

Essential Protein Detection by Random Walk on Weighted Protein-Protein Interaction Networks Bin Xu and Jihong Guan

Contribution

Method

Evaluation

Results & Discussion

Essential proteins:

> critical to the development and survival of cells.
> deletion of these proteins will result in lethality

Identification of essential proteins is critical for the understanding of the minimal requirements of organisms

Red nodes: essential

Jeong H, Mason S P, Barab[′] asi A L, et al. Lethality and centrality in protein networks. Nature, 2001, 411(6833):41–42.

To detect essential proteins:

<u>Web Lab Experiment</u>: single gene knockouts, RNA interference, conditional knockouts, ...

Disadvantages:

× inefficient

 \times not practical for whole-organism

To predict essential genes:

- conserved
- ubiquitously present across organisms

- ...

Drawback:

- limited to conserved orthologs

To predict essential proteins:

Analysis topology attributes of nodes with in PIN

- Degree centrality

- closeness centrality

Drawback:

Law confidence of protein-interaction data

Contribution

Method

Evaluation

Results & Discussion

Contribution

Challenge : (1) Low confidence of PPI Our Method

Multiple data source & evaluate confidence of PPI

Weighted PPI network

Discovering important nodes(essential proteins) using Personalized PageRank

(2) Neglecting indirect protein neighbors

Contribution

Method

Evaluation

Results & Discussion

Method - EssRank

Method – Protein Interaction Confidence

PPI Interaction data

Other data source (for each interacting protein pairs):

- > Number of common neighbors of proteins with in PIN
- > Expression correlation
- > Functional Similarity
- > Number of Domain-domain interactions
- > Phylogenetic profile similarity

Y. Jiang, Y. Wang, W. Pang, L. Chen, H. Sun, Y. Liang, and E. Blanzieri, "Essential protein identification based on essential protein–protein interaction prediction by integrated edge weights," Methods, vol. 83, pp. 51–62, 2015.

Method – Weighting Edges and Nodes

$$ECC(p,q) = \frac{z_{p,q}}{\min(d_p - 1, d_q - 1)}$$

Wang J, Li M, Wang H, et al. Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 2012, 9(4):1070–80.

Edge weights

$$wECC(p,q) = \frac{\sum_{r \in N_p \cap N_q} w(p,r) + w(q,r)}{\min(d_p-1,d_q-1)}$$

Node weights

$$w(p) = \sum_{q \in N_p} wECC(p,q)$$

Method – Personalized PageRank

Personalized vector e: Node Importance Iteration: $v' = \beta M v + (1-\beta)^* e$

Contribution

Method

Evaluation

Results & Discussion

Evaluation Dataset

PPI: DIP database

Esstial proteins: DEG、MIPS、SGD、SGDP

#protein	#interactions	# essential proteins
5003	22102	1153

Other datasets:

- Gene expression: GSE3431
- Function, Domain: SGD database
- Phylogenetic profile: InParanoid database

Result

Number of Essential Proteins in top K percent candidates

Result

Conclusion

Weighted edges and nodes in PIN.

Involving both direct and indirect protein neighbors.

Higher accuracy.

Thank you for listening!

