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Photon detection in positron emission tomography using neural network [12]





Nonlinear compression



Linear compression (Compressed sensing)
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Linear compression (Compressed sensing)

x̂

Linear 
encoder

A New Single-Pixel Camera, http://dsp.rice.edu/cscamera



CS using Neural Network:  Training Set

Some image examples from the training set:



CS using Neural Network – Results

• Hidden layers: 12
• Activation: Tanh
• Redundancy factor: 2
• Block size:  16x16.
• Training examples: 

500k



CS using Neural Network – Results



CS using Neural Network – Results



Classical Compressed sensing
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Set   X  reflects prior knowledge about the signal



Classical Compressed sensing

Recovery:

Set         reflects prior knowledge about the signal:

1. Limited Total Variation (TV):

2. Sparse representability: 

Constraints may be put as a penalty term
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Block  Compressed Sensing using Smoothed projected Landweber (SPL-BCS) 

L. Gan , J. E. Fowler and others…

 Transforms: DCT, Wavelet (DWT), Contourlet (CT), Dual tree wavelet (DDWT)…

 Initialization of each block: 

 The algorithm :

 Further improvement by multi-scale (MS-BCS-SPL) and multi-hypothesis (MH-
BCS-SPL) extensions.
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Comparison with other Block-CS algorithms



Comparison with other Block-CS algorithms  



Comparison with other Block-CS algorithms  



Comparison with Romberg Algorithm [11]

It is generally applied on the whole image, for this comparison we 
have used it on each block to get a fair comparison.

Compression Rate = 5%



Influence of Network depth

- Compression rate = 10%
- Number of examples = 500k
- Redundancy factor = 2
- Block size = 8x8



Influence of Network depth: Peppers
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Influence of redundancy factor (layer width):  Lena
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- Compression rate = 10%
- Number of examples = 500k
- Depth: 8 hidden layers
- Block size = 8x8



Influence of block size:  Boat
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Influence of number of training examples
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- Compression rate = 10%
- Block size = 8x8
- Depth: 8 hidden layers
- Redundancy factor = 2



Future Directions

• Use large  networks  and training sets  to 
achieve patch size of 32x32 and bigger 

• Global sensing / reconstruction using 
multiresolution neural networks

• Get back to nonlinear compression 
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 Filtered Back-Projection (FBP) => Linear Operator

 Penalized Weighted Least Square (PWLS) => Iterative algorithm

Reconstruction Algorithms

*RFBP low Ram LakT F F 

Adjoint of Radon 
Transform

(Back-projection)

1D convolution filter -
Applied to each 

projection

LPF –prevents noise 
amplification

at high frequencies

arg min log( ) ( )
Df

f y Af R f  %

Measured counts –
projections

Prior on clean 
CT image

Radon transform 
approximation-

Models scan process



Main Themes of Our Work [13]

Reducing Radiation Dose By
Learning to Fuse Several 

Output Images



Fusion Over a Smoothing Parameter

Recon.
algorithm

Control 
parameter

Raw data Image

Fusion   
Rule

The Algorithm:
 Sweep the variance-resolution tradeoff  
 Extract pixel neighborhood from each 

version
 Build a decision rule to perform the local  

fusion

Fusion Rule: 
Use a regression to build one automatically, 
with an Artificial Neural Network (ANN)

Artificial Neural 
Network (ANN)

…

…



FBP algorithm: sweep the cut-off 
frequency of the low-pass 
sinogram filter, and collect few 
images with different resolution-
variance trade-off

PWLS algorithm: perform the regular reconstruction 
while collecting versions along the iterations or 
sweeping different penalized weights       .

Created with 
FBP

Standard 
PWLS result

Initial 
image

Converged 
image

versions from the iterations

Fusion: Which Images to Use?
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Neural Network (NN) Architecture

…

Input 
Layer

Hidden Layer

Output 
Layer

 Simple fully connected Neural Network

Activation function is an hyperbolic tangent

Caffe software was used to train the network

Training data (CT images) is taken from Visible Human Project

Clean
Version

Recon. versions

Patch 
extraction



Empirical results- ANN FBP

Original

FBP- filter 1: 19.11 dB

FBP- filter 2: 26.27 dB

FBP- filter 3: 23.93 dB

Neural   
Network

FBP- ANN: 28.5 dB

Small NN

FBP- ANN: 29.4 dB

Large NN



Empirical results- ANN PWLS

Original

PWLS - iter 60: 24.51 dB

Neural   
Network

PWLS-ANN: 29.4 dB

Small NN

PWLS- ANN: 30.03 dB

Large NN

PWLS – iter 400: 27.4 dB

PWLS – iter 120: 26.40 dB



Thank You !!!



Bibliography (1)
[1]M. Mougeot, R. Azencott, B. Angeniol, Image compression with back propagation: 
improvement of the visual restoration using different cost functions, Neural Networks 4 (4) 
(1991) 467-476.

[1a] Elad, M. (2007). Optimized projections for compressed sensing. Signal Processing, IEEE 
Transactions on, 55(12), 5695-5702.

[1b] Chang, H. S., Weiss, Y., & Freeman, W. T. (2009). Informative sensing of natural images. In 
Image Processing (ICIP), 2009 16th IEEE International Conference on (pp. 3025-3028). IEEE.

[2] Duarte-Carvajalino, J. M., & Sapiro, G. (2009). Learning to sense sparse signals: 
Simultaneous sensing matrix and sparsifying dictionary optimization.Image Processing, IEEE 
Transactions on, 18(7), 1395-1408.

[3] Xu, J., Pi, Y., & Cao, Z. (2010). Optimized projection matrix for compressive 
sensing. EURASIP Journal on Advances in Signal Processing, 2010, 43.

[4]Chen, W., Rodrigues, M. R., & Wassell, I. J. (2012). On the use of unit-norm tight frames to 
improve the average mse performance in compressive sensing applications. Signal Processing 
Letters, IEEE, 19(1), 8-11.

[5] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, 
Sergio Guadarrama, and Trevor Darrell, “Caffe: Convolutional architecture for fast feature 
embedding,” arXiv preprint arXiv:1408.5093, 2014.

[6]Gan, L. (2007, July). Block compressed sensing of natural images. In Digital Signal 
Processing, 2007 15th International Conference on (pp. 403-406). IEEE.



Bibliography (2)
[7]Mun, S., & Fowler, J. E. (2009, November). Block compressed sensing of images using 
directional transforms. In Image Processing (ICIP), 2009 16th IEEE International Conference 
on (pp. 3021-3024). IEEE.

[8] Fowler, J. E., Mun, S., & Tramel, E. W. (2011, August). Multiscale block compressed sensing 
with smoother projected Landweber reconstruction. InProceedings of the European signal 
processing conference (Vol. 564, p. 568).

[9] Chen, C., Tramel, E. W., & Fowler, J. E. (2011, November). Compressed-sensing recovery of 
images and video using multihypothesis predictions. InSignals, Systems and Computers 
(ASILOMAR), 2011 Conference Record of the Forty Fifth Asilomar Conference on (pp. 1193-
1198). IEEE.

[10] Fowler, J. E., Mun, S., & Tramel, E. W. (2012). Block-based compressed sensing of images 
and video. Foundations and Trends in Signal Processing,4(4), 297-416.

[11] Romberg, J. (2008). Imaging via compressive sampling [introduction to compressive 
sampling and recovery via convex programming]. IEEE Signal Processing Magazine, 25(2), 14-20.

[12] Bronstein, A. M., Bronstein, M. M., Zibulevsky, M., & Zeevi, Y. Y. (2003). Optimal nonlinear 
line-of-flight estimation in positron emission tomography. Nuclear Science, IEEE Transactions on, 
50(3), 421-426.

[13] D Boublil, M Elad, J Shtok and  M Zibulevsky (2015) Spatially-Adaptive Reconstruction in 
Computed Tomography using Neural Networks, IEEE Trans. on Biomedical Imaging, accepted

[14] Y Pfeffer and M  Zibulevsky (2010) A Micro-Mirror Array based System for Compressive 
Sensing of Hyperspectral Data 


