Strength effects after whole-body vibration in elderly population – a systematic review and meta-analysis

Slavko Rogan¹,², Lorenz Radlinger¹, Christine Jöhr¹, Christa Nyffenegger¹, Neil-Jerôme Stuck¹, Rob de Bie², Eling de Bruin³, Roger Hilfiker⁴

¹Bern University of Applied Science, Discipline Physiotherapy, Bern, Switzerland
²Department of Epidemiology, Maastricht University and Caphri Research School, Maastricht, The Netherlands
³Institute of Movement Sciences and Sport, ETH Zurich, Switzerland
⁴HES-SO Valais, University of Applied Sciences Western Switzerland, Sion, Switzerland
1. Background

Decrease of muscle strength, gait ability and balance are the main factors for about 26% of falls in nursing homes. The risk of falling rises by up to 6.2 times after strength loss in the leg muscles (1). Strength training and exercise are traditional intervention methods in the field of sport and physical therapy. In recent years, whole body vibration was introduced as a new, attractive and efficient training method for improving power and strength (2-4). Due to the influence of WBV on the neuromuscular system and the triggering of reflex responses, mechanical vibrations have the potential to improve muscle strength (5-7).

Several studies have demonstrated that WBV improves strength in elderly healthy people. Trans et al. (8) showed a beneficial effect after 8 weekly WBV training sessions focused on strengthening the knee extensors and flexors. Bogaerts (9) described similar positive effects on the knee extensors. Furthermore, one training session can be completed in a short time; also, it seems to have the similar ability to increase muscle strength as conventional strength training. Another positive aspect may be that WBV training showed no side effects.

However, while most WBV studies show varying results in strength or power, these results must be interpreted with caution. Thus, according to Colson et al. (10), no effects on students were examined after a WBV intervention.

Furthermore, it should be mentioned that many of the studies published have methodological flaws. One explanation for the contradictory results could be attributed to the inconsistent training parameters used for the WBV training. The frequency, amplitude, duration of one vibration session, the number of vibration interventions (sessions per week), are all treatment parameters that need to be considered when applying WBV. The duration of the rest period between vibration sessions also seems to play an important role (11, 12). A pertinent question arises as to the strength of the evidence in the scientific literature for this type of intervention.

The purpose of this systematic review is to provide an overview of the evidence currently available for the use of WBV to improve strength or power in elderly people. Following aspects should be clarified in particular: 1) assessment of the quality and
internal validity of the studies reviewed; 2) description of the assessments used to document the effect of WBV on maximal voluntary contraction, power and force development rate; 3) composition of the WBV training parameters; and 4) conclusion about the clinical relevance. Furthermore, this re-view should produce some more conclusive insight into the effect of WBV on the strength and power in the elderly by summarizing the available studies in a meta-analysis.
2. Research question

The aim of this systematic review and meta-analysis is to establish the best evidence regarding whole-body vibration on strength, power, rate of force development and functional strength in elderly population. Specifically, the research questions are

1. What are the effects after whole-body Vibration training on the muscle strength in elderly people aged 65 years?
2. Are there differences on muscle strength between whole-body vibration and conventional strength training in elderly people aged 65 years?
3. Methods

3.1. Searching design

This systematic review and meta-analysis follows the PRISMA guideline. The search strategy aims to find published studies and articles. Following databases was conducted until November 2013:

- Cochrane Register of Controlled Trials,
- Physiotherapy Evidence Database (PEDro)
- PubMed
- Science direct.

Hand search:

- Unpublished International Clinical Trials Registry Platform from the World Health Organization (WHO).
- Google scholar
- Manual search of the reference lists of retrieved publications was conducted.

3.2. Search strategy

3.2.1 Database

Cochrane Register of Controlled Trials

Search terms: “WBV”, „whole body vibration”, „whole body vibrations”, “whole-body vibration” and „vibration training”

PEDro

Search terms: „WBV”, „whole body vibration“, „whole-body vibration“ und „vibration training“.

PubMed

Search terms: (((((elderly) OR age) OR frail)) AND ((((((((((((strength)) OR ((power))) OR ((rate of force development))) OR ((force))) OR (((functional strengh) OR (force)))) OR (propriocept*))) OR (sensori-motor))) OR (gait stability))) OR (dynamic stability))) OR ((postural stability))) OR (postural balance))) OR ((postural balance))) OR (gait stability))) OR (dynamic stability))) OR (propriocept*))) OR (sensori-motor))) OR
((sensorimotor))) AND (("whole body vibration") OR ("whole body vibrations") OR (Vibration Training[tiab])) OR (stochastic stimulation) OR (stochastic training) OR (stochastic vibration) OR (Whole-Body Vibration) OR (Whole-Body-Vibration) OR (Whole-Body Vibrations) OR (Whole-Body-Vibrations) OR (WBV) OR (sinusoidal vibration) OR (noise vibration AND (therapy OR treatment OR training OR exercise)) OR (stochastic resonance therapy) OR (stochastic resonance treatment)))

Science direct

3.2.2 Hand search

International Clinical Trials Registry Platform and Google scholar „whole body vibration“, „WBV“ und „vibration“
4. Study selection

In the first round five reviewers (CJ, CN, NJS, SR, RH) screened title and abstract. Published randomised and non randomised controlled studies were eligible for inclusion. The studies examined the effects of whole-body vibration on isometric maximally voluntary contraction, rate of force development, power and functional strength. Exclusion criteria was current vibration, vibration via insoles, participants < 65 years and participants with diseases.

1. Pulsed focused ultrasound treatment of muscle mitigates paralysis-induced bone loss in the adjacent bone: A study in a mouse model.
 PMID: 24181660 [PubMed - in process]
 Related citations

2. Whole-Body Vibration Versus Eccentric Training or a Wait-and-See Approach for Chronic Achilles Tendinopathy: A Randomized Clinical Trial.
 Horstmann T, Jud HM, Fröhlich V, Mündermann A, Grau S.
 PMID: 24175595 [PubMed - in process]
 Related citations

3. Responsiveness of muscle size and strength to physical training in very elderly people: A systematic review.
 Stewart VH, Saunders DH, Greig CA.
 PMID: 24151875 [PubMed - as supplied by publisher]
 Related citations

4. Variations in neuromuscular activity of thigh muscles during whole-body vibration in consideration of different biomechanical variables.
 Perchthaler D, Horstmann T, Grau S.
 Related citations

5. Low-intensity whole-body vibration training to reduce fall risk in active, elderly residents of a retirement village.
 Calder CG, Mannion J, Metcalf PA.
 PMID: 23937498 [PubMed - indexed for MEDLINE]
 Related citations

 Spiliopoulou SI, Amiridis IG, Tsigganos G, Hatzitaki V.
 PMID: 23914911 [PubMed - in process]
 Related citations
7. Effects of whole body vibration training on balance in adolescents with and without Down syndrome.
Villarroya MA, González-Agüero A, Moros T, Gómez-Trullén E, Casajús JA.
PMID: 23872530 [PubMed - in process]
Related citations
8. Effect of whole-body vibration exercise on mobility, balance ability and general health status in frail elderly patients: a pilot randomized controlled trial.
Clin Rehabil. 2013 Jul 17. [Epub ahead of print]
PMID: 23864514 [PubMed - as supplied by publisher]
Related citations
9. Short-term Effects of Whole-Body Vibration on Functional Mobility and Flexibility in Healthy, Older Adults: A Randomized Crossover Study.
Tsuji T, Kitano N, Tsunoda K, Himori E, Okura T, Tanaka K.
J Geriatr Phys Ther. 2013 Jul 8. [Epub ahead of print]
PMID: 23838625 [PubMed - as supplied by publisher]
Related citations
10. Long-term impact of strength training on muscle strength characteristics in older adults.
Kennis E, Verschueren SM, Bogaerts A, Van Roie E, Boonen S, Delecluse C.
PMID: 23831385 [PubMed - in process]
Related citations
11. Effects of whole-body vibration exercise training on aortic wave reflection and muscle strength in postmenopausal women with prehypertension and hypertension.
Figueroa A, Kalfon R, Madzima TA, Wong A.
PMID: 23823582 [PubMed - as supplied by publisher]
Related citations
Ross SE, Linens SW, Wright CJ, Arnold BL.
PMID: 23724774 [PubMed - indexed for MEDLINE]
Related citations
13. Whole-body vibration exercise training reduces arterial stiffness in postmenopausal women with prehypertension and hypertension.
Figueroa A, Kalfon R, Madzima TA, Wong A.
Menopause. 2013 May 24. [Epub ahead of print]
PMID: 23715407 [PubMed - as supplied by publisher]
Related citations
14. Effects of 3 months of short sessions of controlled whole body vibrations on the risk of falls among nursing home residents.
Beaudart C, Maquet D, Mannarino M, Buckinx F, Demonceau M, Crielaard JM, Reginster JY, Bruyère O.
Related citations
15. Effects of whole-body vibration on muscle architecture, muscle strength, and balance in stroke patients: a randomized controlled trial.
Marín PJ, Ferrero CM, Menéndez H, Martín J, Herrero AJ.
PMID: 23636085 [PubMed - in process]
Related citations
16. Acute effect of whole-body vibration at optimal frequency on muscle power output of the lower limbs in older women.
PMID: 23552332 [PubMed - indexed for MEDLINE]
Related citations
17. Vibration or balance training on neuromuscular performance in osteopenic women.
Stolzenberg N, Belavý DL, Rawer R, Felsenberg D.
PMID: 23549694 [PubMed - in process]
Related citations
Ferguson SL, Kim E, Seo DI, Bemben MG.
J Strength Cond Res. 2013 Mar 8. [Epub ahead of print]
PMID: 23478479 [PubMed - as supplied by publisher]
Related citations
19. The acute effects of whole-body vibration on gait parameters in adults with cerebral palsy.
Dickin DC, Faust KA, Wang H, Frame J.
Related citations
Söderpalm AC, Kroksmark AK, Magnusson P, Karlsson J, Tulinius M, Swolin-Eide D.
Related citations
21. Precision control of trunk movement in low back pain patients.
Willigenburg NW, Kingma I, Hoozemans MJ, van Dieën JH.
PMID: 23427936 [PubMed - indexed for MEDLINE]
Related citations
22. Ten-week whole-body vibration training improves body composition and muscle strength in obese women.
Milanese C, Piscitelli F, Zenti MG, Moghetti P, Sandri M, Zancanaro C.
Related citations
23. Whole-body vibration versus proprioceptive training on postural control in postmenopausal osteopenic women.
Stolzenberg N, Belavý DL, Rawer R, Felsenberg D.
PMID: 23375357 [PubMed - in process]

Related citations
24. Therapeutic impact of low amplitude high frequency whole body vibrations on the osteogenesis imperfecta mouse bone.
Vanleene M, Shefelbine SJ.

Related citations
Eftekhari E, Mostahfezian M, Etemadifar M, Zafari A.

Related citations
26. Relationship between vibrotactile detection threshold in the Pacinian channel and complex mechanical modulus of the human glabrous skin.
Yildiz MZ, Gϋçlü B.
PMID: 23323828 [PubMed - indexed for MEDLINE]

Related citations
27. Temporal correlations in postural sway moderate effects of stochastic resonance on postural stability.
Kelty-Stephen DG, Dixon JA.
PMID: 23317679 [PubMed - indexed for MEDLINE]

Related citations
28. Study protocol: the effect of whole body vibration on acute unilateral unstable lateral ankle sprain- a biphasic randomized controlled trial.
Baumbach SF, Fasser M, Polzer H, Sieb M, Regauer M, Mutschler W, Schieker M, Blauth M.

Related citations
29. Effects of a short-term whole body vibration intervention on physical fitness in elderly people.
Gómez-Cabello A, González-Agüero A, Ara I, Casajús JA, Vicente-Rodríguez G.
PMID: 23312489 [PubMed - as supplied by publisher]

Related citations
30. Effects of fitness and vibration training on muscle quality: a 1-year postintervention follow-up in older men.
Kennis E, Verschueren SM, Bogaerts A, Coudyzer W, Boonen S, Delecluse C.
PMID: 23254274 [PubMed - indexed for MEDLINE]

Related citations
31. Effect of whole-body vibration on delayed onset muscular soreness, flexibility, and power.

Related citations
32. Low-volume whole-body vibration lasting 3 or 6 months does not affect biomarkers in blood serum of rats.

Related citations
33. [Effect of an 8-week vibration training program in the elderly].

Related citations
34. Risk of lumbar spine injury from cyclic compressive loading.

Related citations
35. Vibration platform training in women at risk for symptomatic knee osteoarthritis.

Related citations

Related citations
37. Improved sensorimotor performance via stochastic resonance.

Related citations
38. Whole body vibration exercise improves body balance and walking velocity in postmenopausal osteoporotic women treated with alendronate: Galileo and Alendronate Intervention Trail (GAIT).

Related citations
39. Whole body vibration effects on body composition in the postmenopausal korean obese women: pilot study.
Related citations
40. Effects of combining whole-body vibration with exercise on the consequences of detraining on muscle performance in untrained adults.
Osawa Y, Oguma Y.
PMID: 22739330 [PubMed - in process]

Related citations
41. Baseline-dependent effect of noise-enhanced insoles on gait variability in healthy elderly walkers.
PMID: 22739049 [PubMed - indexed for MEDLINE]

Related citations
42. [Neurological lower torso function test. A new assessment].
Merkert J, Butz S, Niecezaj R, Steinhaugen-Thiessen E, Eckardt R.
PMID: 22733479 [PubMed - indexed for MEDLINE]

Related citations
43. Stochastic resonance training reduces musculoskeletal symptoms in metal manufacturing workers: a controlled preventive intervention study.
Burger C, Schade V, Lindner C, Radlinger L, Elfering A.
PMID: 22699194 [PubMed - indexed for MEDLINE]

Related citations
44. The effect of whole body vibration on balance, mobility and falls in older adults: a systematic review and meta-analysis.
Lam FM, Lau RW, Chung RC, Pang MY.
PMID: 22609157 [PubMed - indexed for MEDLINE]

Related citations
45. Functional performance and inflammatory cytokines after squat exercises and whole-body vibration in elderly individuals with knee osteoarthritis.
PMID: 22546535 [PubMed - indexed for MEDLINE]

Related citations
46. Effects of supplemental training on fitness and aesthetic competence parameters in contemporary dance: a randomised controlled trial.
Angioi M, Metsios G, Twitchett EA, Koutedakis Y, Wyon M.
PMID: 22543316 [PubMed - indexed for MEDLINE]

Related citations
47. Anaerobic power in road cyclists is improved after 10 weeks of whole-body vibration training.
Oosthuyse T, Viedge A, McVeigh J, Avidon I.
PMID: 22531614 [PubMed - indexed for MEDLINE]
Related citations
48. Alternative Exercise Technologies to Fight against Sarcopenia at Old Age: A Series of Studies and Review.
 Kemmler W, von Stengel S.
Related citations
49. The assessment of postural control with stochastic resonance electrical stimulation and a neoprene knee sleeve in the osteoarthritic knee.
 Collins AT, Blackburn JT, Olcott CW, Jordan JM, Yu B, Weinhold PS.
PMID: 22425291 [PubMed - indexed for MEDLINE]
Related citations
50. Stochastic resonance whole-body vibration training for chair rising performance on untrained elderly: a pilot study.
 Rogan S, Hilfiker R, Schmid S, Radlinger L.
PMID: 22425243 [PubMed - indexed for MEDLINE]
Related citations
51. Weight bearing through lower limbs in a standing frame with and without arm support and low-magnitude whole-body vibration in men and women with complete motor paraplegia.
PMID: 22407161 [PubMed - indexed for MEDLINE]
Related citations
52. Effects of training on bone mass in older adults: a systematic review.
 Gómez-Cabello A, Ara I, González-Agüero A, Casajús JA, Vicente-Rodríguez G.
PMID: 22376192 [PubMed - indexed for MEDLINE]
Related citations
53. Whole-body vibration and resistance exercise prevent long-term hindlimb unloading-induced bone loss: independent and interactive effects.
PMID: 22371114 [PubMed - indexed for MEDLINE]
Related citations
54. Whole-body vibration training for patients with neurodegenerative disease.
PMID: 22336858 [PubMed - indexed for MEDLINE]
Related citations
55. Whole-body vibration has no effect on neuromotor function and falls in chronic stroke.
 Lau RW, Yip SP, Pang MY.
Whole body vibration improves the single-leg stance static balance in women with fibromyalgia: a randomized controlled trial.

Whole-body vibration in addition to strength and balance exercise for falls-related functional mobility of frail older adults: a single-blind randomized controlled trial.

Effect of whole-body vibration exercise on balance in women with fibromyalgia syndrome: a randomized controlled trial.

No specific effect of whole-body vibration training in chronic stroke: a double-blind randomized controlled study.

Effects of whole-body vibration with or without localized radiofrequency on anthropometry, body composition, and motor performance in young nonobese women.

Characterization of the tendon vibration reflex response in hemi-spastic stroke individuals.

Acute effect of whole-body vibration on power, one-repetition maximum, and muscle activation in power lifters.

Practice of contemporary dance promotes stochastic postural control in aging.

Related citations

Related citations

Related citations

Related citations

Related citations

Related citations

Related citations

Related citations

Related citations
80. Effects of resistance training with whole-body vibration on muscle fitness in untrained adults.
Osawa Y, Oguma Y.
81. Effects of whole-body vibration and resistance training on knee extensors muscular performance.
82. Stochastic resonance therapy in Parkinson's disease.
83. Effects of vibrotherapy on postural control, functionality and fatigue in multiple sclerosis patients. A randomised clinical trial.
Alguacil Diego IM, Pedrero Hernández C, Molina Rueda F, Cano de la Cuerda R.
84. Effects of whole body vibration therapy on main outcome measures for chronic non-specific low back pain: a single-blind randomized controlled trial.
del Pozo-Cruz B, Hernández Mocholi MA, Adsuar JC, Parraca JA, Muro I, Gusi N.
85. The impact of stochastic resonance electrical stimulation and knee sleeve on impulsive loading and muscle co-contraction during gait in knee osteoarthritis.
Collins A, Blackburn JT, Olcott C, Yu B, Weinhold P.
86. Physical and psychosocial ergonomic risk factors for low back pain in automobile manufacturing workers.
Vandergrift JL, Gold JE, Hanlon A, Punnett L.
87. Effects of a 6-week periodized squat training with or without whole-body vibration upon short-term adaptations in squat strength and body composition.
Lamont HS, Cramer JT, Bemben DA, Shehab RL, Anderson MA, Bemben MG.
Related citations
88. Combined whole body vibration and balance training using Vibrosphere®: improvement of trunk stability, muscle tone, and postural control in stroke patients during early geriatric rehabilitation.
Merkert J, Butz S, Nieczaj R, Steinhagen-Thiessen E, Eckardt R.
PMID: 21505939 [PubMed - indexed for MEDLINE]

Related citations
89. Osteoporosis: nonpharmacologic management.
Kasturi GC, Adler RA.
PMID: 21478069 [PubMed - indexed for MEDLINE]

Related citations
90. [Incontinence after radical prostatectomy and cystectomy: are combined training with mechanical devices and whole body vibration effective?].
Zellner M.
PMID: 21472620 [PubMed - indexed for MEDLINE]

Related citations
91. Improving balance function using vestibular stochastic resonance: optimizing stimulus characteristics.
PMID: 21442221 [PubMed - indexed for MEDLINE]

Related citations
92. Proprioceptive impairment and postural orientation control in Parkinson's disease.
Vaugoyeau M, Hakam H, Azulay JP.
PMID: 21419506 [PubMed - indexed for MEDLINE]

Related citations
93. The effect of 8 mos of twice-weekly low- or higher intensity whole body vibration on risk factors for postmenopausal hip fracture.
Beck BR, Norling TL.
PMID: 21403595 [PubMed - indexed for MEDLINE]

Related citations
94. The acute effect of different frequencies of whole-body vibration on countermovement jump performance.
Turner AP, Sanderson MF, Attwood LA.
PMID: 21358422 [PubMed - indexed for MEDLINE]

Related citations
95. Changes in balance, functional performance and fall risk following whole body vibration training and vitamin D supplementation in institutionalized elderly women. A 6 month randomized controlled trial.
Bogaerts A, Delecuse C, Boonen S, Claessens AL, Milisen K, Verschueren SM.
The effect of 6-week exercise programme and whole body vibration on strength and quality of life in women with fibromyalgia: a randomised study.

Low back pain predict sickness absence among power plant workers.

Does whole-body vibration training have acute residual effects on postural control ability of elderly women?

Whole body vibration therapy in fracture prevention among adults with chronic disease.

Patients' perception of pain during ultrasonic debridement: a comparison between piezoelectric and magnetostrictive scalers.

Effects of whole-body vibration training on different devices on bone mineral density.
The effect of warm-up with whole-body vibration vs. cycle ergometry on isokinetic dynamometry.
Kelly SB, Alvar BA, Black LE, Dodd DJ, Carothers KF, Brown LE.

The acute effect of whole-body vibration on the vertical jump height.
Armstrong WJ, Grinnell DC, Warren GS.
PMID: 20885202 [PubMed-indexed for MEDLINE]

Exploring the effects of a 20-week whole-body vibration training programme on leg muscle performance and function in persons with multiple sclerosis.
Broekmans T, Roelants M, Alders G, Feys P, Thijs H, Eijnde BO.

No effects of whole-body vibration training on muscle strength and gait performance in persons with late effects of polio: a pilot study.
Brogårdh C, Flansbjer UB, Lexell J.
PMID: 20801271 [PubMed-indexed for MEDLINE]

Stochastic resonance stimulation for upper limb rehabilitation poststroke.
PMID: 20729650 [PubMed-indexed for MEDLINE]

Effects of whole body vibration on strength and functional mobility in multiple sclerosis.
Wunderer K, Schabrun SM, Chipchase LS.
PMID: 20658923 [PubMed-indexed for MEDLINE]

Stochastic resonance electrical stimulation to improve proprioception in knee osteoarthritis.
Collins AT, Blackburn JT, Olcott CW, Miles J, Jordan J, Dirschl DR, Weinhold PS.
PMID: 20655753 [PubMed-indexed for MEDLINE]

The effects of whole-body vibration training and vitamin D supplementation on muscle strength, muscle mass, and bone density in institutionalized elderly women: a 6-month randomized, controlled trial.
Verschueren SM, Bogaerts A, Delecluse C, Claessens AL, Haentjens P, Vanderschueren D, Boonen S.
PMID: 20648661 [PubMed-indexed for MEDLINE]
Related citations
113. Effect of whole-body vibration on bone properties in aging mice.
PMID: 20638490 [PubMed - indexed for MEDLINE]
Related citations
114. Acute effects of whole body vibration during passive standing on soleus H-reflex in subjects with and without spinal cord injury.
Sayenko DG, Masani K, Alizadeh-Meghrazi M, Popovic MR, Craven BC.
PMID: 20633603 [PubMed - indexed for MEDLINE]
Related citations
115. Effects of combined whole-body vibration and resistance training on muscular strength and bone metabolism in postmenopausal women.
Bemben DA, Palmer IJ, Bemben MG, Knehans AW.
PMID: 20601282 [PubMed - indexed for MEDLINE]
Related citations
Furness TP, Maschette WE, Lorenzen C, Naughton GA, Williams MD.
PMID: 20590479 [PubMed - indexed for MEDLINE]
Related citations
117. Vibration effects on static balance and strength.
Spiliopoulou SI, Amiridis IG, Tsigganos G, Economides D, Kellis E.
PMID: 20589590 [PubMed - indexed for MEDLINE]
Related citations
118. The acute effect of whole-body low-frequency vibration on countermovement vertical jump performance in college-aged men.
Lamont HS, Cramer JT, Bemben DA, Shehab RL, Anderson MA, Bemben MG.
J Strength Cond Res. 2010 Dec;24(12):3433-42. doi: 10.1519/JSC.0b013e3181c1ff7e.
PMID: 20581706 [PubMed - indexed for MEDLINE]
Related citations
119. [What can we think about whole-body-vibration in elderly people?].
Raschilas F, Blain H.
PMID: 20570086 [PubMed - indexed for MEDLINE]
Related citations
120. Whole body vibration compared to conventional physiotherapy in patients with gonarthrosis: a protocol for a randomized, controlled study.
Related citations
121. Muscle activity and acceleration during whole body vibration: effect of frequency and amplitude.

Related citations

Related citations

130. Loads on a spinal implant measured in vivo during whole-body vibration.
Rohlmann A, Hinz B, Blüthner R, Graichen F, Bergmann G.

Related citations

131. Predicting discomfort scores reported by LHD operators using whole-body vibration exposure values and musculoskeletal pain scores.
Grenier SG, Eger TR, Dickey JP.
PMID: 20164625 [PubMed - indexed for MEDLINE]

Related citations

132. Effects of vibration training on muscle power: a meta-analysis.
Marin PJ, Rhea MR.
PMID: 20145554 [PubMed - indexed for MEDLINE]

Related citations

133. The effects of whole-body vibration training in aging adults: a systematic review.
Merriman H, Jackson K.
PMID: 20128338 [PubMed - indexed for MEDLINE]

Related citations

134. Effects of 8 weeks of vibration training at different frequencies (1 or 15 Hz) in senior sportsmen on torque and force development and of 1 year of training on muscle fibers.
PMID: 20092692 [PubMed - indexed for MEDLINE]

Related citations

135. A systematic review of supported standing programs.
Glickman LB, Geigle PR, Paleg GS.
PMID: 21791851 [PubMed]

Related citations

136. Vibration as an exercise modality: how it may work, and what its potential might be.
Rittweger J.
PMID: 20012646 [PubMed - indexed for MEDLINE]

Related citations

137. Vibrational physical exercises as the rehabilitation in gerontology.
Piatin VF, Shirolapov IV, Nikitin OL.
PMID: 19947400 [PubMed - indexed for MEDLINE]

Related citations

138. Effects of adding whole body vibration to squat training on isometric force/time characteristics.
Lamont HS, Cramer JT, Bemben DA, Shehab RL, Anderson MA, Bemben MG.
PMID: 19924007 [PubMed - indexed for MEDLINE]

Effect of iTonic whole-body vibration on delayed-onset muscle soreness among untrained individuals.
Rhea MR, Bunker D, Marin PJ, Lunt K.
PMID: 19675497 [PubMed - indexed for MEDLINE]

Related citations
148. Subsensory vibrations to the feet reduce gait variability in elderly fallers.
Galica AM, Kang HG, Priplata AA, D'Andrea SE, Starobinets OV, Sorond FA, Cupples LA, Lipsitz LA.

149. Influence of whole body vibration platform frequency on neuromuscular performance of community-dwelling older adults.
Furness TP, Maschette WE.
PMID: 19620913 [PubMed - indexed for MEDLINE]

Related citations
150. Effect of whole body vibration exercise on osteoporotic risk factors.
PMID: 19603365 [PubMed - indexed for MEDLINE]

Related citations
Schyns F, Paul L, Finlay K, Ferguson C, Noble E.

Related citations
152. Brain and ventricular volumetric changes in frontotemporal lobar degeneration over 1 year.
Knopman DS, Jack CR Jr, Kramer JH, Boeve BF, Caselli RJ, Graff-Radford NR, Mendez MF, Miller BL, Mercaldo ND.

Related citations
153. Effects of whole body vibration training on cardiorespiratory fitness and muscle strength in older individuals (a 1-year randomised controlled trial).
Bogaerts AC, Delecluse C, Claessens AL, Troosters T, Boonen S, Verschueren SM.

Related citations
154. Fitness efficacy of vibratory exercise compared to walking in postmenopausal women.
Raimundo AM, Gusi N, Tomas-Carus P.
PMID: 19434420 [PubMed - indexed for MEDLINE]

Related citations
155. Whole-body vibration training increases muscle strength and mass in older women: a randomized-controlled trial.

Related citations

Related citations
Related citations

Related citations

Related citations

Related citations

Related citations

Related citations

Related citations

Related citations

Related citations
172. Whole body vibration does not potentiate the stretch reflex.
PMID: 18773376 [PubMed - indexed for MEDLINE]

Related citations
173. [Sarcopenia and whole body vibration training: an overview].
Kaeding TS.
PMID: 18726053 [PubMed - indexed for MEDLINE]

Related citations
174. Pacing pattern and physiological responses to a 5-minute maximal exercise bout.
Berg KE, Kaufman CL, Katsavelis DC, Ratliff KL, Simet JL.
PMID: 18714224 [PubMed - indexed for MEDLINE]

Related citations
175. Whole body vibration: a new therapeutic approach to improve muscle function in
cystic fibrosis?
Rietschel E, van Koningsbruggen S, Fricke O, Semler O, Schoenau E.
PMID: 18708849 [PubMed - indexed for MEDLINE]

Related citations
176. Ubiquitous crossmodal Stochastic Resonance in humans: auditory noise facilitates
tactile, visual and proprioceptive sensations.
Lugo E, Doti R, Faubert J.

Related citations
177. A simple-shear rheometer for linear viscoelastic characterization of vocal fold tissues
at phonatory frequencies.
Chan RW, Rodriguez ML.

Related citations
178. The acute effect of whole-body vibration on the hoffmann reflex.
Armstrong WJ, Nestle HN, Grinnell DC, Cole LD, Van Gilder EL, Warren GS, Capizzi EA.
PMID: 18550962 [PubMed - indexed for MEDLINE]

Related citations
179. Effects of whole body vibration on postural steadiness in an older population.
Rees SS, Murphy AJ, Watsford ML.
PMID: 18550436 [PubMed - indexed for MEDLINE]

Related citations
180. Improved postural control after computerized optokinetic therapy based on stochastic
visual stimulation in patients with vestibular dysfunction.
PMID: 18413906 [PubMed - indexed for MEDLINE]

Related citations
181. En-route care in the air: snapshot of mechanical ventilation at 37,000 feet.
Barnes SL, Branson R, Gallo LA, Beck G, Johannigman JA.
PMID: 18376155 [PubMed - indexed for MEDLINE]
Related citations

182. Transmission of vertical whole body vibration to the human body.
PMID: 18348698 [PubMed - indexed for MEDLINE]
Related citations

183. Whole body vibration versus conventional physiotherapy to improve balance and gait in Parkinson's disease.
Ebersbach G, Edler D, Kaufhold O, Wissel J.
PMID: 18295614 [PubMed - indexed for MEDLINE]
Related citations

184. Speech recognition in noise as a function of highpass-filter cutoff frequency for people with and without low-frequency cochlear dead regions.
Vinay, Baer T, Moore BC.
PMID: 18273950 [PubMed - indexed for MEDLINE]
Related citations

185. Longitudinal assessment of vibrations during manual and power wheelchair driving over select sidewalk surfaces.
Wolf E, Cooper RA, Pearlman J, Fitzgerald SG, Kelleher A.
Related citations

186. Effects of whole-body vibration exercise on lower-extremity muscle strength and power in an older population: a randomized clinical trial.
Rees SS, Murphy AJ, Watsford ML.
Related citations

187. Effects of seated whole-body vibration on postural control of the trunk during unstable seated balance.
Slota GP, Granata KP, Madigan ML.
PMID: 18093708 [PubMed - indexed for MEDLINE]
Related citations

188. Differential effects of whole body vibration durations on knee extensor strength.
Stewart JA, Cochrane DJ, Morton RH.
PMID: 18078783 [PubMed - indexed for MEDLINE]
Related citations

189. Effect of whole body vibration training on lower limb performance in selected high-level ballet students.
PMID: 18076222 [PubMed - indexed for MEDLINE]
Related citations
190. Effects of vibration exercise on muscle performance and mobility in an older population.
Rees S, Murphy A, Watsford M.
PMID: 18048942 [PubMed - indexed for MEDLINE]
Related citations

191. Whole body vibration and dynamic restraint.
Hopkins T, Pak JO, Robertshaw AE, Feland JB, Hunter I, Gage M.
PMID: 17879889 [PubMed - indexed for MEDLINE]
Related citations

192. One session of whole body vibration increases voluntary muscle strength transiently in patients with stroke.
Tihanyi TK, Horváth M, Fazekas G, Hortobágyi T, Tihanyi J.
Clin Rehabil. 2007 Sep;21(9):782-93.
PMID: 17875558 [PubMed - indexed for MEDLINE]
Related citations

Costa M, Priplata AA, Lipsitz LA, Wu Z, Huang NE, Goldberger AL, Peng CK.
Europhys Lett. 2007 Mar;77:68008.
Related citations

194. High-frequency whole-body vibration improves balancing ability in elderly women.
Cheung WH, Mok HW, Qin L, Sze PC, Lee KM, Leung KS.
PMID: 17601464 [PubMed - indexed for MEDLINE]
Related citations

195. Impact of whole-body vibration training versus fitness training on muscle strength and muscle mass in older men: a 1-year randomized controlled trial.
Bogaerts A, Delecluse C, Claessens AL, Coudyzer W, Boonen S, Verschueren SM.
PMID: 17595419 [PubMed - indexed for MEDLINE]
Related citations

196. Efficiency of vibration exercise for glycemic control in type 2 diabetes patients.
Baum K, Votteler T, Schiab J.
Related citations

197. Influence of vibration training on energy expenditure in active men.
Da Silva ME, Fernandez JM, Castillo E, Nuñez VM, Vaamonde DM, Poblador MS, Lancho JL.
J Strength Cond Res. 2007 May;21(2):470-5.
PMID: 17530948 [PubMed - indexed for MEDLINE]
Related citations

198. Hygienic assessment of working conditions and functional resistance in electric power station workers.
Terekhov IA.
PMID: 17526225 [PubMed - indexed for MEDLINE]
Related citations
Challenges in design of multicenter trials: end points assessed longitudinally for change and monotonicity.
PMID: 17513707 [PubMed - indexed for MEDLINE]
Related citations

Impairment of human proprioception by high-frequency cutaneous vibration.
Weerakkody NS, Mahns DA, Taylor JL, Gandevia SC.
Related citations

Effect of whole-body vibration exercise and muscle strengthening, balance, and walking exercises on walking ability in the elderly.
Kawanabe K, Kawashima A, Sashimoto I, Takeda T, Sato Y, Iwamoto J.
Related citations

The effect of whole body vibration on lower extremity skin blood flow in normal subjects.
Lohman EB 3rd, Petrofsky JS, Maloney-Hinds C, Betts-Schwab H, Thorpe D.
PMID: 17261985 [PubMed - indexed for MEDLINE]
Related citations

Proprioceptive and sensorimotor performance in Parkinson's disease.
Haas CT, Buhlmann A, Turbanski S, Schmidtbleicher D.
PMID: 17214404 [PubMed - indexed for MEDLINE]
Related citations

Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial.
Gusi N, Raimundo A, Leal A.
BMC Musculoskelet Disord. 2006 Nov 30;7:92.
Related citations

Effects of whole body vibration training on postural control in older individuals: a 1 year randomized controlled trial.
Bogaerts A, Verschueren S, Delecluse C, Claessens AL, Boonen S.
PMID: 17074485 [PubMed - indexed for MEDLINE]
Related citations

Stance- and locomotion-dependent processing of vibration-induced proprioceptive inflow from multiple muscles in humans.
Courtine G, De Nunzio AM, Schmid M, Beretta MV, Schieppati M.
Related citations

Craniocentric body-sway responses to 500 Hz bone-conducted tones in man.
Welgampola MS, Day BL.
Related citations
208. Effects on leg muscular performance from whole-body vibration exercise: a systematic review.
Rehn B, Lidström J, Skoglund J, Lindström B.
PMID: 16903900 [PubMed - indexed for MEDLINE]

Related citations
209. Long-term effects of 6-week whole-body vibration on balance recovery and activities of daily living in the postacute phase of stroke: a randomized, controlled trial.

Related citations
210. Will whole-body vibration training help increase the range of motion of the hamstrings?
vanden Tillaar R.
PMID: 16503680 [PubMed - indexed for MEDLINE]

Related citations
211. Whole-body-vibration-induced increase in leg muscle activity during different squat exercises.
Roelants M, Verschueren SM, Delecluse C, Levin O, Stijnen V.
PMID: 16503671 [PubMed - indexed for MEDLINE]

Related citations
212. Vibration exposure of individuals using wheelchairs over sidewalk surfaces.
Wolf E, Pearlman J, Cooper RA, Fitzgerald SG, Kelleher A, Collins DM, Boninger ML, Cooper R.
PMID: 16418059 [PubMed - indexed for MEDLINE]

Related citations
213. Effects of random whole-body vibration on postural control in Parkinson's disease.
Turanski S, Haas CT, Schmidtbleicher D, Friedrich A, Duisberg P.
PMID: 16392539 [PubMed - indexed for MEDLINE]

Related citations
Bautmans I, Van Hees E, Lemper JC, Mets T.

Related citations
215. Conditioning pulse trains in cochlear implants: effects on loudness growth.
Hong RS, Rubinstein JT.
PMID: 16371847 [PubMed - indexed for MEDLINE]

Related citations
Schuhfried O, Mittermaier C, Jovanovic T, Pieber K, Paternostro-Sluga T.
217. Estimating the global burden of low back pain attributable to combined occupational exposures.
PMID: 16299708 [PubMed - indexed for MEDLINE]
Related citations
218. Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal osteoporotic women treated with alendronate.
PMID: 15977465 [PubMed - indexed for MEDLINE]
Related citations
219. Fetal and juvenile animal hemorheology.
PMID: 15851838 [PubMed - indexed for MEDLINE]
Related citations
PMID: 15764307 [PubMed - indexed for MEDLINE]
Related citations
221. Balance training and exercise in geriatric patients.
Related citations
222. Evaluation of whole-body vibration by the category judgment method.
Related citations
223. Controlled whole body vibration to decrease fall risk and improve health-related quality of life of nursing home residents.
PMID: 15706558 [PubMed - indexed for MEDLINE]
Related citations
PMID: 15574092 [PubMed - indexed for MEDLINE]
Related citations
225. Short-term effects of whole-body vibration on postural control in unilateral chronic stroke patients: preliminary evidence.
van Nes IJ, Geurts AC, Hendricks HT, Duysens J.
PMID: 15502741 [PubMed - indexed for MEDLINE]
Related citations
226. Ergonomics in mining.
McPhee B.
Related citations
227. Whole-body-vibration training increases knee-extension strength and speed of movement in older women.
Roelants M, Delecluse C, Verschueren SM.
PMID: 15161453 [PubMed - indexed for MEDLINE]
Related citations
228. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study.
Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S.
PMID: 15040822 [PubMed - indexed for MEDLINE]
Related citations
229. Comparison between subthalamic nucleus and globus pallidus internus stimulation for postural performance in Parkinson's disease.
Rocchi L, Chiari L, Cappello A, Gross A, Horak FB.
PMID: 15013506 [PubMed - indexed for MEDLINE]
Related citations
230. High-frequency vibration training increases muscle power in postmenopausal women.
Russo CR, Lauretani F, Bandinelli S, Bartali B, Cavazzini C, Guralnik JM, Ferrucci L.
PMID: 14669194 [PubMed - indexed for MEDLINE]
Related citations
231. The effects of whole body vibration on humans: dangerous or advantageous?
Cardinale M, Pope MH.
PMID: 14594190 [PubMed - indexed for MEDLINE]
Related citations
232. Neck muscle vibration alters visually perceived roll in normals.
McKenna GJ, Peng GC, Zee DS.
Related citations
233. Vibrating insoles and balance control in elderly people.
Priplata AA, Niemi JB, Harry JD, Lipsitz LA, Collins JJ.
PMID: 14550702 [PubMed - indexed for MEDLINE]
Related citations
234. Electromyography activity of vastus lateralis muscle during whole-body vibrations of different frequencies.
Cardinale M, Lim J.
PMID: 12930196 [PubMed - indexed for MEDLINE]
235. Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study.
J Bone Miner Res. 2003 May;18(5):876-84.
PMID: 12733727 [PubMed - indexed for MEDLINE]

236. Noise-enhanced human sensorimotor function.
Collins JJ, Priplata AA, Gravelle DC, Niemi J, Harry J, Lipsitz LA.
PMID: 12733463 [PubMed - indexed for MEDLINE]

237. Nonstationarities of postural sway.
Loughlin PJ, Redfern MS, Furman JM.
PMID: 12733462 [PubMed - indexed for MEDLINE]

238. Cutaneous afferents from human plantar sole contribute to body posture awareness.
Roll R, Kavounoudias A, Roll JP.
PMID: 12395099 [PubMed - indexed for MEDLINE]

239. Noise-enhanced balance control in older adults.
Gravelle DC, Laughton CA, Dhruv NT, Katdare KD, Niemi JB, Lipsitz LA, Collins JJ.
PMID: 12395078 [PubMed - indexed for MEDLINE]

Schweigart G, Chien RD, Mergner T.
PMID: 12373373 [PubMed - indexed for MEDLINE]

241. Role of visual input in nonlinear postural control system.
Sasaki O, Usami S, Gagey PM, Martinerie J, Le Van Quyen M, Arranz P.
PMID: 12373362 [PubMed - indexed for MEDLINE]

242. Treatment of chronic lower back pain with lumbar extension and whole-body vibration exercise: a randomized controlled trial.
Rittweger J, Just K, Kautzsch K, Reeg P, Felsenberg D.
PMID: 12221343 [PubMed - indexed for MEDLINE]

243. Effect of four-month vertical whole body vibration on performance and balance.
PMID: 12218749 [PubMed - indexed for MEDLINE]
Related citations
244. Effect of 4-min vertical whole body vibration on muscle performance and body balance: a randomized cross-over study.
Torvinen S, Sievänen H, Järvinen TA, Pasanen M, Kontulainen S, Kannus P.
PMID: 12165890 [PubMed - indexed for MEDLINE]

Related citations
Thurner S, Mittermaier C, Ehrenberger K.
PMID: 12097723 [PubMed - indexed for MEDLINE]

Related citations
246. Effect of a vibration exposure on muscular performance and body balance.
Randomized cross-over study.
PMID: 12005157 [PubMed - indexed for MEDLINE]

Related citations
Liu W, Lipsitz LA, Montero-Odasso M, Bean J, Kerrigan DC, Collins JJ.
PMID: 11833019 [PubMed - indexed for MEDLINE]

Related citations
248. Foot sole and ankle muscle inputs contribute jointly to human erect posture regulation.
Kavounoudias A, Roll R, Roll JP.
J Physiol. 2001 May 1;532(Pt 3):869-78.

Related citations
249. Scopolamine nasal spray in motion sickness: a randomised, controlled, and crossover study for the comparison of two scopolamine nasal sprays with oral dimenhydrinate and placebo.
Klöcker N, Hanschke W, Toussaint S, Verse T.
PMID: 11297908 [PubMed - indexed for MEDLINE]

Related citations
250. Hormonal responses to whole-body vibration in men.
PMID: 10774867 [PubMed - indexed for MEDLINE]

Related citations
251. Physical load during work and leisure time as risk factors for back pain.
Hoogendoorn WE, van Poppel MN, Bongers PM, Koes BW, Bouter LM.

Related citations
Reis Ferreira JM, Couto AR, Jalles-Tavares N, Castelo Branco MS, Castelo Branco NA.
PMID: 10189158 [PubMed - indexed for MEDLINE]
Related citations
253. Sister chromatid exchange analysis in workers exposed to noise and vibration.
Silva MJ, Carothers A, Castelo Branco NA, Dias A, Boavida MG.
PMID: 10189155 [PubMed - indexed for MEDLINE]
Related citations
254. From balance regulation to body orientation: two goals for muscle proprioceptive
information processing?
Kavounoudias A, Gilhodes JC, Roll R, Roll JP.
PMID: 9928792 [PubMed - indexed for MEDLINE]
Related citations
255. Are clinical measurements of uncomfortable loudness levels a valid indicator of real-
world auditory discomfort?
Munro KJ, Patel RK.
PMID: 9845026 [PubMed - indexed for MEDLINE]
Related citations
256. The plantar sole is a 'dynamometric map' for human balance control.
Kavounoudias A, Roll R, Roll JP.
PMID: 9831459 [PubMed - indexed for MEDLINE]
Related citations
257. A new method to measure elastic properties of plastic-viscoelastic connective tissue.
Ettema GJ, Goh JT, Forwood MR.
PMID: 9728682 [PubMed - indexed for MEDLINE]
Related citations
258. Positive and negative evidence of risk factors for back disorders.
Burdorf A, Sorock G.
Related citations
259. Estimation of spine forces under whole-body vibration by means of a biomechanical
model and transfer functions.
Fritz M.
PMID: 9184739 [PubMed - indexed for MEDLINE]
Related citations
260. Postural responses to vibration of neck muscles in patients with idiopathic torticollis.
Lekhel H, Popov K, Anastasopoulos D, Bronstein A, Bhatia K, Marsden CD, Gresty M.
Brain. 1997 Apr;120 (Pt 4):583-91.
Related citations
261. Modification of human left ventricular relaxation by small-amplitude, phase-
controlled mechanical vibration on the chest wall.
Koiwa Y, Honda H, Takagi T, Kikuchi J, Hoshi N, Takishima T.
Related citations
262. The influence of biodynamic factors on the mechanical impedance of the hand and arm.
Burström L.
PMID: 9215931 [PubMed - indexed for MEDLINE]
Related citations
263. Open-loop and closed-loop postural control mechanisms in Parkinson's disease: increased mediolateral activity during quiet standing.
PMID: 8552278 [PubMed - indexed for MEDLINE]
Related citations
264. A critical band filter in touch.
Makous JC, Friedman RM, Vierck CJ Jr.
Related citations
265. Stochastic simulation of vertebral trabecular bone remodeling.
Thomsen JS, Mosekilde L, Boyce RW, Mosekilde E.
PMID: 7873294 [PubMed - indexed for MEDLINE]
Related citations
266. Health and safety hazards associated with farming.
Ehlers JK, Connon C, Themann CL, Myers JR, Ballard T.
PMID: 8259943 [PubMed - indexed for MEDLINE]
Related citations
267. Perceptual scaling of whole-body low frequency linear oscillatory motion.
Goldin JF, Benson AJ.
PMID: 8357318 [PubMed - indexed for MEDLINE]
Related citations
268. Epidemiology of low back pain.
Skovron ML.
PMID: 1477891 [PubMed - indexed for MEDLINE]
Related citations
269. Symptoms of construction workers exposed to whole body vibration and local vibration.
Miyashita K, Morioka I, Tanabe T, Iwata H, Takeda S.
PMID: 1487332 [PubMed - indexed for MEDLINE]
Related citations
270. Back pain and exposure to whole body vibration in helicopter pilots.
Bongers PM, Hulshof CT, Dijkstra L, Boshuizen HC, Groenhout HJ, Valken E.
PMID: 2147003 [PubMed - indexed for MEDLINE]
Related citations
271. Low back pain/prolapsed lumbar intervertebral disc.
Kelsey JL, Golden AL, Mundt DJ.
272. Haemodynamic and haemorheological effects of hypervolaemic haemodilution in men with primary hypertension.
Wysocki M, Persson B, Aurell M, Braide M, Bagge U, Andersson OK.
PMID: 3302038 [PubMed-indexed for MEDLINE]
Related citations

273. Effect of exposure to heat, hypoxia, cold, acceleration, and vibration stress on the total blood sulfhydryl groups in human subjects.
Iyer EM, Dikshit MB, Suryanarayana S.
PMID: 4074264 [PubMed-indexed for MEDLINE]
Related citations

274. Sensory effects of pulling or vibrating exposed tendons in man.
McCloskey DI, Cross MJ, Honner R, Potter EK.
PMID: 6831197 [PubMed-indexed for MEDLINE]
Related citations

275. Development of noise and vibration ride comfort criteria.
Dempsey TK, Leatherwood JD, Clevenson SA.
PMID: 422810 [PubMed-indexed for MEDLINE]
Related citations
5. Data extraction and methodology quality

Five reviewers (CJ, CN, NJS, SR, RH) assessed independently the methodological quality with “The Cochrane Collaboration’s tool for assessing risk of bias”. The criteria list comprised six items. Each item was scored with “+” if the criterion was met, with “-” if the criterion was not met, and with “?” if the information was not provided or was unclear.

Four authors (CJ, CN, NJS, SR) independently abstracted the following information from each of the included studies in the systematic review and meta-analysis: 1) design and sample; 2) inclusion criteria; 3) training parameters; 4) type of vibration plate; 5) change in strength, power and force development rate; 6) conclusions of the studies and statistical significance.

Heterogeneity was assessed by examining forest plots and the I^2 statistics. For statistical analysis the standardised mean differences (SMD) as effect measures, and presented as continuous data (mean values and SD or mean changes).
6. Time table

<table>
<thead>
<tr>
<th>Date</th>
<th>Work</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>June. 2013</td>
<td>Management systematic review</td>
<td>SR, LR, CJ, CN, NJS, RH</td>
</tr>
<tr>
<td>Till 09.2013</td>
<td>Search Database & hand search</td>
<td>SR, CJ, CN, NJS, RH</td>
</tr>
<tr>
<td>Till 10.2013</td>
<td>Evaluate abstract & read full text</td>
<td>SR, CJ, CN, NJS, RH</td>
</tr>
<tr>
<td>Till 11.2013</td>
<td>Evaluate included full text & risk of bias & outcome table</td>
<td>SR, CJ, CN, NJS, RH</td>
</tr>
<tr>
<td>Till end 11.2013</td>
<td>Collect data, analysis data</td>
<td>SR & RH</td>
</tr>
<tr>
<td>Till 01.2014</td>
<td>Final check: manuscript, PRISMA, Flow chart, copyright transfer</td>
<td>SR, LR, RdB, EdB, RH</td>
</tr>
<tr>
<td>01.2014</td>
<td>Submitted manuscript to Sports Medicine (Springer)</td>
<td>SR</td>
</tr>
</tbody>
</table>