
Compressed Sensing  and 
Computed Tomography with

Deep Neural Networks

David Boublil, Michael Zibulevsky and Michael Elad 

Technion, Computer Science Department

ICRI-CI 2015 Retreat, May 5, 2015









Photon detection in positron emission tomography using neural network [12]





Nonlinear compression



Linear compression (Compressed sensing)
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Linear compression (Compressed sensing)
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A New Single-Pixel Camera, http://dsp.rice.edu/cscamera



CS using Neural Network:  Training Set

Some image examples from the training set:



CS using Neural Network – Results

• Hidden layers: 12
• Activation: Tanh
• Redundancy factor: 2
• Block size:  16x16.
• Training examples: 

500k



CS using Neural Network – Results
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Classical Compressed sensing
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Classical Compressed sensing

Recovery:

Set         reflects prior knowledge about the signal:

1. Limited Total Variation (TV):

2. Sparse representability: 

Constraints may be put as a penalty term
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Block  Compressed Sensing using Smoothed projected Landweber (SPL-BCS) 

L. Gan , J. E. Fowler and others…

 Transforms: DCT, Wavelet (DWT), Contourlet (CT), Dual tree wavelet (DDWT)…

 Initialization of each block: 

 The algorithm :

 Further improvement by multi-scale (MS-BCS-SPL) and multi-hypothesis (MH-
BCS-SPL) extensions.
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Comparison with other Block-CS algorithms



Comparison with other Block-CS algorithms  



Comparison with other Block-CS algorithms  



Comparison with Romberg Algorithm [11]

It is generally applied on the whole image, for this comparison we 
have used it on each block to get a fair comparison.

Compression Rate = 5%



Influence of Network depth

- Compression rate = 10%
- Number of examples = 500k
- Redundancy factor = 2
- Block size = 8x8



Influence of Network depth: Peppers
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Influence of redundancy factor (layer width):  Lena

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
30.1

30.2

30.3

30.4

30.5

30.6

30.7

30.8

Redundancy factor

P
S

N
R

 (
d

B
)

- Compression rate = 10%
- Number of examples = 500k
- Depth: 8 hidden layers
- Block size = 8x8



Influence of block size:  Boat
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Influence of number of training examples
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Future Directions

• Use large  networks  and training sets  to 
achieve patch size of 32x32 and bigger 

• Global sensing / reconstruction using 
multiresolution neural networks

• Get back to nonlinear compression 
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 Filtered Back-Projection (FBP) => Linear Operator

 Penalized Weighted Least Square (PWLS) => Iterative algorithm

Reconstruction Algorithms

*RFBP low Ram LakT F F 

Adjoint of Radon 
Transform

(Back-projection)

1D convolution filter -
Applied to each 

projection
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Main Themes of Our Work [13]

Reducing Radiation Dose By
Learning to Fuse Several 

Output Images



Fusion Over a Smoothing Parameter

Recon.
algorithm

Control 
parameter

Raw data Image

Fusion   
Rule

The Algorithm:
 Sweep the variance-resolution tradeoff  
 Extract pixel neighborhood from each 

version
 Build a decision rule to perform the local  

fusion

Fusion Rule: 
Use a regression to build one automatically, 
with an Artificial Neural Network (ANN)

Artificial Neural 
Network (ANN)

…

…



FBP algorithm: sweep the cut-off 
frequency of the low-pass 
sinogram filter, and collect few 
images with different resolution-
variance trade-off

PWLS algorithm: perform the regular reconstruction 
while collecting versions along the iterations or 
sweeping different penalized weights       .

Created with 
FBP

Standard 
PWLS result

Initial 
image

Converged 
image

versions from the iterations

Fusion: Which Images to Use?
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Neural Network (NN) Architecture

…

Input 
Layer

Hidden Layer

Output 
Layer

 Simple fully connected Neural Network

Activation function is an hyperbolic tangent

Caffe software was used to train the network

Training data (CT images) is taken from Visible Human Project

Clean
Version

Recon. versions

Patch 
extraction



Empirical results- ANN FBP

Original

FBP- filter 1: 19.11 dB

FBP- filter 2: 26.27 dB

FBP- filter 3: 23.93 dB

Neural   
Network

FBP- ANN: 28.5 dB

Small NN

FBP- ANN: 29.4 dB

Large NN



Empirical results- ANN PWLS

Original

PWLS - iter 60: 24.51 dB

Neural   
Network

PWLS-ANN: 29.4 dB

Small NN

PWLS- ANN: 30.03 dB

Large NN

PWLS – iter 400: 27.4 dB

PWLS – iter 120: 26.40 dB



Thank You !!!
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