
Fungal Systematics and Evolution is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

© 2022 Westerdijk Fungal Biodiversity Institute 99

 

 
Editor-in-Chief	
Prof.	 dr	 P.W.	 Crous,	 Westerdijk	 Fungal	 Biodiversity	 Institute,	 P.O.	 Box	 85167,	 3508	 AD	 Utrecht,	 The	 Netherlands.	
E-mail:	p.crous@westerdijkinstitute.nl	
 

 
 

 

Fungal Systematics and Evolution

doi.org/10.3114/fuse.2022.09.07

VOLUME 9
JUNE 2022
PAGES 99–159

INTRODUCTION

Fungi have many different strategies for spore dispersal. The 
most widespread mechanism among macrofungi involves 
liberating spores into air currents via forcible discharge 
(ballistospory among Basidiomycetes and bursting of the asci 
among Ascomycetes) (Buller 1909, Money 1998, Trail 2007). 
Other fungi rely on mutualisms with organisms that ingest their 
sporocarps as a food reward for subsequent dispersal. The term 
"mycophagy" refers to the consumption of fungi by vertebrates 
and invertebrates. Animals consume many groups of fungi that 
form macroscopic sporocarps both above ground (epigeous, e.g. 
mushrooms, brackets or cups) and below ground (hypogeous, 
e.g. truffles). These animals often act as important vectors for the 
spread of fungal spores across landscapes. Mammals, reptiles 
and birds are significant fungal dispersers (Fogel & Trappe 1978, 
Claridge & May 1994, Maser et al. 2008, Elliott et al. 2019a, b, 
Caiafa et al. 2021), but specialised dispersal associations have 
been most thoroughly studied among invertebrates (Fogel 
1975, Hammond & Lawrence 1989, Schigel 2012, Kitabayashi 
et al. 2022). For example, in one of its developmental stages, 

the entomopathogenic fungal genus Massospora alters the 
behaviour of male cicadas by using cathinone (an amphetamine) 
and psilocybin (a tryptamine) to cause males to simulate the 
behaviour of sexually receptive females (Boyce et al. 2018, 
Cooley et al. 2018). This chemical manipulation causes males 
to attempt copulation with the infected pseudo-female, leading 
to further transmission of fungal spores. There are numerous 
other examples of specialised invertebrate-fungal associations. 
The polypore Cryptoporus volvatus has a veil enclosing its 
fertile surface; a diversity of insects live between these layers 
and disperse spores by entering and exiting via a portal hole 
through the veil (Ingold 1953, Kadowaki 2010, Elliott 2020). 
Members of the Phallaceae (stinkhorns and relatives) release 
pungent aromas that attract spore dispersing flies (Tuno 1998), 
while some shelf fungi (e.g. Cerrena unicolor) have incredibly 
specialised associations with wood-boring Hymenoptera that 
disperse spores as oidial inoculum transmitted into the wood via 
the wasp’s ovipositors (Ingold 1953, Bunyard 2015). Other fungi 
(e.g. Guyanagaster necrorhizus as well as some members of the 
Leucocoprineae, Lepiotaceae, Mycosphaerella, Phaeosphaeria, 
Termitomyces and Tricholomataceae) rely entirely on termites, 
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ants and snails for their dispersal (Chapela et al. 1994, Silliman & 
Newell 2003, Nobre et al. 2011, Koch & Aime 2018). In addition 
to the many specialised associations with invertebrates, fungi 
have also evolved a diversity of reproductive morphologies that 
are well adapted to mammalian dispersal. Although associations 
between fungi and vertebrates are not as specialised as those 
between fungi and invertebrates, many fungi consumed by 
mammals have evolved a sequestrate sporocarp morphology 
(spores are enclosed in a persistent skin called the pileus or 
peridium). This skin makes it difficult for the spores of sequestrate 
fungi to disperse without being eaten by animals. Sequestrate 
sporocarp morphologies include some epigeous fungi and a 
great diversity of hypogeous fungi (commonly referred to as 
truffles or truffle-like fungi) that have independently arisen in 
multiple fungal linages and have evolved more than 100 times 
(Bonito et al. 2013, Sheedy et al. 2015, Truong et al. 2017, Elliott 
& Trappe 2018, Elliott et al. 2020a, Palfner et al. 2020). While 
there is some debate about what evolutionary factors may have 
driven the rise of sequestrate morphologies (Sheedy et al. 2015), 
the high diversification of sequestrate species in many fungal 
groups may reflect the dispersal advantages of mycophagy and 
the major role that mammals played in the process (Trappe 
1988, Trappe & Claridge 2005, Maser et al. 2008, Trappe et al. 
2009, Beever & Lebel 2014). 

Fungi with sequestrate sporocarp structures have numerous 
reproductive benefits, including substantial protection from 
extreme climatic conditions (temperature and humidity) and a 
reduced likelihood of being eaten by mammals before spores are 
mature (Maser et al. 2008, Beever & Lebel 2014). These factors 
have likely contributed to the loss of forcible discharge among 
sequestrate taxa and encouraged the transition away from 
producing a stalk (which is usually not composed of spore-bearing 
tissue). The loss of these traits allows sporocarps to optimise 
spore production in a larger percentage of reproductive tissue. 
On the other hand, trade-offs include susceptibility to saturated 
soil (e.g. rotting in place) and the reliance on other organisms to 
disperse spores. To remedy this, many sequestrate fungi have 
developed strategies to increase the probability of discovery by 
animals, such as the production of aromatic attractants (Maser et 
al. 2008). The mammals that excavate and consume hypogeous 
fungi will subsequently disperse spores through their faeces. 
Soil disturbance (bioturbation) from digging for hypogeous 
fungi increases fungal dispersal within the soil and improves soil 
aeration and organic matter decomposition (Fleming et al. 2014, 
Davies et al. 2018, Palmer et al. 2020).

Sequestrate fungi are predominantly ectomycorrhizal 
(ECM), so their successful dispersal is key to plant nutrition, 
regeneration and survival in many forest systems (Tedersoo et 
al. 2010). In exchange for a carbon source, these fungi form 
beneficial associations with the roots of their hosts and are vital 
to plant nutrient uptake and water movement (Allen 1991, 2007 
Agerer 2001, Peay et al. 2008, Tedersoo & Smith 2013). In the 
rhizosphere, continuous mycelia of multiple ECM fungal species 
form a “mycorrhizal network” linking plants of the same or 
different species; within the network, fungal and plant species 
interact, compete and provide positive/negative feedbacks that 
can affect both plant and fungal communities (Gorzelak et al. 
2015). Disruptions of mycorrhizal networks (e.g. through impacts 
on biodiversity that result in the loss of mammal dispersers) can 
therefore negatively affect regeneration of ECM plant species 
and forest resilience after disturbance (Dundas et al. 2018, Liang 
et al. 2020).

Previous work on animal-fungal interactions has provided 
in-depth study and/or reviews on the ecological impacts 
and importance of fungal consumption by birds (Elliott et al. 
2019a, Caiafa et al. 2021), reptiles (Elliott et al. 2019b) and 
invertebrates (Fogel 1975, Hammond & Lawrence 1989, Schigel 
2012). Given these previous works, we chose to focus this 
review on the associations between fungi and their mammal 
consumers and how these interactions are beneficial to fungal 
dispersal, mammal nutrition, host plant communities and 
overall ecosystem health. As highlighted below, these dispersal 
modes and their interconnected associations are widespread 
yet remain incompletely studied in comparison to other fields, 
such as pollination and seed dispersal ecology. Reproductive 
success often depends on interconnections between 
organisms, and these associations can range from specialist to 
generalist (Wheelwright & Orians 1982, Richardson et al. 2000, 
Schiestl 2004, Schupp et al. 2010). Ecosystem processes are 
complex and multifaceted, and there are inevitably multiple 
evolutionary factors – aridification in particular – that have 
contributed to the rise of sequestrate sporocarp morphologies. 
Considering the dispersal advantages facilitated by vertebrate 
vectors through the consumption of fungi, we argue that 
mammalian mycophagy has likely been a major contributing 
factor to the rise of a wide range of sequestrate sporocarp 
morphologies. 

MATERIAL AND METHODS

This review is part of a series examining the associations between 
macrofungi and vertebrates; the two previous reviews examined 
interactions between fungi and birds (Elliott et al. 2019a) and 
between fungi and reptiles (Elliott et al. 2019b). In this study, 
we carefully reviewed references of relevant publications and 
conducted methodical searches in relevant journals, databases 
and search engines for publications detailing the behaviours 
and diets of hundreds of mammal species. We concentrated 
our search effort on dietary studies based on known behaviours 
of mammal species, including a focus on terrestrial rather than 
oceanic mammal groups. For practical reasons, we restricted 
our literature search to publications written in English, 
French, German, Portuguese and Spanish. Sources written in 
a few other languages were included when we were able to 
determine the mammal species reported to eat fungi, but we 
did not systematically review the literature beyond these five 
languages. We incorporated many of the references cited in the 
review of small mammal mycophagy by Fogel & Trappe (1978), 
but we could not locate all of the literature they cite. In total, 
we compiled 1 154 references published over the last 146 years 
(Fig. 1) reporting fungal consumption by 508 mammal species 
belonging to 15 orders (Fig. 2).

The number of publications on mammalian mycophagy is 
substantially greater than that on birds and reptiles combined. 
To make this review as comprehensive as possible in regard 
to the mammal species that eat fungi, we omitted imprecise 
notes (e.g. those that mention a “squirrel” or a “mouse” eating 
a mushroom) when we could not determine which mammal 
species was being discussed. Some publications (e.g. Berkeley 
& Broome 1887, Reess & Fisch 1887, Chatin 1892, Thaxter 1922, 
Zeller 1939, Dowding 1959, Hilton 1980) used general names 
like bandicoot, potoroo, shrew, mole, rock rabbit, dormouse, 
mouse, pine squirrel, jerboa, field mouse, chipmunk, wood rat, 
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Fig. 1. Illustration of the number of publications reporting mammal mycophagy 
published each decade between 1880 and 2020. 

Fig. 1. Illustration of the number of publications reporting mammal mycophagy published each decade between 1880 and 2020.

Fig. 2. Percentage of extant members of each order that has been reported to consume fungi. Numbers at end of graph bars indicate number of 
extant mycophagous species we found reported in the literature. Number of species in each order is based on Hamilton & Leslie (2021). Note that this 
figure only includes extant species. Two species that appear in the tables are not included in this graph and those are American mastodon (Mammut 
americanum) and neanderthal (Homo neanderthalensis). 
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reported in the literature. Number of species in each order is based on Hamilton and Leslie 
(2021). Note that this figure only includes extant species. Two species that appear in the 
tables are not included in this graph and those are American mastodon (Mammut 
americanum) and neanderthal (Homo neanderthalensis).  



© 2022 Westerdijk Fungal Biodiversity Institute

Elliott et al.
 

 
Editor-in-Chief	
Prof.	 dr	 P.W.	 Crous,	 Westerdijk	 Fungal	 Biodiversity	 Institute,	 P.O.	 Box	 85167,	 3508	 AD	 Utrecht,	 The	 Netherlands.	
E-mail:	p.crous@westerdijkinstitute.nl	
 

 
 

 

102

deer and game animal. In these instances, we did our best to 
determine what mammal species the authors were referring to, 
but we sometimes disregarded reports due to lack of taxonomic 
clarity about the mammal species involved. Groups such as 
mice or squirrels are among the most thoroughly documented 
mycophagous mammals, so no value was lost by discarding 
imprecise species reports.

Where necessary, we updated names from their original 
citation to reflect current nomenclature. The taxonomy and 
common names of mammals included in this review follow the 
nomenclature of Wilson & Mittermeier (2009, 2011, 2014), 
Mittermeier et al. (2013), Jackson & Groves (2015), and Wilson 
et al. (2016, 2017, 2018, 2019). Total number of mammal 
species in each order is based on Hamilton & Leslie (2021). Rates 
of mycophagy may differ among subspecies, but we did not 
consider subspecies due to the large number of mammal species 
covered. In many instances, there was not enough information 
for us to determine which subspecies was involved and its 
taxonomic validity. Researchers interested in these particular 
issues can easily refer to the primary references provided under 
cited species in Supplementary Tables S1–S11.

Some mammalogists incorrectly assume that fungi are eaten 
mostly by rodents or other small mammals. This misconception 
led us to focus this review on the diversity of mammals that eat 
fungi rather than the diversity of fungal taxa eaten. Although 
some studies identify what fungi are eaten, most only mention 
“fungi” or “mushrooms” in the mammal diet. Terms used in 
cited references range from formal species names to general 
terms like toadstool, shelf mushroom, bracket fungus, truffle 
and puffball. When authors did provide identification, it was 
rarely possible to determine how accurately they had identified 
the fungal species; thus, it was not realistic for us to verify fungal 
identifications. We have not included lichens or myxomycetes 
in this review. We discarded the information from Maser et al. 
(1988) because they listed spores of three ECM truffle genera 
that were consumed by a range of mammals, but the habitats 
they sampled did not contain ECM host plants that are likely 
to associate with these fungi. Apart from this case, we have no 
reason to believe that the fungi and mammals reported were 
inaccurately identified. Researchers interested specifically in 
the diversity of fungal taxa eaten by mammals can consult the 
following reviews as starting points: Fogel & Trappe (1978), 
Claridge & May (1994), Claridge et al. (1996), Piattoni et al. 
(2016), and Nuske et al. (2017a, b). We also compiled a list of 
fungal species that are consumed and whose spores remain 
viable after passage through the gut of mammals (Table 2).

Our review does not include literature related to animal 
poisoning as a result of eating fungi. Although there is a 
substantial body of work in veterinary literature related to pet 
poisoning (e.g. Cleland 1934, Cole 1993, Naude & Berry 1997, 
Puschner et al. 2007, Beug & Shaw 2009, Bates et al. 2014, 
Möttönen et al. 2014, Bates 2016 and Seljetun 2017), this area 
of research has little relevance to mycophagy in wild animals. 
The behaviour and food choices of captive individuals does not 
necessarily represent their wild relatives, and we are unaware of 
any evidence of poisoning cases among wild individuals.

RESULTS

Diversity of mammal mycophagists by order

The following section provides tables listing a brief overview of 
the mammal groups that contain the 508 species reported to eat 
fungi. For anyone interested in the full lists and references for 
mammal mycophagy compiled by this review please also refer 
to the data provided in Supplementary Tables S1–11. Because 
we have updated the nomenclature to current taxonomy, names 
we list are not necessarily the same as in the cited references. 
This section is broken into subsections organised phylogenetically 
by mammalian order. Each of the 15 orders reported to eat 
fungi is briefly introduced. Any order containing three or more 
mycophagous species has a supplementary table where families, 
genera and species are organised alphabetically. 

Mycophagy has been studied in great detail for some orders 
(e.g. rodents), whereas studies of other orders are limited. 
Likewise, some mammal species are included in numerous 
reports describing their roles as mycophagists and spore 
dispersal vectors, whereas other species have seldom or never 
been studied to determine whether or not they consume fungi. 
It is important to note that the number of cited references does 
not necessarily reflect the level of fungal consumption for a given 
species. There are undoubtedly many seldom studied species 
not on these lists that frequently eat fungi, and some of those 
may rely on fungi for a higher percentage of their diet than do 
the species for which we cite dozens of references. Some groups 
of terrestrial mammals with highly specialised diets, such as ant 
or termite feeding specialists (e.g. the families Tachyglossidae, 
Myrmecobiidae, Manidae and Myrmecophagidae), likely 
never deliberately consume fungi. It is also possible that some 
mammals – including species of cats (Felidae) – lack the ability 
to produce chitinases (Cornelius et al. 1975) that allow them to 
digest fungi, and this may lead to their avoidance of fungi as 
food. More studies are needed to understand the link between 
mammalian biosynthesis of chitinases and mycophagy.

In order to distinguish how important fungi are for mammal 
consumption, Claridge & Trappe (2005) proposed four 
categories of mammal mycophagists: obligate, preferential, 
casual or accidental. In the context of this review, we aimed to 
compile a comprehensive list of all mammal species that have 
ever been reported to utilise fungi as food. Unfortunately, the 
level of mycophagy of the vast majority of the 508 listed species 
has not been sufficiently studied for us to accurately classify 
most species we list within one of these four categories. With 
continued research, we hope it will become possible to classify 
more mammals within these categories; but in the context of 
this review, we use only the taxonomic categories listed below.

Marsupials

Didelphimorphia 
The opossums are a relatively small order of marsupials native 
to the Americas. The diets of many members of the group are 
poorly studied, but we found reports of fungi in the diets of 
three species all within the family Didelphidae (Supplementary 
Table S1). Based on our review, we show that approximately 
2.4  % of the extant members of this order have been shown to 
eat fungi (Fig 2).
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Paucituberculata
The shrew-opossums of South America have been relatively 
poorly studied. To date, only the long-nosed shrew-opossum 
(Rhyncholestes raphanurus) has been reported to eat fungi 
(Meserve et al. 1988). Based on our review, we show that 
approximately 14.3 % of the extant members of this order have 
been shown to eat fungi (Fig. 2).

Microbiotheria 
The Monito del Monte (Dromiciops gliroides) is one of three 
species in the order Microbiotheria. It is found in southern 
South America and has been reported to eat small amounts of 
fungi (Meserve et al. 1988). Based on our review, we show that 
at least a third of the extant members of this order have been 
shown to eat fungi (Fig. 2).

Dasyuromorphia 
These carnivorous marsupials are endemic to Australia, New 
Guinea and several neighbouring islands and include animals 
such as: antechinus, dunnarts, the kowari, mulgaras, quolls and 
the Tasmanian devil. They are primarily carnivores or insectivores, 
but we found reports of fungi in the diets of five species in the 
family Dasyuridae (Supplementary Table S2, Fig 3D). Based on our 
review, we show that approximately 6.5 % of the extant members 
of this order have been shown to eat fungi (Fig. 2).

Peramelemorphia
The bandicoots and bilbies are endemic to Australia, New 
Guinea, and several surrounding islands. Although many of the 
New Guinean species remain poorly studied, most species in 
this order that have been studied have been shown to eat fungi. 
Some species that were once thought to have large geographic 
distributions have also been recently shown to be distinct 
species. We found reports of fungi in the diets of 13 species in 
three families (Supplementary Table S3). Based on our review, 
we show that approximately 59 % of the extant members of this 
order have been shown to eat fungi (Fig. 2).

Diprotodontia
The diprotodont marsupials are the largest and most diverse 
group of marsupial mammals and include koala, wombats, 
possums, gliders and macropods (the latter includes all 
kangaroos, wallabies, potoroos, bettongs, rat-kangaroos and 
their relatives). They are native only to Australia, New Guinea and 
several surrounding islands. This group has a diversity of dietary 
specialisations, and some members of the order rely heavily on 
fungi for large portions of their diet. We found reports of fungi 
in the diets of 33 species in eight families (Supplementary Table 
S4, Fig. 3C). Based on our review, we show that approximately 
22 % of the extant members of this order have been shown to 
eat fungi (Fig. 2).

Placental Mammals

Cingulata 
Armadillos are a relatively small order of placental mammals and 
are native to the Americas. There has been limited research on 
the overall importance of fungi in armadillo diets, but we found 
reports of fungi in the diets of three species in two families 
(Supplementary Table S5). Based on our review, we show that 
approximately 14.3 % of the extant members of this order have 
been shown to eat fungi (Fig. 2).

Proboscidea
The elephants comprise only three extant species that are 
restricted to Africa and southern Asia. The members of this group 
are primarily herbivores, with fungi playing only a very limited 
role in their diets. We only found mention of trace amounts 
of fungi in the diets of the living African Elephant (Loxodonta 
africana) (Paugy et al. 2004) and the extinct American Mastodon 
(Mammut americanum) that once occurred in North America 
(Newsom & Mihlbachler 2006). Given the size of both animals 
and the fungi that were reported, it is hard to definitively know if 
this represents deliberate mycophagy or incidental consumption 
of spores. But in this instance and until further studies are 
conducted on elephants, we are considering mycophagy to be 
any evidence of fungi in the diet. Based on our review, we show 
that approximately a third of the extant members of this order 
have been shown to eat fungi (Fig. 2).

Primates
Primates are a widely distributed and diverse group of placental 
mammals. If humans (Homo sapiens) are included, they can 
be found in virtually every habitat on Earth and are one of the 
most adaptable and successful species of mammals. Over the 
past hundred years, waste management systems used by many 
modern humans have changed our role as spore dispersers, 
but undoubtedly hardly more than 100 years ago, almost all 
humans that ingested fungi were playing a role in the dispersal 
of fungal spores. Although it has been shown that early humans 
and neanderthals (H. neanderthalensis) consumed fungi as 
food, their role as spore dispersers has not been as thoroughly 
studied as that of some other hominids (see Supplementary 
Table S6). Excluding all the plant pathogens and diseases that 
humans have accidentally spread, modern humans deliberately 
transport and cultivate numerous mycorrhizal and saprotrophic 
fungi as well as their associated plant species (Stamets 1993, 
Cotter 2014, Zambonelli et al. 2015, Guerin-Laguette et al. 
2020). Modern humans have been documented to harvest more 
than 2 100 edible mushroom species both for personal use and 
commercial sale (Li et al. 2021), which is more species than has 
been documented by any other mammal in this review. In the 
process of picking, cleaning, carrying and sometimes shipping 
sporocarps, spores are inevitably being dispersed. There are 
obviously numerous ways - both positive and negative - that 
humans contribute to spore dispersal, and given that there 
have been hundreds of papers and books published about 
ethnomycology, this topic warrants a review of its own and is 
beyond the scope of this study. In Supplementary Table S6 we 
only cite a selection of papers that we think are most relevant to 
fungi consumption by humans, but it is important to note that 
this is the only mammal species that we have deliberately left 
incomplete.

There have been two previous reviews specifically relating 
to primate mycophagy. We encourage readers who are 
particularly interested in primate mycophagy to also refer to the 
earlier reviews by Hanson et al. (2003) and Sawada (2014). For 
our study, we found reports of fungi in the diets of 105 primate 
species in 13 families (Supplementary Table S6, Fig. 3B). This 
is more species than has been previously compiled. Hanson et 
al. (2003) reported just over 20 species, and Sawada (2014) 
showed nearly 60 species. Despite the diversity of primate 
species that consume fungi, they are frequently overlooked in 
primate dietary studies or are lumped in with plants, “other” or 
unidentified; this is the case even in major reviews on primate 
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Fig. 3. A selection of mycophagous mammals with fungal fruiting bodies. A. Mount Graham red squirrel with a partially dried fungus in its mouth 
on Mount Graham in Arizona, USA. B. In northwestern Cambodia, a Germain’s langur holds a mushroom that it is eating. C. A northern bettong eats 
an unidentified truffle in northern Queensland, Australia. D. A brown Antechinus pauses near the fruiting body of a sequestrate species of Descolea 
(lower right corner of image) in eastern New South Wales, Australia. Image A © Eirini Pajak. Image B © Brenda de Groot. Image C © Stephanie Todd. 
Image D © Stephen Mahony.
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nutrition and diets (e.g. Lambert & Rothman 2015). Unlike the 
majority of references, we cite that have reported mycophagy 
in other orders of mammals, almost all papers cited in this 
section are based on observational studies. There is much 
merit in observational methods to improve understanding of 
the biology and behaviour of mammals; but as has been shown 
with ornithological studies (Elliott et al. 2019a), using these 
methods in isolation makes it exceedingly easy to overlook, 
misidentify or underestimate the importance of the fungal 
components of diets. We suspect that if primate researchers 
employed the typical scat analysis methods commonly used in 
groups that are harder to observe, a far greater diversity of 
primates would be shown to utilise fungi for food and likely at 
a higher rate than is currently estimated among some species. 
Based on our review, we show that approximately 20.2 % of 
the extant members of this order have been shown to eat fungi 
(Fig. 2).

Lagomorpha
The hares, rabbits and pikas are a relatively small group of 
widely distributed placental mammals. They primarily eat plant 
material, but we found reports of fungi in the diets of 12 species 
in three families (Supplementary Table S7). Based on our review, 
we show that approximately 11.1 % of the extant members of 
this order have been shown to eat fungi (Fig. 2).

Rodentia
The rodents are a highly diverse and widespread order of 
placental mammals with native members found in most regions 
except the coldest portions of the Arctic and Antarctic and 
some islands (e.g. New Zealand). The members of this order are 
arguably some of the most important dispersers of fungal spores, 
and for some species, fungi represent large portions of their 
diet. We found reports of fungi in the diets of 221 species in 14 
families (Supplementary Table S8, Fig. 3A). Based on our review, 
we show that approximately 8.5 % of the extant members of this 
order have been shown to eat fungi (Fig. 2).

Eulipotyphla 
The Eulipotyphla are a diverse order of widely distributed 
placental mammals that includes hedgehogs, moonrats, shrews, 
moles and solenodons. They are often considered to be primarily 
insectivorous, but we found reports of fungi in the diets of 21 
species in three families (Supplementary Table S9). Based on 
our review, we show that approximately 3.9 % of the extant 
members of this order have been shown to eat fungi (Fig. 2).

Carnivora 
The carnivores are widely distributed, and while many members 
of this order are primarily carnivorous, a wide diversity of 
species augment their diet with many other food types. We 
found reports of fungi in the diets of 27 species in nine families 
(Supplementary Table S10). Based on our review, we show that 
approximately 10.1 % of the extant members of this order have 
been shown to eat fungi (Fig. 2).

Perissodactyla 
The odd-toed ungulates of the order Perissodactyla are a 
relatively small order of placental mammals that are mostly 
grazers; the order includes horses, asses, zebras, rhinos and 
tapirs. Though they show little reliance on fungi, we found 
reports of fungi in the diets of the horse (Equus caballus) 

(Hastings & Mottram 1915, Cleland 1934) and the mountain 
tapir (Tapirus pinchaque) (Downer 1996, 2003). Other than 
these two species, we found no indication of fungi consumption 
by this order. Based on our review, we show that approximately 
11.1 % of the extant members of this order have been shown to 
eat fungi (Fig. 2).

Artiodactyla
The even-toed ungulates are a diverse and widespread group 
of placental mammals (e.g. cattle, sheep, deer, pigs, giraffes, 
camels and llamas). Most species in this group are relatively 
large-bodied, so fungi often do not comprise a bulk of their diet; 
however, fungi do appear to be nutritionally important to them. 
We found reports of fungi in the diets of 59 species in seven 
families (Supplementary Table S11). Based on our review, we 
show that approximately 23 % of the extant members of this 
order have been shown to eat fungi (Fig. 2).

DISCUSSION

Feeding on fungi

Feeding preferences between fungal taxa, morphologies and 
portions of sporocarps
Several factors likely contribute to fungal food choices and 
species selection. It is possible that toxicity may be a factor in 
species selection, but there is very limited data on fungal toxins 
in relation to wild mammals. Sawada et al. (2014) studied fungal 
species preference in relation to their toxicity among Japanese 
macaques (Macaca fuscata) and found that this species of 
primate eats a diversity of fungi. They suggested that individuals 
use different methods to avoid poisonous mushrooms, including 
previous knowledge and on-site assessment of taste (but not 
smell). The macaques generally ate fungi without examining 
them; but when they were hesitant and tasted the sporocarps 
before eating, Sawada et al. (2014) determined the fungus was 
more likely to be a toxic species. Since almost all knowledge 
of fungal toxicity is in relation to humans and a few species of 
mammalian pets, it is difficult to determine the toxicity of fungi 
for specific mammal species. For the most part, what – if any – 
role fungal toxins play in food selection is still unknown.

Mammals are likely to prefer nutritionally rich fungal taxa 
that produce easily detectable aromas or colours. In response 
to these selection pressures, some fungi may produce chemicals 
and/or compounds to make certain parts of their sporocarps 
desirable. Even though mycophagy may have contributed to the 
success of certain fungal groups and sporocarp morphologies, 
there has been limited research that directly investigates 
the selection pressure from mammal food choices on fungal 
reproductive patterns and morphologies. Herbivores often 
selectively feed on certain species or parts of plants, sometimes 
preferentially selecting the tender new growth (Wilsey 1996, 
Pérez-Harguindeguy et al. 2003), and we suspect that preferential 
feeding strategies likely occur in fungi as well. There is evidence 
of different nutritional value within the sporocarps of some 
fungi. The chemical composition and nutritional value of desert 
truffles in the genera Terfezia and Tirmania vary between taxa 
and the different layers of sporocarps, depending upon whether 
or not the peridium (outer skin) of these truffles was removed 
or left on the exterior (Hussain & Al-Ruqaie 1999). Grönwall & 
Pehrson (1984) also found variation in nutritional value between 
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the peridium and spores of the sequestrate ECM species 
Elaphomyces granulatus, while Vogt et al. (1981) detected 
differences in nutrient concentrations between mycorrhizal and 
decomposer fungal species.

Among the numerous members of the family Russulaceae 
that are important foods for mammals, some species/genera 
produce latex (including the genera Arcangeliella, Lactarius, 
Lactifluus, Multifurca and Zelleromyces), while members of the 
closely related genus Russula do not. The latex is produced in 
laticiferous hyphae, and in some species these hyphae also serve 
to store precursors of pungent dialdehydes (Camazine & Lupo 
1984). The chemistry of the latex varies between species, and this 
may impact animal consumption. For example, the latex produced 
by Lactarius volemus contains polyisoprene, which is also found 
in rubber (Ohya et al. 1998) and appears to deter invertebrates 
from feeding. Therefore, invertebrates are less likely to feed 
on the latex-producing genus Lactarius than the closely related 
Russula species that do not produce latex (Taskirawati & Tuno 
2016). Latex is most abundant in young sporocarps and deterred 
slugs in experimental feeding studies; once the sporocarp aged, 
latex production slowed or stopped and slugs ate Lactarius and 
Russula species at similar rates (Taskirawati & Tuno 2016). There 
may also be a finite number of latex-producing hyphae within 
each sporocarp, and as the sporocarp expands, it becomes more 
dispersed/diluted for the feeding animal. It is therefore possible 
that latex protects young sporocarps from being consumed by 
animals before spore maturation, at which point latex production 
is reduced and the sporocarps of lactating members of the family 
Russulaceae become more desirable to invertebrates. Latex 
production in fungi is restricted to a relatively small number of 
genera, so its impact on food preferences has limited relevance 
across the entire fungal kingdom. Nevertheless, we suspect a 
similar negative correlation between small mammal mycophagy 
and latex production. 

Among many groups of animals, evidence suggests that the 
hymenium (spore-bearing surface) is preferentially selected for 
food instead of other portions of the sporocarp. Vogilino (1895) 
and Buller (1909) first suggested that gastropods preferentially 
eat gills/reproductive surfaces before other structures, an 
observation that we also made in slugs and other invertebrates 
(Fig. 4). Due to their large nature and faster movements (at 
least compared to slugs), mammals’ feeding preferences are 
more difficult to observe. However, a few studies suggest that 
mammals also show a preference toward different portions of 
fungal sporocarps. For example, brown lemurs (Eulemur spp.) 
seem to preferentially eat the cap while discarding other parts 
of mushrooms (Overdorff 1993), and Humboldt’s flying squirrels 
(Glaucomys oregonensis) preferentially feed on the reproductive 
tissues of epigeous fungi (Thysell et al. 1997). The volcano 
deermouse (Neotomodon alstoni) and the North American 
deermouse (Peromyscus maniculatus) are both known to eat 
entire fungal sporocarps but have a preference for the hymenium 
(Castillo-Guevara et al. 2012). Walton (1903) noted that North 
American red squirrels (Tamiasciurus hudsonicus) regularly ate 
the gills of mushrooms and rejected the rest of the sporocarp. 
Using camera trapping, Elliott & Vernes (2021a) showed that 
several species of Australian vertebrates (both mammals and 
birds) fed on Amanita mushrooms, with a preference for the caps 
of sporocarps. We observed that many small mammals (especially 
rodents) preferentially eat the hymenium before other portions 
of the fungal sporocarp (Fig. 5A–F), but larger mammals (e.g. 
deer) often ingest any parts they can find (Fig. 5G–H).

As outlined in the Introduction, sequestrate fungi have 
sporocarps with reproductive tissues enclosed within one or 
more layers of skin. In many cases, they are also hypogeous (i.e. 
sporulating below ground). It is not known when and where the 
first sequestrate fungi appeared, but estimates suggest that the 
first Australian sequestrate taxa emerged 34–13 million years 
ago during the Oligocene and Miocene, while many Australian 
mycophagous mammals appeared around 16 million years ago 
(Sheedy et al. 2015). In sequestrate basidiomycete species, the 
energy used for producing sporocarps with a stalk and cap can 
be relocated toward producing more sporocarps and/or spores; 
for cup fungi relatives (Ascomycota), the increased layering and 
folding of the hymenium increases the volume of spore-bearing 
tissue. Among these morphologies, spore dispersal relies 
heavily on animal consumption instead of air currents or water. 
Therefore, sequestrate sporulating morphologies likely evolved 
in partial response to feeding preferences toward different parts 
of the sporocarp. There are inevitably multiple factors that have 
contributed to the rise of sequestrate sporulating habits, e.g. as a 
response to major climatic changes such as aridification (Sheedy 
et al. 2016). Some groups, such as the Mesophelliaceae, predate 
the rise of mycophagy specialist mammals and may therefore 
have initially formed associations with early invertebrates or 
more generalist feeders (Sheedy et al. 2016). 

Among sequestrate species with fleshy (non-powdery) 
sporocarps, the entire sporocarp is generally consumed; 
but in groups such as the genus Elaphomyces and the family 
Mesophelliaceae, powdery spores appear to be the least 
desirable portion (Figs 6, 7). Many small animals favour the 
exterior of Elaphomyces sporocarps by selectively eating the 
peridium (Fig. 6). Research on North American red squirrels by 
Vernes et al. (2014) showed that when Elaphomyces truffles 
are unearthed, the squirrel cleans the outer peridium by 
“shucking” adherent soil and mycelium from the truffle before 
it is eaten or cached (see Supplementary Video S1). Members 
of the family Mesophelliaceae differ in having a thin and non-
nutritious outer layer surrounding a nutritious central core, 
with spores packed in between the two (Fig. 7). Animals 
typically peel the outer layer and focus on eating the central 
core; this is especially the case after fire when Mesophelliaceae 
truffles can become more fragrant and are often more easily 
discovered by foraging mammals (Trappe et al. 1996, Maser et 
al. 2008). Vernes (2000) noted that the discarded outer peridia 
and spore-bearing mass of Mesophellia clelandi littered the 
ground around bettong digs on burnt ground, but this was never 
recorded on unburnt ground. Spores of both Elaphomyces and 
Mesophelliaceae are common in faecal pellets of a broad range 
of mammals, and both groups are partly reliant on animals for 
their dispersal. Even though the spore-producing portions of 
sporocarps are not necessarily targeted, mammals inevitably 
ingest spores in the process and spill spores onto their fur. The 
leftovers of sporocarps are often left exposed on the ground or 
a log (Figs 6, 7), from where they can be carried away by wind 
or water.

Caching and hoarding of fungi
A diversity of mammal species cache and hoard foods to varying 
degrees (Vander Wall 1990). These behaviours have been 
arguably best studied among rodents, particularly in squirrels 
that bury nuts and/or cache cones. Fungal caching behaviours 
have been most frequently noted among North American red 
squirrels, but similar behaviours occur in rodents from other 



© 2022 Westerdijk Fungal Biodiversity Institute

Mammalian mycophagy
 

 
Editor-in-Chief	
Prof.	 dr	 P.W.	 Crous,	 Westerdijk	 Fungal	 Biodiversity	 Institute,	 P.O.	 Box	 85167,	 3508	 AD	 Utrecht,	 The	 Netherlands.	
E-mail:	p.crous@westerdijkinstitute.nl	
 

 
 

 

107

 

 
Fig. 4. Invertebrates display dietary preferences toward the reproductive portions of fungal fruiting bodies. A. Arion subfuscus feeds on the hymenium 
of several eyelash cups (Scutellinia scutellata) in Rusk County, Wisconsin, USA. Note the light-coloured sections of the fertile surface where the slug 
has eaten the reproductive tissues but not the rest of the fruiting body. B. An Arion sp. eats the gills on a Russula sp. in the Tucker County, West 
Virginia, USA. C. The gills of three Hygrophorus hypothejus fruiting bodies have succumbed to the feeding activities of a gastropod in Rutherford 
County, North Carolina, USA. The upper surfaces of the caps of these three fruiting bodies had been left untouched. D. Springtails hollowed out 
and ate the entirety of the spore-containing surfaces of the sequestrate fungus Leratiomyces erythrocephalus near Wellington, New Zealand. Note 
the visible brown line down the middle of the springtails that shows evidence of their digestive tracts filled with spores. E. The hollowed out skin 
of a sequestrate Descolea sp. that has had spores eaten by a lilac-coloured Brachystomella sp. in Barrington Tops National Park, New South Wales, 
Australia. Images © Todd F. Elliott.
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 Fig. 5. Examples showing how mammalian mycophagists often selectively feed on the reproductive tissues of fruiting bodies. A. The upper surface of 
a Lactarius corrugis fruiting body from Buncombe County, North Carolina, USA. Note there is a little evidence of feeding on the margin of the cap. B. 
The same fruiting body as previous image but almost all of the gills have been removed by a feeding rodent. C. The remnants of a Boletellus russellii 
fruiting body left on a stick by a feeding rodent (likely a squirrel) Broward County, Florida, USA. The stem was virtually untouched, but all of the 
reproductive tissues and part of the cap were removed before the fruiting body was discarded. D. A Russula fruiting body with all of the gills removed 
by a feeding rodent in Randolph County, West Virginia, USA. Only part of the stem and a very thin section of the upper portion of the fruiting body 
remained. E. An unidentified bolete fruiting body ravaged by a feeding rodent in Tucker County, West Virginia. Most of the sterile portion of the cap 
remained, and the stem and other sterile portions were left in a chewed pile (visible in the right corner of the image). The rodent appeared to have 
ingested every bit of the pore surface. F. Stems and part of the cap surface of one fruiting body is all that remains of these two Amanita jacksonii 
fruiting bodies in Rutherford County, North Carolina. G. Immature Calvatia craniiformis fruiting bodies eaten before spore maturity by white-tailed 
deer in York County, Pennsylvania, USA. H. Entire Ischnoderma resinosum fruiting bodies eaten up to the maximum browse height of a white-tailed 
deer in Rusk County, Wisconsin, USA. Images © Todd F. Elliott.
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Fig. 6. The widely distributed sequestrate genus Elaphomyces is an important food source for mammals wherever it has been studied. A. The eastern 
North American endemic E. macrosporus and many other members of this genus have thick outer peridial layers that are sought out by mammals. 
B. Elaphomyces favosus, a tropical African species eaten by mammals that also illustrates the thick outer layers. C. An unidentified Elaphomyces sp. 
from Rutherford Coungy, North Carolina, USA that has been partially excavated by the foraging activities of a small mammal. Note the dark spot 
where several small bites have been taken. D. A single Elaphomyces fruiting body from Transylvania County, North Carolina that was excavated and 
partially eaten by a small rodent. Note the teeth marks on much of the peridium. E. While truffle hunting in Rutherford County, North Carolina, the 
first author encountered an area filled with extensive animal digs; a nearby log had this pile of powdery black Elaphomyces spores placed on top. 
Truffle raking near the digs uncovered this fruiting body of E. americanum, and microscopic examination revealed that the black spores left piled 
on the log matched those of the collected fruiting body. A chipmunk or squirrel was likely responsible for this tailings pile. Images © Todd F. Elliott.



© 2022 Westerdijk Fungal Biodiversity Institute

Elliott et al.
 

 
Editor-in-Chief	
Prof.	 dr	 P.W.	 Crous,	 Westerdijk	 Fungal	 Biodiversity	 Institute,	 P.O.	 Box	 85167,	 3508	 AD	 Utrecht,	 The	 Netherlands.	
E-mail:	p.crous@westerdijkinstitute.nl	
 

 
 

 

110

 

  Fig. 7. Examples of members of the fire-adapted mycorrhizal family Mesophelliaceae. Widespread in Eucalyptus forests across Australia and an 
important food source for a diversity of mammals. A. Mesophellia (Reidsdale, New South Wales, Australia) fruiting bodies are often located deeper 
in the soil than other groups of sequestrate fungi and often grow in nearly confluent clusters. Note that the exterior of the fruiting body incorporates 
soil and mycorrhizal roots. The next layer is filled with powdery, greenish grey spores, and the central white core is the desired food of foraging 
mammals. B. Andebbia pachythrix (Braidwood, New South Wales), shares similar fruiting morphology and requires mammals to peel the exterior 
before they can eat the core. C. Three exposed fruiting bodies of a member of the Mesophelliaceae that were burned in a fire (Victoria, Australia). 
These fruiting bodies were close to the surface and exposed to excessive heat, which likely caused them to be overlooked by mammals foraging post 
fire. Fruiting bodies that are located deeper in the soil and are exposed to fire often produce a highly pungent aroma reminiscent of rotting onions. 
D. In the aftermath of the intense 2019/2020 Bee’s Nest Fire near Dundurrabin, New South Wales, the first author was extinguishing a burning log 
and found the skins and spores of these three Mesophellia fruiting bodies in the tailings pile of a small mammal excavation approximately 20 m away 
from what was still burning. The mammal responsible for the tailings pile had successfully extracted the core and left behind the skin and spores. Due 
to the recent fire, there was little other food within several kilometers of this site, which highlights the importance of this family of fungi as post-fire 
food for Australian mammals. Images © Todd F. Elliott.
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regions of the world that experience cold winters or other 
environmental/climatic factors that can lead to seasonal food 
shortages. Though their fungal caching behaviours have been far 
less thoroughly studied than nut/seed dispersal, rodents likely 
perform ecosystem functions that are of similar importance.

Early naturalists frequently wrote with amusement about the 
labours and physical feats of small squirrels as they built their 
fungal caches and struggled to haul large fungal sporocarps into 
the canopy to dry them for winter. Merriam (1884: 214) noted 
the following about a North American red squirrel: 

“From his liking for mushrooms some would consider him 
an epicure, but in whatever light we regard this taste, it is a 
droll spectacle to see him drag a large ‘toadstool’ to one of 
his storehouses. If the ‘umbrella’ happens to catch on some 
stick or log and is broken from the stem, as is frequently 
the case, he is pretty sure to scold and sputter for a while, 
and then take the pieces separately to their destination”.

Most squirrels that have been studied were observed to dry 
fungal sporocarps on branches and later hide these in caches 
(Fig. 8). In some areas, squirrels dry so many mushrooms in tree 
branches that it has been described to look like a decorated 
Christmas tree (Odell 1925, Murie 1927). Some authors have 
reported only the drying behaviour, but given that squirrels 
are typically secretive about their caches, it is easy to overlook 
where they may have stored the dried mushrooms. It is also 
possible that in some regions or among some squirrel species, 
mushrooms are left in their original drying sites; however, further 
studies are needed to confirm this. Buller (1917, 1922) reported 
that North American red squirrels store dried sporocarps in 
hollow trees, crow nests, woodpecker nests and even boxes in 
old houses. Laursen et al. (2003) noted that in Alaska, northern 
flying squirrels and North American red squirrels hollowed out 
witches’ brooms that were produced by spruce broom rust 
or yellow witches’ broom rust (Chrysomyxa arcotostaphyli); 
the squirrels then used these cavities to raise their young and 
cache dried mycorrhizal fungi (both epigeous and hypogeous 
species). Jung et al. (2010) noted that North American red 
squirrels also used witches’ brooms as nests, lining them with 
American bison (Bison bison) hair and storing dried fungi for the 
winter. Vernes & Poirier (2007) noted that a North American red 
squirrel filled a robin nest with more than 50 dried sporocarps 
from the hypogeous genus Elaphomyces (Fig. 8C). Caches made 
by North American red squirrels can often be quite large. Buller 
(1922) examined a box found in an abandoned house that was 
used as a North American red squirrel cache, and he reported 
it to weigh nearly 0.5 kg and contain 116 fungal sporocarps; 
another cache contained up to 300 sporocarps. Hardy (1949) 
studied a large North American red squirrel cache in a hollow 
tree containing 59 fungal specimens. He was able to identify at 
least 13 fungal species, most of which were ECM taxa; the most 
numerous species (30 specimens) was the sequestrate fungus 
Hymenogaster tener. 

Kato (1985) noted that the Japanese squirrel (Sciurus lis) 
cached walnuts and pinecones in trees and underground, 
while fungi were only cached in trees. He also reported that 
underground food was eaten mainly in the spring. Foods 
stored below ground are naturally harder for thieves to find, 
but squirrels struggle to access them under deep snow. It is 
therefore usually important for squirrels to also cache food in 
elevated locations; however, Lampio (1967) reported that in 

Finland, Eurasian red squirrels (Sciurus vulgaris) dug cached 
fungi from under the snow. The amount of fungi and other 
foods cached likely correlates with climate and food availability 
in winter and inevitably varies between regions, habitats and 
species. Buller (1922) suggested that Great Britain’s winters 
might be too wet for rodents to store fungi, and this may explain 
the higher frequency of reports on caching behaviours from the 
colder and drier parts of North America and Eurasia. In Scotland, 
for example, the Eurasian red squirrel was estimated to cache 
a minimum of 42 sporocarps across its home range (Lurz & 
South 1998); this is a much lower number than what has been 
generally reported among squirrel species in northern North 
America (Buller 1917, 1922, Dice 1921, Murie 1927, Hatt 1929, 
Hardy 1949, Smith 1965, 1968a). On the other hand, caches of 
Eurasian red squirrels in northern Finland have been estimated 
to contain approximately 440 stored fungi per hectare and 
possibly as many as 1 800 sporocarps per individual (Sulkava & 
Nyholm 1987). These studies show that caching rates vary both 
within the same species of squirrel from different latitudes and 
between squirrel species across the Northern Hemisphere, and 
may correlate with the length of winter, snow cover and other 
climatic conditions.

Fungi typically require air drying and subsequent storage 
in very dry caches (Fig. 8), while other foods preserve better 
in varying weather conditions. Despite the wide array of 
foods eaten by the North American red squirrel, their fungal 
caches typically do not contain other food items (Hardy 1949). 
Quality of drying and storage locations for fungi appear to be 
important to squirrels. Experimental studies suggest that most 
mushrooms stored in caches for a long period of time tend to 
lose nutritional value, particularly with exposure to freezing and 
thawing cycles (Frank 2009). This nutritional degradation may 
explain why squirrels are typically very diligent in making sure 
that stored fungi are dry, saving the driest and best insulated 
storage sites for fungi and/or to build their nests. Dice (1921) 
described a North American red squirrel nest on a shelf in an 
old Alaskan cabin where, by October, the squirrel had collected 
a large number of fungi. He reported that every open can was 
packed with dried mushrooms, while sporocarps that were not 
fully dry were spread out on the shelves. Hendricks & Hendricks 
(2015) observed that North American red squirrels in Montana 
preferred to dry/cache mushrooms on dead branches, possibly 
because they have better airflow.

Learning to dry a mushroom and cache it in an appropriate 
location for long-term storage is a relatively complex skill that 
squirrels progressively acquire with practice. Smith (1968a) 
observed that young North American red squirrels began to 
attempt this activity as early as three days out of the nest. He 
reported that in the first 10 days out of the nest, three young 
squirrels dropped 12 of the 32 fungi they attempted to hang on 
branches. They only dropped 10 out of 70 by their third week, 
while their mother only dropped three out of the 165 fungi that 
she hung to dry.

The full diversity of mammals that cache fungi is poorly 
known. As discussed earlier, most studies have focused on 
North American red squirrels, the Eurasian red squirrel and the 
Japanese squirrel, while there are few reports of other rodents 
caching fungi. Two studies reported the Siberian chipmunk 
(Tamias sibiricus) and the Uinta chipmunk (T. umbrinus) to cache 
fungi (Ognev 1966, Bergstrom 1986), but we were unable to find 
any additional information about other chipmunk species caching 
fungi. Most researchers who have studied the nests and behaviour 
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Fig. 8. Examples of fungi hung or cached by rodents. A. An entire bolete fruiting body carefully hung by a North American red squirrel in Tucker 
County, West Virginia, USA. B. A species of Amanita hung to dry by an unidentified squirrel (likely a Douglas’s squirrel based on the species frequently 
observed in that area) in Chelan County, Washington, USA. C. A North American red squirrel in New Brunswick, Canada cached more than 50 
Elaphomyces fruiting bodies inside of this abandoned robin nest (see: Vernes and Poirier 2007). D. A large Allegheny woodrat cache of dried fungi 
(likely mostly members of the Russulaceae) found inside of a cave in Adams County, Ohio, USA. Images A & B © Todd F. Elliott. Image C © Karl Vernes. 
Image D © Laura S. Hughes.
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of various North American woodrats (Neotoma spp.) have 
reported that they frequently cache and collect fungi along with 
other seemingly random non-food objects (see papers reporting 
mycophagy for this genus in Supplementary Table S8 and Fig. 
8D). Neotoma species, sometimes called pack rats, are notorious 
hoarders. They certainly use the stored fungi for food, but it is 
difficult to determine how reliant they are on the food value of 
cached fungi or whether this behaviour is simply an extension of 
their predisposition for hoarding random objects. Further study 
of fungal caching behaviours among various Neotoma species 
is needed to fully understand these interactions. Kangaroo rats 
frequently cache food, but we only found one study reporting 
fungi caching behaviours, and this was in the banner-tailed 
kangaroo rat (Dipodomys spectabilis) (Vorhies & Taylor 1922). 

Species of the shrew family, Soricidae, have very fast 
metabolisms that require them to cache food (Moore 1943, 
Maser & Hooven 1974, Martin 1981, Robinson & Brodie 1982, 
Carraway 1985, Merritt 1986, Vander Wall 1990, Schwartz 
& Schwartz 2001, Rychlik & Jancewicz 2002, Urban 2016). 
Although this aspect of shrew biology remains relatively 
incompletely studied, many species are reported to eat fungi 
(Supplementary Table S9). Though we could not find any 
reports of caching fungi by shrews, further research may reveal 
such behaviour in some species. Some species of pocket mice 
(Heteromyidae), voles (Cricetidae), lemmings (Cricetidae) and 
gophers (Geomyidae) cache food (Vander Wall 1990, Schwartz 
& Schwartz 2001, Connior 2011), and members of these groups 
have been reported to eat fungi (Supplementary Table S8). 
However, we have so far been unsuccessful in locating explicit 
reports of these groups caching fungi, likely due to insufficient 
research having been undertaken on this topic. 

Reports of fungal caching behaviours have focused on cold 
regions of the Northern Hemisphere. In regions where fungal 
caching does not occur, it is possible that fungi sporulate for 
a larger portion of the season, the climate is not conducive 
to fungal storage, or animals are adapted to seasonal fungal 
consumption and periodically rely on other food sources. 
It seems probable that mycophagous mammals in the 
Southern Hemisphere also cache fungi, though we could not 
find any evidence of such events even in the large volume 
of mycophagy literature published in Australia; we could 
also find no evidence in the literature for South America or 
Southern Africa. In Australia, some mycophagous mammals – 
including brush-tailed bettongs (Bettongia penicillata), musky 
rat-kangaroos (Hypsiprymnodon moschatus) and giant white-
tailed rats (Uromys caudimaculatus) – have been reported 
to cache seeds (Forget & Vander Wall 2001, Theimer 2001, 
Theimer 2003, Murphy et al. 2005). Musky rat-kangaroos 
and giant white-tailed rats primarily reside in wet tropical 
habitats in northeastern Queensland, Australia. This type of 
wet tropical habitat is not conducive to storing fungi since they 
would quickly rot in humid warm conditions. Since brush-tailed 
bettongs reside in areas that would be better suited to storing 
fungi (compared to the tropics of northern Queensland), 
it is possible that they may be caching fungi on occasion or 
some fungi may be available throughout the season, but to 
our knowledge this has not been specifically studied. Further 
research may uncover that this behaviour is more widespread 
both geographically and among more mammal species. 

For animals that store fungi, these caches provide an 
important food for seasons when the resource is less readily 
available. In addition to the species that make stores, other 

mammals and birds may depend on raiding the caches. For 
example, Andreev (1978) noted that Siberian jays (Perisoreus 
infaustus) survived Eurasian winters in part by feeding heavily on 
fungi stolen from rodent caches. Carey (1991) noted that during 
the night, Humboldt’s flying squirrels raid caches of fungi made 
by diurnal squirrels. Stealing food from squirrel caches comes at 
a risk to the thief, since some squirrels can be violent (Seagears 
1949–1950) and are usually highly defensive of their stores. 
Occasionally they have been reported to fight to the death over 
cache ownership (Smith 1968a). The diversity of mammals that 
cache fungi or raid these caches is still poorly understood, and 
more studies are needed to understand their importance as 
winter food.

The ecological implications of mammal caching behaviours 
for fungal dispersal are not fully understood. By placing fungi to 
dry several metres off the ground, rodents help with the release 
of fungal spores higher into air currents. Connor (1960) noted 
that North American red squirrels bury “small puffballs” in pits; 
he unfortunately did not identify the fungal species involved, but 
it is likely some type of hypogeous fungi. It is therefore possible 
that squirrels may dig hypogeous fungi in one location and bury 
them somewhere else. Regardless of whether squirrels really 
store fungi below ground or simply forget them, this behaviour 
has potentially important implications for fungal dispersal.

Nutritional advantage of fungi consumption
Since fungal cell walls are primarily composed of chitin (Cork & 
Kenagy 1989a, Balestrini et al. 2000) that is difficult for humans 
to digest when raw, there is a widespread myth that fungi are 
nutritionally insignificant; however, cooking fungi makes them 
highly digestible and nutritionally beneficial to humans (Wani 
et al. 2010). While cooking fungi is irrelevant in the context of 
wildlife nutrition, many mammals are capable of biosynthesizing 
chitinases and digesting raw fungal tissues to access nutrients 
(Cornelius et al. 1975, Boot et al. 2001, Wallis et al. 2012, 
Polatyńska 2014). The Abert’s squirrel (Sciurus aberti) carries 
mushrooms to its nest as one of the first non-milk foods its young 
eat (Keith 1956), suggesting that fungi are highly digestible for 
this species. Fungi also do not require the processing often 
carried out on other foods (e.g. husking nuts, peeling fruit, 
extracting seeds). Young mammals such as the juvenile Tana 
River mangabey (Cercocebus galeritus) take advantage of this 
simple source of nutrition before they learn to process more 
energy intensive foods (Kivai 2018). Some arboreal mammals 
even risk predation by descending from the canopy to feed 
on highly desirable fungi. Germain’s langurs (Trachypithecus 
germaini) have been found to come to the ground to pick fungal 
sporocarps and then immediately retreat into the trees to 
consume them (de Groot & Nekaris 2016; Fig 3D). Among other 
primates such as the grivet monkey (Chlorocebus aethiops), 
higher ranking members of troops tend to eat higher portions 
of fungi while lower ranking members eat more fruit (Isbell 
et al. 1999). The use of troop status to acquire fungi indicates 
that they are highly desirable; this is likely due to nutritional 
advantages, flavour or aroma. Japanese macaques (Macaca 
fuscata), which are known to eat at least 67 fungal species, can 
be so enthusiastic about fungi that fights frequently break out 
over possession and consumption of sporocarps (Sawada et al. 
2014). Eastern gorillas (Gorilla beringei) apparently have similar 
disagreements within the troop over ownership of a highly 
valued species of Ganoderma fungus, as noted by Fossey (1983: 
76) in the following:
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“Still another special food is bracket fungus (Ganoderma 
applanatum), a parasitical tree growth resembling a large 
solidified mushroom. The shelflike projection is difficult to 
break free from a tree, so younger animals often have to 
wrap their arms and legs awkwardly around a trunk and 
content themselves by only gnawing at the delicacy. Older 
animals who succeed in breaking the fungus loose have 
been observed carrying it several hundred feet from its 
source, all the while guarding it possessively from more 
dominant individuals’ attempts to take it away. Both the 
scarcity of the fungus and the gorillas’ liking of it cause 
many intragroup squabbles, a number of which are settled 
by the silverback, who simply takes the item of contention 
for himself”.

Fungal biochemistry is complex and varies between taxonomic 
groups (Mendel 1898, Kinnear et al. 1979, Vogt et al. 1981, 
Blair et al. 1984, Grönwall & Pehrson 1984, Jabaji-Hare 1988, 
Hussain & Al-Ruqaie 1999, Claridge & Trappe 2005, Barros 
et al. 2007, 2008, Kalač 2009, Ouzouni et al. 2009, Wani et 
al. 2010, Wallis et al. 2012, Zambonelli et al. 2017, Lucchesi 
et al. 2021). The nutritional value for mammals also varies 
between fungal species and between different parts of the 
sporocarp. The nutritional role that fungi play in mammals’ 
diets therefore varies between individuals, species, seasons, 
and the availability of other foods. Grönwall & Pehrson (1984) 
estimate that Eurasian red squirrels can reach up to half of 
their daily energetic requirements by eating fungi. As previous 
studies and reviews on mycophagy have typically shown, fungi 
are a significant source of nutrition and biomass for small 
mammals (Fogel & Trappe 1978, Claridge & May 1994, Claridge 
et al. 1996, Johnson 1996, Luoma et al. 2003, Polatyńska 2014, 
Nuske et al. 2017a, b, Zambonelli et al. 2017). Fungi are also 
important for some larger mammal species, including deer in 
the family Cervidae that rely heavily on fungi as a large portion 
of their diet (Strode 1954, Lovaas 1958, Kirkpatrick et al. 
1969, Hungerford 1970, Launchbaugh & Urness 1992, also see 
Supplementary Table S11). The white-tailed deer (Odocoileus 
virginianus) has been reported to eat as many as 580 fungal 
species (Cadotte 2018). Ungulates generally eat larger fungal 
species, and since these taxa tend to sporulate most prolifically 
in the autumn and early winter, they are often more seasonally 
important. In cold regions of Eastern and Northern Europe, 
various ungulate species have been reported to excavate frozen 
mushrooms from under the snow (Blank 2003, Inga 2007).

Water constitutes up to 80–95 % of the biomass of fungal 
sporocarps (Claridge & Trappe 2005, Barros et al. 2007) and 
represents an important source of hydration for small mammals. 
In some cases, fungal sporocarps can be the major or only source 
of water for small mammals (Getz 1968). Using fungi as a water 
source therefore increase the adaptability of some mammals 
to marginal habitats where available surface water is scarce. 
This may explain the high diversity of mycophagous mammals 
in Australian dry woodlands and other similar environments 
around the world.

Fungal sporocarps generally contain more proteins and 
nutrients than plant material (Wallis et al. 2012) and can be an 
important source of essential amino acids (Blair et al. 1984). In 
larger mammals, fungi are not necessarily an important source 
of dietary biomass but can provide key nutrients that are often 
scarce or inaccessible in other food sources. Selenium, for 
example, is an important microelement in mammal diets that 

is found in relatively high levels in some fungi (Watkinson 1964, 
Quinche 1983a, b, Claridge & Trappe 2005, Falandysz 2008, 
Costa-Silva et al. 2011, Kabuyi et al. 2017). Selenium deficiency 
can lead to nutritional muscular dystrophy (white muscle 
disease), and many livestock feeding mixes include selenium 
supplements (Gupta & Gupta 2000, Claridge & Trappe 2005, 
Falandysz 2008). Fungi are likely one of the primary sources of 
selenium for wild mammals, thus making fungi an important 
food even if only small quantities are ingested. 

In addition to selenium, fungi contain a wide array of essential 
amino acids, fats, fatty acids, carbohydrates, minerals, nutrients 
and proteins (Claridge & Trappe 2005). Some groups of fungi, 
including members of the families Glomeraceae, Gigasporaceae 
and Mesophelliaceae, also have high lipid and fatty acid content 
(Kinnear et al. 1979, Jabaji-Hare 1988). Many aspects of the 
chemical composition of various fungal species can boost animal 
health even in very small quantities. Studies on livestock and 
poultry feeds have experimentally shown the high value of fungi 
as a dietary supplement even in low dosages. When fungi were 
given to broiler chickens, for example, the chickens generally 
experienced increased weight gain and improved resistance 
to pathogens (Bederska-Łojewska et al. 2017). These benefits 
were detected even when fungi were added at levels of as low 
as 2 % in poultry diets. In addition to the use of sporocarps in 
the livestock feed industry, research has suggested that using 
mycelium as a fermenting agent can also provide antioxidants 
and improve the overall quality of livestock feeds (Ukpebor et al. 
2007, Abdullah et al. 2016). 

Most information about the nutritional composition of 
fungi is known from species cultivated for human or livestock 
feed, so there is very little information on the nutritional value 
of most wild fungal species. Deciphering the impacts of fungal 
consumption by wild animals is also more complex than in 
captive populations. Studies of wild populations of the heavily 
mycophagous eastern bettong (Bettongia gaimardi) suggested 
that an increase in fungi in the marsupial’s diet correlated 
with an improved body condition (Johnson 1994b). Female 
eastern bettongs are more heavily mycophagous than males, 
and the growth rate of pouch young is positively correlated 
to the abundance of fungal sporocarps (Johnson 1994b). 
However, it remains difficult to measure the direct physiological 
impacts of fungal species in the diet of a given individual or 
species since there are many co-occurring variables. The idea 
of mammals “self-medicating” by using fungi and plants with 
certain pharmacological properties is still speculative, but 
research into some foods used by animals – including fungi – 
has uncovered compounds with promising pharmacological 
properties (Huffman 1997, 2003, Cousins & Huffman 2002). 
These studies compare some of the medicinal compounds 
found in pharmacological studies with food choice in primates; 
however, it is more difficult to relate medicinal compounds used 
for medical applications to the diets of mammals more distantly 
related to humans.

Fungi consumption has a variety of positive impacts for 
many mammals, but some fungal species are bioaccumulators 
that can absorb environmental toxins when they are growing in 
contaminated areas (Ernst 1985, Colpaert & Van Assche 1987, 
Gast et al. 1988, Brown & Hall 1989, Gadd 1994, Gonzalez-Chavez 
et al. 2004, Pokorny et al. 2004, Fomina et al. 2005, Soylak et al. 
2005, Shavit & Shavit 2010, Dulay et al. 2015). Isotope studies in 
Europe have shown that fungi absorb radiocesium, which can be 
transmitted to animals that ingest contaminated sporocarps and 
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then move up the food chain to eventually contaminate humans 
and other apex predators that have eaten these mycophagous 
game animals (Johnson & Nayfield 1970, Hove et al. 1990, 
Karlén et al. 1991, Fielitz 1992, Johanson 1994, Strandberg & 
Knudsen 1994, Avila et al. 1999, Zibold et al. 2001, Hohmann 
& Huckschlag 2005, Steiner & Fielitz 2009, Dvořák et al. 2010, 
Škrkal et al. 2015). Environmental contaminants are often the 
by-products of human activities such as agriculture, mining, 
bombing and manufacturing. The movement of these toxins 
through food webs from primary to secondary consumers is 
undoubtedly more widespread than is currently known, and 
further studies are needed to thoroughly understand the role 
that fungi play in the bioaccumulation and magnification of 
toxins through the food chain.

Evolutionary significance of mammal mycophagy

The role of mycophagy in fungal spore dispersal
Fungi disperse across ecosystems either vegetatively (through 
mycelium growth or asexual propagules) or sexually (via spore 
dispersal). Mycelium is the non-reproductive part of a fungus and 
is composed of a network of fine root-like filaments. In habitats 
with similar or compatible plant communities, mycorrhizal fungi 
commonly colonise seedlings through mycelial spread (Jonsson 
et al. 1999). In fragmented, highly disturbed or degraded areas, 
mycelial spread tends to be less effective, and spores are the 
primary means of establishment (Trappe & Strand 1969, Bruns 
et al. 2009, Okada et al. 2022). 

Even though spores theoretically enable fungi to disperse 
over greater distances than mycelial spread does, only a 
small percentage of spores generally disperse successfully at 
significant distances. Many widespread mycorrhizal fungal 
species successfully disperse through air currents (Warner et al. 
1987, Allen et al. 1989, Geml et al. 2008), but a high percentage 
of spores land very close to their source and very few spores are 
able to colonise new areas. Estimates suggest that only about 
2  % of spores from wind-dispersed basidiomycete species travel 
beyond 5.2 m of the parent sporocarps (Li 2005), while about 
5 % of spores travel beyond one metre (Galante et al. 2011). 
Among ectomycorrhizal fungi, density and diversity of wind-
dispersed spores decrease with distance from forest edges, 
with few spores detected at distances over 1 km from the forest 
edge (Peay et al. 2012). Once landed, spores must find suitable 
substrates (for saprophytic species) or hosts (for mycorrhizal 
and parasitic species) to germinate. For sexual reproduction, 
individuals need to meet nearby compatible genetic strains. 
Therefore, spores landing closer to their parent sporocarps 
have a greater probability of finding suitable habitat and mating 
types (Kytöviita 2000, Peay et al. 2012, Horton 2017); however, 
proximity to the parent may also reduce the genetic diversity 
(thus the adaptability and resilience) of the species in the area. 
For example, low genetic diversity detected in populations of 
the hypogeous commercial truffle Tuber melanosporum is likely 
due to difficulties in long-distance spore dispersal (Taschen et 
al. 2016). Such genetic bottlenecks could be a result of too few 
animal dispersers.

Fungal sporocarps are often ephemeral and delicate, but 
their spores are far more resilient. Spores typically survive the 
enzymatic tribulations of the mammalian digestive tract and 
regularly germinate once deposited in scats (See next section 
and Tables 1, 2). Since mammals can eat entire sporocarps, 
mycophagy would account for the dispersal of a greater 

percentage of spores from a single sporocarp than would wind 
dispersal. Some rodents also co-disperse bacteria that interact 
with root-associated fungi and play important roles in nitrogen 
fixation (Li et al. 1986, Li & Maser 1986). Since an individual 
mammal often consumes multiple sporocarps, their scats 
may contain spores from multiple individuals and species of 
fungi that are deposited within close proximity to each other. 
Mycophagy is therefore an effective means of long-distance 
dispersal of fungal spores and improving genetic diversity within 
fungal populations.

Fungal spore dispersal through mycophagy can greatly impact 
the species composition, genetic diversity and adaptability of 
mycorrhizal fungal communities (Gehring et al. 2002, Nuske 2017, 
Dundas et al. 2018, Valentine et al. 2018, Miranda et al. 2019, 
Nuske et al. 2019). Mycophagous mammals may have played a role 
in the movement and recolonisation of mycorrhizal fungi under 
major climatic changes such as glaciation, with obvious impacts 
on the current distribution of fungal species and associated plants 
(Murat et al. 2004, Piattoni et al. 2016). It is difficult to estimate 
the long-term biogeographic impact of mycophagy at a global 
scale, but several studies have addressed these questions on 
a smaller scale, e.g. in degraded, newly forming or transitional 
systems. For example, mammals play a vital role in the transport 
of mycorrhizal inoculant into newly forming soils at the forefront 
of receding glaciers in the alpine zone of the North Cascades 
Mountains, USA (Cázares & Trappe 1994). Scats of mycophagous 
animals enable ectomycorrhizal tree establishment in nutrient-
poor sandy dune environments in Oregon, USA (Ashkannejhad 
2003, Ashkannejhad & Horton 2006). After the volcanic eruption 
of Mount Saint Helens in Washington, USA, the spore-containing 
scats of mammals served as vectors of mycorrhizal spores into 
newly formed sterile soils within the blast zone (MacMahon & 
Warner 1984, Allen 1987). In newly produced coal mine spoils, 
mycorrhizal spores can be dispersed by grasshoppers and rabbits 
(Ponder 1980). Small mycophagous mammals such as voles are 
key to habitat succession engineered by North American beavers 
(Castor canadensis), a species that causes more ecosystem-level 
change than any other non-human mammal. When beaver 
ponds eventually silt in, they become meadows dominated by 
herbaceous communities that typically associate with arbuscular 
mycorrhizal fungi, while the surrounding forests are dominated 
by ECM plants. Southern red-backed voles (Myodes gapperi) 
regularly eat hypogeous ECM fungi on the forested edges 
of beaver meadows and inadvertently carry spores into the 
meadows in their scats; this behaviour builds up a spore bank 
that assists ECM tree species in recolonising areas affected by 
beavers (Terwilliger & Pastor 1999). Similar meadow colonisation 
by ECM spores was observed in Oregon as a result of western 
pocket gophers (Thomomys mazama) depositing ingested fungal 
spores in below ground faecal chambers (Maser et al. 1978b). 
In regions where non-native pines (Pinus spp.) are farmed in 
plantations, a variety of mycophagous animals spread the spores 
of pine-associated mycorrhizal fungi outside the bounds of pine 
plantations, potentially contributing to the spread of these trees 
(Nuñez et al. 2013, Wood et al. 2015, Policelli et al. 2019, 2022, 
Aguirre et al. 2021).

Spore viability
Fungal spores tend to be very robust and remain viable after passage 
through the digestive system of a diverse range of invertebrates 
(Tuno 1998, Trappe & Claridge 2005, Kitabayashi & Tuno 2018, 
Vašutová et al. 2019, Ori et al. 2021) and birds (Caiafa et al. 2021). 
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Table 1. Mammal species experimentally shown to disperse viable mycorrhizal fungal spores.

Genus and species of mammals Common Name Method* Viable Rate* Citation

Aepyprymnus rufescens Rufous Bettong IT Yes ? Reddell et al. (1997)

Bettongia penicillata Brush-tailed Bettong IT Yes + Lamont et al. (1985)

Bettongia tropica Northern Bettong IT Yes ? Reddell et al. (1997)

Bison bison American Bison IT Yes ? Lekberg et al. (2011)

Callospermophilus saturatus Cascade Golden-mantled Ground 
Squirrel

M Yes + Cork & Kenagy (1989a)

Cervus canadensis Wapiti/Elk IT Yes ? Allen (1987)

Cervus elaphus Western Red Deer IT Yes ? Wood et al. (2015)

Ctenomys knighti Catamarca Tuco-tuco IT Yes ? Fracchia et al. (2011)

Glaucomys oregonensis Humboldt’s Flying Squirrel M, IT Yes - Colgan & Claridge (2002)

Glaucomys sabrinus Northern Flying squirrel IT Yes + Caldwell et al. (2005)

Hystrix cristata Crested Porcupine M Yes ? Ori et al. (2018)

Isoodon fusciventer Dusky-bellied Bandicoot IT Yes +, ? Smith (2018), Tay et al. (2018)

Isoodon macrourus Northern Brown Bandicoot IT Yes ? Reddell et al. (1997)

Lepus europaeus European Hare IT Yes ? Aguirre et al. (2021)

Loxodonta africana African Elephant IT Yes ? Paugy et al. (2004)

Melomys cervinipes Fawn-footed Melomys IT Yes ? Reddell et al. (1997)

Microtus oregoni Creeping Vole G Yes ? Trappe & Maser (1976)

Mus musculus House Mouse IT Yes + Ori et al. (2021)

Myodes californicus Western Red-backed Vole M, IT Yes - Colgan & Claridge (2002)

Myodes gapperi Southern Red-backed Vole IT Yes - Terwilliger & Pastor (1999)

Neotomodon alstoni Mexican Volcano Mouse M Yes +, = Castillo-Guevara et al. (2011, 
2012), Pérez et al. (2012)

Odocoileus hemionus Mule Deer IT Yes ? Ashkannejhad & Horton (2006)

Perameles nasuta Long-nosed Bandicoot IT Yes ? McGee & Baczocha (1994), 
Reddell et al. (1997), McGee & 
Trappe (2002)

Peromyscus leucopus White-footed Deermouse IT Yes ? Rothwell & Holt (1978), Miller 
(1985)

Peromyscus maniculatus North American Deermouse IT, M Yes ?,+,= Rothwell & Holt (1978), Castillo-
Guevara et al. (2011, 2012), 
Pérez et al. (2012)

Potorous tridactylus Long-nosed Potoroo IT Yes + Claridge et al. (1992)

Proechimys semispinosus Tome’s Spiny-rat IT Yes ? Mangan & Adler (2002)

Pseudalopex gymnocercus Pampas Fox IT Yes ? Aguirre et al. (2021)

Rattus fuscipes Bush Rat IT Yes ? Reddell et al. (1997)

Rattus rattus Black Rat IT Yes ? McGee & Baczocha (1994), 
McGee & Trappe (2002)

Reithrodontomys humulis Eastern Harvest Mouse IT Yes ? Rothwell & Holt (1978)

Rupicapra rupicapra Alpine Chamois IT Yes ? Wiemken & Boller (2006)

Sciurus aberti Abert’s Squirrel IT Yes = Kotter & Farentinos (1984)

Sus scrofa Eurasian Wild Pig M, IT Yes +,? Nuñez et al. (2013), Piattoni et 
al. (2014), Livne-Luzon et al. 
(2017), Aguirre et al. (2021)

Sylvilagus floridanus Eastern Cottontail IT Yes + Ponder (1980)

Tamias townsendii Townsend’s Chipmunk M, IT Yes + Colgan & Claridge (2002)

Thomomys talpoides Northern Pocket Gopher IT Yes ? Allen & MacMahon (1988)

Trichosurus vulpecula Common Brush-tail Possum IT Yes ? Wood et al. (2015)

Uromys caudimaculatus Giant White-tailed Rat IT Yes ? Reddell et al. (1997)

Two species of deer Cervus elaphus (Western Red Deer) Dama dama (Common 
Fallow Deer)

IT Yes ? Nuñez et al. (2013)
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Table 1. (Continued).

Genus and species of mammals Common Name Method* Viable Rate* Citation

Mixed scats from Rattus fuscipes, R. rattus, R. villosissimus and Perameles 
nasuta were shown to contain viable VAM spores, but it is unclear which 
species were actually tested for viability

IT Yes ? McGee & Baczocha (1994)

Ten species of small European mammals were examined in this study but it is 
unclear if viability was tested in all mammals

IT Yes ? Schickmann (2012)

A list of at least 40 mammal species that have been experimentally shown to disperse viable fungal spores through their scats. *Method: M: 
microscopic assessment, IT: Inoculation Trials, G: germination trial in vitro. *Rate: +: improved viability when consumed by animals compared to 
control, =: equal viability from scats to control, -: reduced viability compared to control, ?: no comparative viability data.

Table 2. Species of mycorrhizal fungi whose spores have been experimentally shown to remain viable after mammal consumption.

Fungal species Method* Viability Rate* Citation

Acaulospora morrowiae IT Yes ? Lekberg et al. (2011)

Amphinema sp. IT Yes ? Nuñez et al. (2013)

Archaeospora trappei IT Yes ? Lekberg et al. (2011)

Densospora tubiformis IT Yes ? McGee & Baczocha (1994)

Descolea angustispora IT Yes ? Tay et al. (2018)

Elaphomyces granulatus M Yes + Cork & Kenagy (1989a)

Endogone aggregata IT Yes ? McGee & Baczocha (1994)

Glomus atrouva IT Yes ? McGee & Baczocha (1994), McGee & Trappe (2002)

Glomus australe IT Yes ? McGee & Baczocha (1994)

Glomus fuegianum IT Yes ? McGee & Baczocha (1994)

Glomus intraradices IT Yes ? Lekberg et al. (2011)

Glomus macrocarpum G, IT Yes ? Trappe & Maser (1976), Allen & MacMahon (1988), 
McGee & Baczocha (1994)

Glomus pellucidum IT Yes ? McGee & Baczocha (1994), McGee & Trappe (2002)

Glomus spp. IT Yes ? Allen (1987), McGee & Baczocha (1994)

Hebeloma mesophaeum IT Yes ? Nuñez et al. (2013)

Laccaria trichodermophora M, IT Yes +,- Castillo-Guevara et al. (2011), Pérez et al. (2012)

Melanogaster sp. IT Yes ? Nuñez et al. (2013)

Pyronemataceae IT Yes ? Tay et al. (2018)

Rhizophagus fasciculatus IT Yes ? Rothwell & Holt (1978)

Rhizopogon cf. arctostaphyli IT Yes ? Nuñez et al. (2013)

Rhizopogon evadens IT Yes ? Ashkannejhad & Horton (2006)

Rhizopogon fuscorubens IT Yes ? Ashkannejhad & Horton (2006)

Rhizopogon occidentalis IT Yes ? Ashkannejhad & Horton (2006)

Rhizopogon pseudoroseolus IT Yes ? Aguirre et al. (2021)

Rhizopogon cf. rogersii IT Yes ? Nuñez et al. (2013)

Rhizopogon roseolus IT Yes ? Nuñez et al. (2013)

Rhizopogon salebrosus (group) IT Yes ? Ashkannejhad & Horton (2006)

Rhizopogon truncatus M, IT Yes ? Colgan & Claridge (2002)

Rhizopogon vinicolor M, IT Yes varied Colgan & Claridge (2002)

Rhizopogon spp. (3 unidentified species) IT Yes ? Wood et al. (2015)

Russula aff. cuprea M Yes = Castillo-Guevara et al. (2012)

Suillus brevipes IT Yes ? Ashkannejhad & Horton (2006)

Suillus granulatus IT Yes ? Wiemken & Boller (2006), Aguirre et al. (2021)

Suillus luteus IT Yes ? Nuñez et al. (2013), Wood et al. (2015)

Suillus tomentosus M, IT Yes + Castillo-Guevara et al. (2011), Pérez et al. (2012)
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Table 2. (Continued).

Fungal species Method* Viability Rate* Citation

Suillus umbonatus IT Yes ? Ashkannejhad & Horton (2006)

Thelephora americana IT Yes ? Ashkannejhad & Horton (2006)

Thelephoraceae T73.1 IT Yes ? Ashkannejhad & Horton (2006)

Tomentella sublilicina IT Yes ? Ashkannejhad & Horton (2006)

Tuber aestivum M, IT Yes + Piattoni et al. (2014), Ori et al. (2018, 2021)

Tuber borchii IT Yes ? Livne-Luzon et al. (2017)

Tuber canaliculatum IT Yes ? Miller (1985)

Tuber oligospermum IT Yes ? Livne-Luzon et al. (2017)

Tuber shearii IT Yes ? Miller (1985)

Tuberaceae IT Yes ? Tay et al. (2018)

Unidentified (27 ECM taxa including 
Ascomycetes and Basidiomycetes)

IT Yes + Claridge et al. (1992)

Unidentified taxa (including: Elaphomyces 
spp., Glomus sp., Hysterangium separabile, 
Rhizopogon spp., Sclerogaster xerophilum and 
Sedecula pulvinata)

IT Yes (unclear 
which taxa)

= Kotter & Farentinos (1984)

Colonisation by one or more of the following 
VAM taxa: Glomus spp., Scutellospora gregaria 
and S. verrucosa

IT Yes (unclear 
which taxa)

? Paugy et al. (2004)

A preliminary examination of the scats 
indicated that at least Hysterangium, Descolea 
and Reddellomyces, but a full list was beyond 
the scope of the study. Based on the results 
both ECM and VAM taxa remained viable

IT Yes (unclear 
which taxa)

+ Smith (2018)

Dark septate endophytes and VAM fungi IT Yes ? Fracchia et al. (2011)

Unidentified (at least 7 ECM taxa) IT Yes + Lamont et al. (1985)

VAM fungi IT Yes + Ponder (1980)

VAM fungi including Glomus spp. (3 
unidentified species) and Sclerocystis 
coremioides unclear if all or some were viable

IT Yes ? Mangan & Adler (2002)

Unidentified ECM and VAM taxa IT Yes ? Reddell et al. (1997)

Unidentified ECM fungi IT Yes - Terwilliger & Pastor (1999)

Unidentified ECM fungi IT Yes ? McGee & Baczocha (1994)

Unidentified ECM fungi IT Yes + Caldwell et al. (2005)

Unidentified ECM fungi IT Yes ? Schickmann (2012)

A list of at least 58 taxa of mycorrhizal fungi that have been experimentally shown to remain viable after passage through the digestive systems of 
mammals. *Method: M: microscopic assessment, IT: inoculation trials, G: germination trial in vitro. *Rate: +: improved viability when consumed 
by animals compared to control, =: equal viability from scats to control, -: reduced viability compared to control, ?: no comparative viability data, 
varied: different rates depending on mammal species. (Note: the names of the fungi listed in this table in some cases have been updated to reflect 
recent taxonomic/nomenclatural changes and may differ from the name listed in the original publication.)

Reess & Fisch (1887) and Hastings & Mottram (1915) first 
suggested that hypogeous fungi such as Elaphomyces may 
benefit from mammal dispersal, although they were not able 
to demonstrate spore viability. The concept of spore dispersal 
through mammal mycophagy assumes that spores remain 
viable after passage through the mammalian digestive system. 
To fully understand how frequently spores remain viable and 
among how many different mammal species, we reviewed the 
literature that tested spore viability in mammal faeces. Reess & 
Fisch (1887) tried multiple approaches with Elaphomyces spores 
extracted from scats of the common fallow deer (Dama dama), 
but both their controls and spores extracted from scats proved 
unsuccessful. Considering that mycorrhizae research was in its 

infancy in the 1880’s, they were likely facing methodological 
limitations. Aside from this early attempt, we found multiple 
studies focusing on different groups of mycorrhizal fungi and 
using various microscopy techniques or inoculation/germination 
trials. These studies detected viable spores from more than 
58 mycorrhizal fungal species after their passage through the 
digestive system of at least 40 mammal species (Tables 1, 2). We 
were unable to find any studies showing that fungal spores were 
no longer viable after ingestion by mammals. 

Spore resilience may be due in part to melanins that limit the 
disintegration (lysis) of spore cell walls (Bloomfield & Alexander 
1967, Zambonelli et al. 2017). Although further studies are 
needed to fully understand the relationship between melanins 
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and mammalian digestive enzymes, the digestive enzymes of 
mammals appear to be no match for the melanins in fungal 
spores. It has been suggested that spores with ornamentation or 
thicker walls are more adept at surviving the digestive systems 
of animals (Korf 1973). Although there may be situations where 
this hypothesis holds true, there are fungi with smooth, thin-
walled spores (e.g. the genera Suillis and Rhizopogon) that have 
been thoroughly documented to survive mammalian digestive 
systems (Table 2). 

Although further empirical testing is needed, our review 
also revealed that at least 10 species of mammals may increase 
spore germination/viability after ingestion (Table 1). Colgan & 
Claridge (2002) suggested that several factors, such as body 
temperature, passage time and digestive anatomy, may impact 
spore viability. Nuñez et al. (2013) showed that twice as many 
seedlings inoculated with Eurasian wild pig (Sus scrofa) faeces 
formed mycorrhizal colonisation when compared with seedlings 
inoculated with western red deer (Cervus elaphus) and common 
fallow deer (Dama dama) faeces. The authors were unable to 
decipher whether these differences were due to the digestive 
system of deer decreasing spore viability, or if the digestive 
enzymes of wild pigs caused scarification that alleviates 
spore dormancy and increases germination. Scarification of 
fungal spores (i.e. erosion or breaking down of spore wall 
microstructures) after transit through mammalian digestive 
systems has only been studied in a few fungal taxa and is probably 
more common than presently known. For example, asci of Tuber 
aestivum break apart and the spore ornamentation is worn 
down after passage through digestive systems of Eurasian wild 
pigs (Piattoni et al. 2014, 2016). Despite this apparent damage, 
spores from faeces formed heavier mycorrhizal colonisation 
than non-ingested spores in inoculation trials. Different animals 
cause different amounts of spore scarification, and in general, 
longer passage rates among larger animals likely increase 
spore liberation from asci and/or scarification. For example, 
when comparing Tuber spores ingested by wild pigs with those 
ingested by the long-tailed field mouse (Apodemus sylvaticus), 
Zambonelli et al. (2017) suggested that the digestive system of 
the long-tailed field mice had liberated far fewer spores from 
their asci than did that of wild pigs. 

There are likely situations where both seeds and associated 
fungal spores are dispersed in the same scat (Pirozynski & 
Malloch 1988), and it is possible that both are simultaneously 
being scarified, thus increasing their chance to match with 
suitable mycorrhizal symbionts. These studies are analogous 
to animal ingestion of fruits that can facilitate the disruption 
of seed dormancy and increases seed germination rates (Stiles 
1992, Traveset et al. 2007). In mycology, similar studies remain 
scarce but are necessary to improve our understanding of these 
trophic interactions. 

The role of aromas in mycophagy and fungal evolution
Evidence suggests that some bird species may encounter fungi 
simply by chance while others select them based on colour or 
aroma (Elliott & Marshall 2016, Elliott & Vernes 2019). Although 
terrestrial native mammals are absent from New Zealand, 
the country has a diversity of exceptionally colourful endemic 
truffles that may be a result of selective pressure from visually 
cued foraging birds (Beever & Lebel 2014, Elliott et al. 2019a). 
There are numerous reports of mammals eating epigeous fungi, 
but since these fungal sporocarps are easily visible above the 
surface of the soil, it is difficult to determine if mammals detect 

them by visual or olfactory cues or a combination of both. 
Fossey (1983: 131) provided an example of two young eastern 
gorillas named Pucker and Coco seeking out “bracket fungi” for 
food using what appears to be visual cues:

“One day while walking in a new area, Pucker suddenly ran 
toward a large cluster of Hagenia trees on the edge of the 
forest leading to the mountain. Coco leapt from my arms 
in rapid pursuit — which was unusual. I thought they were 
making a dash for the mountain and was hastily taking out 
the bananas when both infants halted below one of the 
larger trees. They peered up at the tree like children looking 
up a chimney on Christmas eve. I had never seen them so 
fascinated by a tree, nor could I determine what it was 
that so strongly attracted them. Suddenly the two began 
frenziedly climbing the huge trunk, leaving me even more 
puzzled. About thirty feet above the ground they stopped, 
pig-grunted at one another, and avidly started biting into a 
large bracket fungus. Previously I had noted these shelflike 
growths, which protrude from Hagenia tree trunks and 
rather resemble overgrown solidified mushrooms[...] Try 
as they might, neither Coco nor Pucker could pry the fungus 
from its anchorage on the trunk, so they had to content 
themselves with gnawing chunks out of it. A half-hour later 
only a remnant remained. Reluctantly they descended, but 
as we walked on they gazed longingly back at the tree with 
the fungus elixir”. 

The role of aroma is more obvious in hypogeous fungi, where the 
selective advantage of mycophagy contributed to the convergent 
rise of sequestrate sporulating morphologies in multiple fungal 
lineages (Sheedy et al. 2016, Truong et al. 2017, Elliott & 
Trappe 2018, Elliott et al. 2020a). Sequestrate sporocarps can 
be partially emergent or hidden entirely below the soil surface, 
placing the reproductive success of sporocarps and the species 
at the whim of animal detection. Many sequestrate fungi have 
lost their ability for the forcible discharge of spores (Thiers 1984) 
and therefore rely on the production of volatile olfactory cues to 
attract animal dispersers (Maser et al. 1978a, Talou et al. 1987, 
1990, Donaldson & Stoddart 1994, Stephens et al. 2020). 

Due to the culinary/economic importance of many members 
of the sequestrate genus Tuber, the chemistry of sequestrate 
fungal aromas has been most thoroughly studied in this genus 
(Splivallo et al. 2011, Molinier et al. 2015, Splivallo et al. 2015, 
Vita et al. 2018, Mustafa et al. 2020). Based on experiments with 
domestic dogs and pigs, Talou et al. (1990) suggested that dimethyl 
sulphide was the primary aroma responsible for the detection 
of mature T. melanosporum sporocarps. Dimethyl sulphide is 
also the primary odour that attracts truffle specialist arthropods 
(Pacioni et al. 1991). These relationships are analogous to plants 
attracting pollinators with nectar and seed dispersers with sugary 
fruits, but animal-fungal interactions remain less thoroughly 
studied. We argue that similarly interdependent associations have 
been developed by sequestrate fungi through the production 
of strong aromas that entice animals to find them when spores 
reach maturity. The level of specialisation and specificity in these 
aromas is still up for debate, and it is currently unknown whether 
some fungi can mimic pheromones to target certain species or 
sexes of mammalian dispersers. Claus et al. (1981) suggested that 
the ability of pigs to detect T. melanosporum may be linked to 
a steroidal pheromone (5α-androst-16-en-3α-ol) that is similar to 
sex chemicals produced by the mammal. Ultimately, it is hard to 
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prove whether wild pigs are so passionately interested in truffles 
merely because they are tasty and nutritious or as a result of some 
sexual pheromonal trickery. Unlike analogous co-evolutionary 
associations involved in seed dispersal and pollination, we are 
unaware of any highly specialised associations that are exclusive 
between a mammal and a fungal species. However, it would be 
interesting to explore further whether the selective advantages 
offered by mycophagy could lead to more specialised dispersal 
associations. 

There are many observational reports of mammals detecting 
hypogeous fungi by sense of smell, such as deer digging up 
hypogeous fungi hidden below the soil surface (Cowan 1945). 
Bermejo et al. (1994: 888) described a bonobo (Pan paniscus) 
seemingly using smell to locate an unidentified “truffle” species 
in the Democratic Republic of Congo: 

“…standing quadrupedally, digs up the earth, first with 
one hand, then with the other, in search of subterranean 
truffles. She puts her face closer to the hole that she has 
dug and looks closely. Then she carefully puts one hand into 
the hole and withdraws it immediately, putting her fingers 
to her nose to detect the scent of truffles. She faithfully 
repeats this operation again and again”. 

This type of behaviour is not restricted solely to this species 
of primate. On multiple occasions, we have observed humans 
displaying nearly identical foraging behaviours while attempting 
to locate commercially valuable truffles in the wild and on 
cultivated truffle farms. 

Smith (1968a) made extensive observations of the behaviour 
of young North American red squirrels in their first few days 
out of the nest as they learned what to eat. Smith (1968a: 42) 
described the following observation: 

“On the third day one of the young travelled over 100 ft 
from the nest, at which point it sniffed along the ground 
and dug up a false truffle (Hymenogastrales). It ate all of 
the first false truffle, dug up another, and ate half of that 
before making an unsuccessful attempt to cache the rest 
in a tree”.

Based on this observation, squirrels appear to have an innate 
knowledge about using their sense of smell to detect hypogeous 
fungi and subsequently caching sporocarps. By making careful 
daylight observations from the day this squirrel was born, Smith 
(1968a) demonstrated that the behaviour of this young squirrel 
was truly innate and was not acquired from observing a parent 
or other individual (also see section: Caching and hoarding of 
fungi). He suggested that the young would gradually become 
more adept at this task, since it took over two minutes for this 
juvenile to dig up the first truffle and another nine minutes 
to eat it, while its mother could perform the same activity in 
approximately one minute.

Brown hyenas (Hyaena brunnea) in the southern Kalahari 
Desert are primarily scavengers of vertebrate remains, but they 
reportedly also use their acute sense of smell to detect and eat 
the hypogeous desert truffle Kalaharituber pfeilii (Mills 1978). 
Brown hyenas are heavily reliant on odours when foraging, and 
Mills (1978) reported in great detail how they utilised wind 
direction to detect and locate food, including desert truffles. In 
April of 1975, Mills reported brown hyenas picking up a scent on 
the breeze on 21 occasions, making upwind turns of up to 200 

m and then digging for a few seconds in the sand before they 
uncovered specimens of K. pfeilii. We (TFE, JMT and KV) have 
observed similar behaviours among domesticated dogs trained 
to hunt Tuber melanosporum, Lucangium carthusiana and other 
commercially harvested truffles. On multiple occasions, we 
have seen highly trained truffle dogs step on partially emergent 
immature truffles, totally unaware of their presence, while 
signalling their handlers toward a ripe truffle nearby.

These examples suggest that aroma can be an important 
factor in controlling truffle consumption and preventing them 
from being discovered before spores are mature/ready to 
germinate. In western North America, the dusky-footed woodrat 
(Neotoma fuscipes) regularly eats hypogeous fungi of the genera 
Gautieria and Hysterangium (Parks 1919, 1922). Parks (1922) 
noted that in the process of digging up ripe sporocarps, woodrats 
often overlooked or even discarded unripe specimens. The 
more strong-smelling species were more regularly consumed, 
suggesting a preferential selection for mature hypogeous 
sporocarps likely due to the strength of the aromas. Parks 
(1922) also noted that when different hypogeous fungal species 
sporulated in close proximity to one another, dusky-footed 
woodrats preferentially ate more aromatic species and ignored 
other readily accessible taxa, even if they were significantly 
larger. The diversity and abundance of truffles (particularly the 
genus Gautieria) was also higher near dusky-footed woodrat 
nests, but without a randomised survey method it is not possible 
to prove if this is a meaningful correlation. Based on this early 
naturalist’s observations, it is possible that when dusky-footed 
woodrats defecate in close proximity to their nests, they might 
inadvertently “farm” truffles close to the security and safety of 
their homes. More in-depth and rigorous studies are needed to 
follow up on Parks’ observations.

These examples illustrate some of the reproductive and 
dispersal advantages of sequestrate fungi that produce aromatic 
compounds. How specialised these associations are and whether 
certain aromas are more appealing to different individuals, sexes 
or taxonomic groups of animals remains to be directly assessed. 
In a study investigating the interactions between sporulating 
depths, volatile production and rodent mycophagy of the 
genus Elaphomyces, Stephens et al. (2020) showed that deeper 
sporulating Elaphomyces species had distinct volatile organic 
compound profiles and produced significantly higher quantities of 
aromatic compounds compared to other members of the genus 
that sporulated closer to the soil surface. They also concluded that 
rodents were selecting for species that sporulated deeper in the soil 
but produced stronger volatiles. The aromas of some hypogeous 
fungi are potent enough to be detected with portable electronic 
gas detectors such as flame ionisation or explosimeters (Talou et 
al. 1988). Thus, some hypogeous species produce aromas that 
are so strong-smelling that they may be detected by animals that 
do not typically rely on olfactory abilities when foraging. Stronger 
aromas potentially translate into more frequent consumption and 
better dispersal, but more complex interactions also occur. Pacioni 
(1986) suggests that in Europe, domestic truffle dogs trained 
to detect white truffle species (Tuber borchii and T. magnatum) 
are less effective at finding black truffle species (T. aestivum, T. 
brumale, T. macrosporum, T. melanosporum, T. mesentericum and 
T. uncinatum), and vice versa. The aroma composition of these 
two groups differs only in the presence of one or more atoms of 
sulphur (Pacioni 1986), indicating that aromatic specialisation 
is possibly aimed at different animal dispersers. Donaldson & 
Stoddart (1994) showed that acetaldehyde, ethyl acetate, n-propyl 



© 2022 Westerdijk Fungal Biodiversity Institute

Mammalian mycophagy
 

 
Editor-in-Chief	
Prof.	 dr	 P.W.	 Crous,	 Westerdijk	 Fungal	 Biodiversity	 Institute,	 P.O.	 Box	 85167,	 3508	 AD	 Utrecht,	 The	 Netherlands.	
E-mail:	p.crous@westerdijkinstitute.nl	
 

 
 

 

121

acetate, isobutyl acetate, ethyl isobutanoate, ethyl butanoate and 
ethyl propanoate were the compounds responsible for eastern 
bettongs’ attraction to and detection of species of Mesophellia. 
Ultimately, it is still unknown whether it is the combination of 
different aromatic compounds or the strength of the compounds 
themselves that is more impactful on mammalian sporocarp 
detection. 

Mammal movements and impacts of primary versus secondary 
spore dispersal
Fungal spores ingested by mammals are generally only dispersed 
within the home range of an individual, and for most mammals, 
there is a direct relationship between larger body size and 
larger home range (Lindstedt et al. 1986, Swihart et al. 1988). 
The dispersal potential of any vertebrate species depends on 
three factors: passage rate (i.e. transit time through the animal’s 
gastrointestinal tract); movement pattern (i.e. how far the 
individual will move as well as the size of its home range); and 
speed (i.e. how fast the animal will travel within its home range). 
These three factors are key to estimating the dispersal potential 
of fungi ingested by any animal. 

Due to the small size and vast numbers of spores produced 
by fungal sporocarps, spores can linger in the mammalian gut 
for longer periods than other larger dietary components (Danks 
2012). The passage rate of macrofungal spores has been directly 
studied in five mammal species: two Murids, one Sciurid, one 
Macropodid and domestic pigs (Sus scrofa) (Danks 2012, Piattoni 
et al. 2016). This small sub-sample does not reflect the large 
diversity of mammal mycophagists, and there is likely variability 
between species and individuals of the same species depending 
on weight, size, intestinal morphology, sex, age, health, 
movement, other dietary components and season/temperature 
(Cork & Kenagy 1989b, Comport & Hume 1998, Danks 2012, 
Piattoni et al. 2016, Elliott et al. 2020b). This area of research 
is still in its infancy in comparison to the extensive botanical 
research regarding vertebrate seed dispersal. More studies on 
spore passage rates in many groups of mammals are needed to 
better understand the processes behind fungal spore dispersal in 
various mammal species and to develop modelling applications 
similar to those widely used by plant ecologists. One modelling 
study showed that swamp wallabies (Wallabia bicolor) regularly 
disperse fungal spores hundreds of metres (in some instances 
up to 1 265 m) from where the sporocarp was initially ingested 
(Danks et al. 2020). Such long-distance dispersal events have 
strong ecological significance for fungal taxa, particularly those 
with sequestrate sporocarp morphologies. To our knowledge, 
this is the only study of its kind, and such modelling approaches 
show promise in their potential to demonstrate that a diversity 
of animal species carry spores for similar or even greater 
distances than does the swamp wallaby.

Secondary dispersal (diplochory) by predators that consume 
primary mycophagists is another important mode of fungal 
spore dispersal. This concept was first investigated more than 
a century ago in toads that dispersed viable fungal spores by 
eating slugs that had eaten fungi (Vogilino 1895, Buller 1909). 
Since then, very little modern research has directly investigated 
secondary dispersal, and it is still unclear how widespread 
it is. Numerous animals are likely playing a role, including 
the white-headed woodpecker (Picoides albolarvatus) that 
feeds on insects known to disperse spores of the veiled 
polypore (Cryptoporus volvatus) (Watson & Shaw 2018). These 
woodpeckers – as well as numerous other insectivorous birds 

and mammals – can inadvertently act as secondary dispersers 
of fungi. In most cases, secondary dispersal of fungal spores 
can greatly increase their dispersal distance, as insectivorous 
birds and mammals typically move over much larger distances 
than the primary consumers they prey upon (Schickmann 
2012, Schickmann et al. 2012). Predators such as eagles, owls 
and hawks frequently prey on mycophagous rodents, and their 
aerial journeys inevitably disperse spores far more widely than 
those of the small earthbound mammals (Trappe 1988, Colgan 
1997, Luoma et al. 2003, Halbwachs & Bässler 2015). Larger 
mammalian carnivores such as canids regularly feed on smaller 
mycophagous mammals. Because predators have much larger-
scale movement patterns than their prey, these carnivores 
have the potential to provide a vital yet overlooked ecosystem 
function through secondary dispersal of mycorrhizal fungi. The 
pampas fox (Lycalopex gymnocercus) has been reported to 
disperse mycorrhizal fungal spores, but it is currently unclear 
if this is an example of primary or secondary dispersal (Aguirre 
et al. 2021). Many bats are also likely acting as secondary 
dispersers of fungi by ingesting insects that eat fungi (O’Malley 
2013). New Zealand’s flightless bats (Mystacina) may ingest 
fungi (Lloyd 2001); but this group of bats are atypical, and 
there is still insufficient data to confirm if they are fungal 
dispersers. Given the resiliency of fungal spores (see Tables 
1, 2), it is unlikely that secondary dispersal negatively impacts 
their viability, but further studies are needed to address these 
questions.

When a scat is deposited by a primary or secondary 
disperser, it is not necessarily at the end of its journey. 
Numerous organisms interact with scats and may further impact 
spore dispersal. Some mammals eat scats (coprophagy) and may 
therefore further disperse spores or improve spore germination 
rates (Zambonelli et al. 2017). In many terrestrial ecosystems, 
scarab beetles move and bury animal dung, including that from 
mycophagous mammal species. Scarab beetles can further 
disperse or bury seeds (Vander Wall & Longland 2004), but 
very little research has assessed dung beetles as dispersal 
vectors of fungal spores in mammal scats. At least three 
species of scarab beetles (Onthophagus ferox, O. rupicra and 
Thyregis spp.) disperse spores from the brush-tailed bettong 
(Bettongia penicillata) after feeding on the scats of this mammal 
(Christensen 1980). Several Australian species of Orthophagus 
have claws on their legs that are modified for grasping the fur 
of mammals, including mycophagous wallabies and bettongs. 
This adaptation allows the beetle to cling to the animal until it 
defecates; upon defecation, the beetle drops from the animal 
and immediately buries the dung to use as a brood chamber for 
its larvae (Matthews 1972). Although it has yet to be directly 
studied, this behaviour in many scarab beetles likely improves 
the success of mycorrhizal fungal spores by burying them in the 
rhizosphere and thus facilitating mycorrhizal root colonisation.

Ecosystem implications of mammal mycophagy

Bioturbation resulting from mycophagy
The digging activities of animals excavating hypogeous fungi 
contribute to bioturbation (soil disturbance) and provide 
important soil aeration for water penetration and organic matter 
decomposition (Lamont 1995, Garkaklis et al. 1998, 2000, 2003, 
2004, Newell 2008, James et al. 2009, Valentine et al. 2013, 
2018, 2021, Fleming et al. 2014, Clarke et al. 2015, Davies et al. 
2018, Palmer et al. 2020, 2021). Various mycophagous animals 
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perform bioturbation to varying degrees, and the relative 
importance of animal-mediated soil turnover is also dependant 
on the region and soil type. In Australia, the role of mycophagous 
vertebrates in soil turnover has been relatively well studied 
in some regions. Many Australian forests are dominated by 
Eucalyptus species and their relatives (Holliday 1989). Leaves in 
these groups often contain high levels of oils that leach into the 
soil, creating a hydrophobic film on the soil surface that impairs 
water penetration (Garkaklis et al. 1998). The combination of soil 
dryness and oil concentration at the soil surface creates a layer of 
flammable material that increases the sensitivity of these forests 
to fires. In a healthy system, a multitude of vertebrates forage in 
the litter and dig down into the mineral soil in search of truffles 
and other subterranean foods. These activities contribute to 
the breaking up of the hydrophobic layer at the soil surface and 
create micro catchments, thus improving water penetration 
and assisting with organic matter decomposition (Lamont 1995, 
Garkaklis et al. 1998, 2000, 2003, 2004, Newell 2008, James et 
al. 2009, Valentine et al. 2013, 2018, Fleming et al. 2014, Davies 
et al. 2018, Palmer et al. 2020, Maisey et al. 2021). 

The degree of bioturbation depends on the size of the 
animal and its foraging habits. Superb lyrebirds (Menura 
novaehollandiae) eat a diversity of hypogeous fungi (Elliott & 
Vernes 2019), and each individual is estimated to displace an 
average of 155.7 tonnes of soil per hectare per year (Maisey 
et al. 2021). Mammals typically turn over less soil than ground 
foraging birds, likely due to their keen olfactory abilities that 
allow them to pinpoint the locations of subterranean food (Elliott 
et al. 2019a). Ground foraging birds need to scratch larger areas 
to find food that they cannot necessarily detect by smell. Still, 
mammals contribute greatly to soil turnover. The brush-tailed 
bettong digs between 38 and 114 excavations per night, and each 
individual is estimated to displace an average of 4.8 tonnes of soil 
per year (Garkaklis et al. 2004). The southern brown bandicoot 
(Isoodon obesulus) has been estimated to dig about 45 foraging 
excavations per day and in the process displace about 10.74 kg 
of soil, resulting in a soil turnover of approximately 3.9 tonnes 
per year per individual (Valentine et al. 2013). Some of the larger 
desert species such as the greater bilby (Macrotis lagotis) and 
the burrowing bettong (Bettongia lesueur) are estimated to turn 
over approximately 30 tonnes of soil per year per individual 
(Newell 2008). These examples demonstrate the wide range in 
the rate/quantity of soil disturbance by various mammal species. 
Given that Australia is believed to have the greatest diversity of 
hypogeous fungi (Bougher & Lebel 2001, Claridge 2002) and is 
also home to numerous mycophagous mammal species, it is 
very likely that these interactions have coevolved.

In healthy systems, many individuals and species co-occur, 
and their combined foraging efforts are key to maintaining 
healthy forest soils. Due to the introduction of foxes and 
cats to Australia, many of these bioturbating mammals have 
disappeared from much of their historic ranges or became 
extinct (Bilney 2014, Fleming et al. 2014, Vernes et al. 2021). 
We suspect that the loss of mycophagous mammal species 
and the subsequent loss of their soil turnover capacities may 
be a contributing factor in the increased frequency/intensity 
of fires, as well as in the desertification of some regions of the 
continent. Though early foresters recognised the importance of 
well-aerated soil for the health of Australian forests and for the 
reduction of intense wildfires (Hutchins 1916), these aspects of 
forest ecology are unfortunately rarely considered in current 
forest management plans.

Ecosystem impact on below ground and above ground 
communities 
The examples described in the previous section illustrate how 
mammal-mediated dispersal plays a major role in shaping 
the composition of soil-fungal communities. The mycorrhizal 
interactions between these fungi and plant roots can also 
directly impact plant community composition through plant-
soil feedbacks (Liang et al. 2020) and have rippling impacts on 
overall ecosystem biodiversity. In the Mediterranean region, 
inoculation trials showed that the roots of Pinus halepensis 
seedlings inoculated with forest soil were dominated by the 
ectomycorrhizal fungus Geopora (Livne-Luzon et al. 2017); 
when faeces from Eurasian wild pigs were added to the 
inoculum, the ectomycorrhizal species composition shifted 
and became dominated by Tuber and other ECM species 
consumed preferentially by animals. The decline or extinction 
of mycophagous mammals may drastically affect mycorrhizal 
fungal diversity in soils and, in turn, directly impact the spore 
inoculum available to associated plants. In Western Australia, 
Dundas et al. (2018) showed that in conservation areas where 
mycophagous marsupials were protected within predator-proof 
fences, the mycorrhizal community was primarily composed 
of ectomycorrhizal hypogeous species that associated with 
the dominant tree Corymbia calophylla; in non-fenced areas 
where these mammals were virtually absent, arbuscular 
mycorrhizal fungi were four times more abundant. Since few 
species of arbuscular mycorrhizal fungi produce sporocarps that 
are large enough to be deliberately ingested by mammals, this 
suggests that mycophagy can generate fungal community shifts 
linked to selective pressure from mammal food choice toward 
specific fungal species or morphologies. Since different types of 
mycorrhizal fungi associate with different types of plant hosts 
(Trappe 1962, Brundrett & Tedersoo 2018), mycophagy likely 
affects the species composition of plant communities as well. For 
example, the biomass of C. calophylla seedlings inoculated with 
soil from fenced areas was significantly higher than when seedlings 
were inoculated with soil from non-fenced areas (Dundas et al. 
2018). This suggests that the presence of mycophagous mammals 
likely affected the vegetation through plant-soil feedback, 
particularly in the ratio of ectomycorrhizal versus arbuscular 
mycorrhizal associations. The role of mammals as dispersal 
vectors of mycorrhizal fungi is likely of similar magnitude to the 
impact of mammals on seed dispersal in tropical forests, where a 
phenomenon described as “empty forests” occurs when mammal 
disappearance leads to significant plant biodiversity loss (Peres et 
al. 2016). It is therefore crucial to take these trophic interactions 
into account in conservation plans for mammals, fungi and plants.

Methodological considerations

This review highlights the ubiquitous nature of mycophagy, and yet 
the list we provide (Supplementary Tables S1–11) is undoubtedly far 
from complete. We have tried to be as comprehensive as possible 
and have considered all regions where terrestrial mammals are 
found, but there are undoubtedly species that we have overlooked 
or that remain unstudied. As with most reviews, this manuscript 
is biased toward regions and/or groups of mammals that have 
received more research attention. The highest diversity of 
mycophagous mammals has been documented in North America 
(Fig. 9), mostly due to the enormous diversity of rodent species 
recorded to consume fungi. Compared to North America, fewer 
rodents but a wider range of mammal orders have been recorded 
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to consume fungi in Central and South America, while mycophagy 
studies in Africa and Asia have primarily focused on primates (Fig. 
9). Most studies from tropical regions, and especially Africa, are 
based on observational studies; very few use microscopic faecal 
analyses commonly applied in other regions. This likely explains 
why there are few reports of mycophagy among small mammals, 
and especially rodents, in Africa despite reports that truffles are 
used by traditional hunters as bait for trapping a diversity of 
small mammals (Kimura et al. 2015). It is thus highly probable 
that fungi are consumed as a highly desirable food by a diversity 
of small mammals in the region. In Oceania, endemic species of 
marsupials greatly contributed to the diversity of mycophagous 
mammals that have been documented; Europe unsurprisingly 
had the lowest diversity of mycophagous mammals, in correlation 
with the lower diversity of mammals (Fig. 9).

Language has also limited the comprehensiveness of this 
review. We focused on English, French, German, Portuguese 
and Spanish literature with a few additional works in other 
languages, but there are undoubtedly relevant references 
written in other languages that we have overlooked. This is 
particularly true for older references since it has only recently 
become more common to include English abstracts in non-
English manuscripts. For example, we may have overlooked 
records of Asiatic mycophagous mammal species that were 
published in native languages; this may partially explain the 
lower number of mycophagous species recorded from Asia in 
comparison with other regions (Fig. 9).

Over the course of writing this review, we found little 
consistency in the way researchers refer to vertebrates eating 
fungi; a variety of terms were used, such as mycophagy, 
mycophagous, fungivory, fungivore, endozoochorous, mushroom 

eating or fungus eating. Some studies did not use any of these 
terms and only mentioned fungi in the diet list. This inconsistency 
in terminology hinders the development of a coherent body of 
knowledge about these associations. Therefore, we strongly 
encourage authors to use standardised terms: “mycophagy” 
for the action of eating fungi, with “fungus” (or “fungi”) used 
to describe the dietary item(s). Whenever possible, we also 
recommend that researchers collect, voucher (deposit in a 
recognised herbarium) and identify (as specifically as possible) 
the fungi involved in the association. Adoption of these practices 
will allow a more comprehensive understanding of the impacts 
of mammals on fungal spore dispersal and the importance of 
different fungal species in mammal nutrition. We hope that this 
work will serve as a foundation for further research on mammal-
fungi interactions, while also improving our understanding and 
awareness of these important associations.

Methods to aid fungal identification in mycophagy 
studies

Depending on the objectives of the study, several methods can 
be used to identify fungi in animal diets. Feeding behaviour has 
been reported through chance observations of feeding events 
among many animals, and systematic observational studies 
reporting mycophagy are particularly common in primate 
research. It is also possible to use camera traps to observe 
fungal feeding, although this can be difficult since most fungi 
sporulate and then decompose quite quickly. Camera trapping 
requires the researchers to either place fungi within the field of 
view of the camera or be very strategic and/or lucky with camera 
placement to actually capture fungal sporulation (Vernes et al. 

 Fig. 9. Map depicting the number of mycophagous mammal species recorded per continent in 

North America, Central and South America, Europe, Africa, Asia (including Sulawesi) and 

Oceania. Colour-coded areas correspond to the number of recorded species from each mammal 

order. Extinct species (Neanderthals and American mastodon) have not been included. The native 

range of species is only considered in the context of this map. Widespread and/or exotic species 

(black rat, brown rat, cattle, dog, goat, grey wolf, horse, house mouse, human and sheep) have not 

been include given the difficulty in mapping their wild distribution and it was not possible to 

determine if their mycophagous behaviour was also widespread. 

 

Fig. 9. Map depicting the number of mycophagous mammal species recorded per continent in North America, Central and South America, Europe, 
Africa, Asia (including Sulawesi) and Oceania. Colour-coded areas correspond to the number of recorded species from each mammal order. Extinct 
species (Neanderthals and American mastodon) have not been included. The native range of species is only considered in the context of this map. 
Widespread and/or exotic species (black rat, brown rat, cattle, dog, goat, grey wolf, horse, house mouse, human and sheep) have not been included 
given the difficulty in mapping their wild distribution and because it was not possible to determine if their mycophagous behaviour was also 
widespread.
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2014, Vernes & Jarman 2014, Schmid et al. 2019, Ferkingstad 
2020, Elliott & Vernes 2021a, see Supplementary Video S1). 

The most common method used in the studies we reviewed 
is scat and/or stomach content analysis. It is rarely possible 
to identify fungi in the stomach of an animal using macro 
morphological characters, because most fungal tissues are 
soft and quickly become amorphous. Microscopic analysis 
of spores in stomach or faecal material is far more reliable. 
Gordon & Comport (1998) directly evaluated the effectiveness 
of different micro-analysis techniques, and we encourage 
future researchers to consider their work when selecting 
appropriate methods for their studies. In general, either a 
small subsample of stomach or faecal material is mounted on 
a slide, or the entire scat/stomach sample is sieved and only 
the fine fraction examined. The range of mounting mediums 
used in mycophagy studies includes KOH, water or alcohol 
at various percentages. Melzer’s Reagent (Leonard 2006) is 
also used in studies focusing on fungal dietary components, 
since the spores of certain fungal groups produce reactions 
that are helpful in the taxonomic identification of spores. For 
best results, slide mount examination should be performed 
between 400 and 1 000× magnification. The accuracy of fungal 
species identification based on spores will vary depending 
on the existing background information available for fungal 
taxonomy in the region of interest. Ideally, fungal inventories 
have been performed in the area near where mammal samples 
were collected, allowing researchers to match spores from 
the mammal samples with collections of fungal sporocarps. 
When such information is not available, researchers depend 
on relevant fungal keys for the region where the study is being 
conducted. In this regard, Castellano et al. (1989) published 
a key that is specifically designed to identify the spores of 
hypogeous fungi from animal scats.

In recent years, new techniques have been developed to 
identify fungi in animal diets. Stable isotope signatures of carbon 
(δ13C) and nitrogen (δ15N) can be used to decipher between fungi 
and various groups of plants in faecal samples, since ECM fungi 
(representing most of the fungi consumed by animals) have higher 
δ15N values (Hobbie et al. 2017). Similarly, if fungal amino acids are 
incorporated into animal protein, the ratio of radiocarbon (Δ14C) 
in hair samples from mycophagous animals will be higher than 
in herbivores, since many fungi assimilate organic nitrogen from 
the soil with a higher Δ14C than in the CO2 incorporated by plants 
during photosynthesis (Hobbie et al. 2013). These methods are 
effective for deciphering fungi from plant diets but do not allow 
for the identification of specific fungal groups involved. There 
is a rise in the implementation of molecular-based approaches 
using DNA meta-barcoding of environmental samples (including 
faeces and gut contents), though they have not yet been widely 
employed in mycophagy studies (see: Nuske et al. 2019, Cloutier 
et al. 2019, Hopkins et al. 2021, Bradshaw et al. 2022). Detailed 
guidelines for fungal meta-barcoding are becoming abundant 
(see: Nguyen et al. 2015, Tedersoo & Lindahl 2016, Nilsson et 
al. 2019), and we strongly encourage researchers to standardise 
and publish detailed laboratory and bioinformatic protocols to 
make studies comparable between animal species and regions. 
Because of PCR biases toward certain fungal groups during the 
preparation of library amplicons, sequence abundance from 
next generation sequencing platforms is not directly equivalent 
to species, relative abundance and needs to be interpreted 
with caution (Pickles et al. 2020); this thus hinders detailed diet 
quantification. In addition, it is risky to base determination of 

mycophagy solely on these methods since the presence of fungal 
DNA does not necessarily indicate intentional fungal consumption 
nor that the fungus was “alive”. We therefore encourage 
a rigorous and informative approach combining sequence 
data (with appropriate controls for DNA contamination) with 
microscopic examination to confirm the presence of ingested 
fungal material in the samples.

Finally, we wish to point out that many of the fungal groups 
that are frequently eaten by animals (particularly hypogeous 
taxa) are often inconspicuous and therefore difficult to survey. 
For example, States (1984) noted that the rare fungus Sedecula 
pulvinata was seldom collected during sporocarp inventories, 
but spores were frequently found in rodent scats in the survey 
area. Since S. pulvinata sporulates deeper underground than 
other hypogeous fungal species, it is frequently overlooked 
by humans that lack the ability of mycophagous mammals to 
detect its odours. Using molecular analyses of small mammal 
scats, Bradshaw et al. (2022) detected multiple species of 
Rhizopogon that were rarely collected in fungal surveys. This 
further highlights the potential application of animal scats as a 
tool in fungal surveys. Species that are rare or seldom collected 
may be more effectively found by foraging mammals than by 
scientists. This makes molecular and/or microscopic analysis 
of animal scats a viable surveying method to detect rare or 
overlooked species of fungi (Piattoni et al. 2016, Cloutier et al. 
2019, Bradshaw et al. 2022).

CONCLUSIONS AND FUTURE DIRECTIONS OF RESEARCH

Mycophagy plays a major role in animal nutrition and fungal 
dispersal, with direct impacts on plant communities and overall 
ecosystem health. The selective pressures that mammals apply 
toward different fungal sporocarp morphologies, aromas, colours 
and habits most likely contribute to shaping fungal diversity, 
with critical consequences for mycorrhizal communities below 
and above ground. We hope that this review can serve as a 
foundation to inspire further research into these ecologically 
important yet understudied associations (Fig. 10) and their 
consequences for animals, fungi and plants. To expand our 
understanding of these associations, we highlight several key 
future directions of mycophagy research:

There is a need for baseline studies addressing whether 
fungi are a dietary component of many groups of mammals 
in understudied regions of the world. This is particularly 
true for small mammals in Africa and Asia (Fig. 9). Based on 
the application of inappropriate methods for determining 
mycophagy and the inconsistent geographic coverage of studies, 
it is likely that the 508 mammal species we report to consume 
fungi is a gross underestimation of the reality and Fig. 2 likely 
does not fully represent mycophagy across mammalian orders. 
Future studies need to take into consideration the application of 
appropriate methods (as outlined in the two previous sections) 
to determine if fungi are a component of mammal diets. The 
inclusion of these novel approaches would substantially 
improve our understanding of mammalian mycophagy globally. 
It would also be interesting to further investigate the diversity of 
mammals that practice fungal caching/hoarding behaviours and 
their role in fungal spore dispersal. Additionally, most research 
on the nutritional value of fungi has focused on cultivated 
mushroom species and their nutritional application for humans 
and/or livestock; we hope future studies will strive for a better 
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understanding of the nutritional needs of wildlife consuming 
wild fungi, as well as preferences toward different portions of 
sporocarps. 

To fully understand the role of mammals in spore dispersal, 
experimental studies on spore viability, passage rates and 
impacts of the presence of mycophagous mammals on soil-fungal 
communities need to be expanded to more mammal groups 
and wider geographic areas. The field of mycophagy would 
also benefit from a better understanding of spore enzymatic 
scarification in the digestive system of mammals, movement 
patterns combined with passage rates of different animals, and 
secondary dispersal by apex predators. Additionally, in order to 
understand the selective pressures that mammal mycophagy 
can apply toward the rise of certain sporocarp traits, such 
as sequestrate and/or hypogeous sporulating morphologies, 
experimental approaches are needed to determine feeding 
preferences toward certain traits (e.g. aromas, colours, shapes, 
nutritional components). Recent multi-gene and genome-wise 
molecular studies will allow researchers to determine more 
precisely the timing and diversification rate at which certain 
traits and species appeared in different groups of fungi (Varga 
et al. 2019, Sánchez-García et al. 2020). Coupled with predictive 
modelling, these studies can help to determine the role of co-
occurring factors – such as past and future climate change – in 
the rise of certain fungal reproductive strategies. 

Finally, mycophagy research needs to be considered in the 
wider context of the ecosystems in which these interactions occur. 
A handful of studies have focused on bioturbation by mammals 
foraging for hypogeous fungi and how mammal mycophagy 
contributes to the overall diversity of ectomycorrhizal fungal 
species, but these types of studies have so far been relatively 
geographically restricted. Extending these studies to other 
regions would significantly contribute to our understanding 
of the implications of mycophagy for soil aeration, water 
penetration, mycorrhizal plant communities and overall soil and 
ecosystem health.
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Holišová V (1972). The food of Clethrionomys glareolus in a reed 
swamp. Zoologické Listy 21: 293–307.
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Table S1. The three members of the Didelphimorphia that have been 
reported to consume fungi.
Table S2. The five members of the Dasyuromorphia that have been 
reported to consume fungi.
Table S3. The 13 members of the order Peramelemorphia that have 
been reported to consume fungi.
Table S4. The 33 members of the Diprotodontia that have been reported 
to consume fungi.
Table S5. The three members of the Cingulata that have been reported 
to consume fungi.
Table S6. The 105 species in the order Primates that have been reported 
to consume fungi.
Table S7. The 12 members of the order Lagomorpha that have been 
reported to consume fungi.
Table S8. The 221 species within the order Rodentia that have been 
reported to consume fungi.
Table S9. The 21 members within the order Eulipotyphla that have been 
reported to consume fungi.
Table S10. The 27 members within the order Carnivora that have been 
reported to consume fungi.
Table S11. The 59 members within the order Artiodactyla that have 
been reported to consume fungi.
Video S1. When Elaphomyces truffles are unearthed, the North 
American red squirrel cleans the outer peridium by “shucking” 
adherent soil and mycelium from the truffle before it is eaten or 
cached (Vernes et al. 2014).


