetes on the cardiovascular system. Another important field of
research in this area is the active search for substances—potential pharmacological agents
with both anti-glycating and antioxidant properties, which would minimally affect the
structure of biomolecules.
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