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Abstract: We demonstrate high-efficiency white phosphorescent organic light-emitting diodes with
low efficiency roll-off. The feature of the device concept is employing two phosphorescent emission
layers (EMLs) separated by a mixed interlayer. Both the EMLs are doped by two phosphorescent dyes.
The resulting white device with the optimized doping concentration shows a maximum efficiency of
31.0 cd/A with extremely low efficiency roll-off of 30.7 cd/A at 1000 cd/m2, 27.2 cd/A at 5000 cd/m2,
and 25.5 cd/A at 10,000 cd/m2, respectively, without any outcoupling structures. This is enabled by
the balanced charge carrier transport in EMLs, leading to broader exciton recombination zone.

Keywords: organic light-emitting diodes; double emission layers structure; high efficiency; low
efficiency roll-off

1. Introduction

With 30 years of development, organic light-emitting diode (OLED) has been utilized into
full-color panel display due to its peculiar features, such as high resolution, wide view angle, light
weight, and high efficiency [1–3]. Generally speaking, white OLEDs can be achieved by employing
three primary colors (red, green, and blue) dyes or double complementary colors (blue and yellow)
dyes. Additionally, the three primary colors strategy is much superior because the spectrum covers
the whole visible region [4,5]. Multifarious device architectures have been reported to achieve efficient
white OLEDs, such as single-emission layer (EML) structure with multiple doped dyes, multiple EMLs
structure, stacked or tandem structure [6–8]. Nowadays, phosphorescent materials have been an
essential component of OLEDs because they can harvest both singlet and triplet excitons, leading to
100% internal quantum efficiency. To reduce the severe excitons quenching, phosphorescent dopants
are invariably doped into the host materials [9–11]. However, the device efficiency still tends to suffer
from more precipitous decline with the increase of luminance, which is called efficiency roll-off and
impedes white OLEDs in commercial applications [12,13]. Research shows that efficiency roll-off results
from a diverse range of effects, such as triplet-triplet annihilation (TTA), singlet-singlet annihilation,
singlet-triplet annihilation, triplet-polaron annihilation, and field-induced quenching [14]. Among
these effects, TTA is the main influence factor and in urgent need to be solved.

To alleviate the efficiency roll-off, enormous efforts have been made. A popular tactic is
recombining blue fluorescence with red/orange phosphorescence to fabricate hybrid white OLEDs. For
example, Zhang et al. reported highly efficient simplified single-emitting-layer hybrid white OLEDs
and achieved an external quantum efficiency roll-off of 5.8% at the luminance of 1000 cd/m2 [15].
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With a mixed host, or double emission layers structure, OLEDs can efficiently extend their exciton
recombination zone and decrease the TTA, leading to reduced efficiency roll-off at high luminance
levels. N. Chopra et al. demonstrated high efficiency blue phosphorescent OLEDs based on mixed
host architecture with a power efficiency roll-off of 16.7% at the luminance of 1000 cd/m2 [16]. G. He
et al. demonstrated high-efficiency OLEDs based on a double-emission layer with a power efficiency
roll-off of 21.9% at the luminance of 1000 cd/m2 [17]. However, the efficiency roll-off of white OLEDs
based on all phosphorescent dyes is still far from the requirement of practical lighting applications.

In this paper, we demonstrated highly efficient all phosphorescent white OLEDs with ultra-low
efficiency roll-off based on double EMLs structure. The first EML comprised green and red
phosphorescent materials doped in 1,3-Bis(carbazol-9-yl)benzene (MCP). The second EML comprised
yellow and blue phosphorescent materials doped in MCP. A mixed interlayer was introduced to
separate the two EMLs, which facilitates the transport of charge carriers [18,19]. By further optimizing
the concentration of blue phosphorescent dye, which shows excellent electron transporting property,
balanced carrier distribution and extended recombination zone were achieved. The energy transfer
among the emitters was also discussed, which plays a crucial part in decreasing efficiency roll-off.
The resulting white device with a low efficiency roll-off of 17.7% at 10,000 cd/m2 exhibits maximum
efficiencies of 31.0 cd/A and 13.1% without any outcoupling structures. Our finding paves the way for
further enhancement of the performance of the white OLEDs.

2. Experimental

Figure 1 shows the detailed energy level diagram and the molecular structure of the proposed
materials respectively. The pre-patterned indium tin oxide (ITO) coated glass with a sheet resistance of
20 Ω/sq was used as anode. The ITO substrates were scrubbed with acetone, ethylalcohol, deionized
water in sequence, and then, cleaned in a UV ozone chamber for 5 min. Subsequently, the ITO substrates
were loaded into an evaporation system for deposition. Molybdenum(VI) Oxide (MoO3) was used as
the hole-injection layer. MCP with good hole transport property acted as the hole transport layer (HTL).
1,3,5-Tri[(3-pyridyl)-phen-3-yl]benzene (TmPyPb) with good electron transport property served as
the electron transport layer (ETL). Bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate)iridium(III)
(Ir(MDQ)2(acac)), Bis(4-phenylthieno[3,2-c]pyridinato-N,C2′) acetylacetonate iridium(III) (PO-01),
Tris(2-phenylpyridine)iridium(III) (Ir(ppy)3), and FIrPic were used as red, orange, green and blue
phosphorescent dyes, respectively. Here, MCP was used as the host material due to the high triplet
energy level. Finally, Liq covered by 100 nm Al acted as the cathode. The active emissive area of
the devices by the crossover of the ITO and Al was approximately 3 × 3 mm. All the devices were
fabricated in a high vacuum (3 × 10−4 Pa) thermal evaporation chamber. MCP and TmPyPb were
grown at the rate of 0.1–0.2 nm/s, while Ir(MDQ)2(acac), PO-01, Ir(ppy)3, FIrPic, Liq and MoO3 were
deposited at the rate of 0.02–0.08 Å/s. In addition, Al was deposited at the rate of 0.5 nm/s. The
current-voltage-luminance characteristics and Electroluminescent (EL) spectra of the devices without
encapsulation were measured by a programmable Keithley 2400 voltage-current source and PR655
spectro-scan spectrometer.
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Figure 1. The detailed energy level diagram (a) and the molecular structure (b) of the
proposed materials.

3. Results and Discussion

To obtain efficient white OLEDs with ultra-low efficiency roll-off, several strategies were adopted
in our experiment. Firstly, double EMLs structure was introduced to widen the excitons formation
region. Secondly, a blend of the hole transport material and the electron transport material was
employed as the interlayer to prevent dexter energy transfer between the two EMLs and balance
charge carriers. Thirdly, MCP and TmPyPb with high triplet energy level (T1) were employed to
confine triplet excitons and control the location of the exciton recombination region. Here, based on
the ideas mentioned above, we fabricated four phosphorescent white OLEDs with the structures of
ITO/MoO3 (2 nm)/MCP (50 nm)/MCP: 10% Ir(ppy)3: 0.5% Ir(MDQ)2(acac) (5 nm)/MCP: TmPyPb
(1: 1) (1.5 nm)/MCP: X% FIrPic: 0.5% PO-01(15 nm)/TmPyPb (30 nm)/Liq (1 nm)/Al (100 nm). The
value of X varied with 5, 10, 15 and 20, corresponding to devices A, B, C and D, respectively.

Figure 2 shows the current efficiency-luminance characteristics of devices A–D. The current
efficiency curve shows an initial increase as the doping concentration of FIrPic rises from 5% to
15%, and then decreases with a further increase of the doping concentration to 20%. Device C with
Commission International de L’Eclairage (CIE) coordinates (0.38, 0.54) emits warm white light. Note
that device C shows maximum efficiencies of 31.0 cd/A and 13.1%. In contrast to devices A and B, the
maximum efficiencies are 26.7 and 30.7 cd/A. The detailed electroluminescent characteristics of devices
A–D are summarized in Table 1. Figure 3 shows the external quantum efficiency (EQE)-luminance
characteristics of devices A–D. The maximum EQE of the four devices are 12.7%, 14.3%, 13.1%, and
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9.4%, respectively. Particularly, the EQE still maintains 11.0%, 13.4%, 12.4% and 8.1% at the luminance
of 1000 cd/m2. As shown in Figure 1, the interfacial energy barrier for electrons injection from TmPyPb
(LUMO: 2.7 ev) to MCP (LUMO: 2.4 ev) is 0.3 eV, which results in accumulation of electrons at the
interface and, hence, higher turn-on voltage. As the concentration of FIrPic increases, more electrons
are injected into FIrPic (LUMO: 2.9 ev) without an interfacial energy barrier. The current density
sharply increases as the doping concentration of FIrPic rises, as shown in Figure 4. However, when the
FIrPic concentration further increases to 20%, the holes trapped effect becomes serious, resulting in
higher turn-on voltage than device C.
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Table 1. Performance characteristics of devices A–D. ηmax: Maximum efficiency, η1000, η5000, η10,000:
efficiencies at 1000, 5000, and 10,000 cd/m2.

Devices a CIE (x, y) Turn-on Voltage (V)
Current Efficiency

(cd/A) EQE (%)

ηmax/η1000/η5000/η10,000 ηmax/η1000/η5000/η10,000

Device A (0.35, 0.48) 3.89 26.7/26.6/23.9/22.6 12.7/11.0/10.4/10.1
Device B (0.36, 0.49) 3.56 30.7/29.0/26.6/24.9 14.3/13.4/11.1/10.3
Device C (0.38, 0.54) 3.38 31.0/30.7/27.2/25.5 13.1/12.4/10.8/10.1
Device D (0.36, 0.52) 3.54 22.7/18.4/22.5/22.5 9.4/ 8.1/9.2/9.2

a CIE coordinates at 1000 cd/m2.
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electrons are more than the reduced number of holes, leading to increased total current density. As 
the FIrPic concentration increases above 15%, the hole obstruction effect of FIrPic becomes stronger, 
the increased number of electrons become less than the reduced number of holes, which results in 
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voltages (voltage at luminance of 1 cd/m2) of devices A–D. Device C shows the lowest turn-on voltage 
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As we all know, holes are more mobile than electrons in OLEDs. Therefore, as the doping level
of FIrPic rises from 5% to 15%, the increasing electron current induces the presence of more balance
carriers and thus promotes efficiency. However, as FIrPic concentrations increase above 15%, excess
electrons result in a reduced carrier balance and thus lower efficiency. Moreover, concentration
quenching of FIrPic may be another reason for low efficiency [20–23]. Actually, the maximum
efficiencies of device D are only 22.7 cd/A and 9.4%. Furthermore, it must be noted that all devices
show extremely low efficiency roll-off. For device C, the current efficiency still maintains 30.7 cd/A at
1000 cd/m2, 27.2 cd/A at 5000 cd/m2, and 25.5 cd/A at 10,000 cd/m2, corresponding to the roll-off of
1.0%, 12.3%, and 17.7%.

Figure 4 shows the current density-voltage-luminance characteristics of devices A–D. The current
density shows increasing tendency from device A to device C and then reduces obviously as the
concentration of the FIrPic increases to 20%. The luminance curve shows the identical trend as current
density. The variation trend of current density suggests that FIrPic can function to regulate the charge
carriers. As is known to all, FIrPic shows great electron injection and transport property. However,
FIrPic also possesses the ability of blocking holes [20]. Thus, we made the following speculation.
With the FIrPic concentration increasing from 5% to 15%, electron current increases obviously due to
the great injection and transport property of FIrPic, the increased number of electrons are more than
the reduced number of holes, leading to increased total current density. As the FIrPic concentration
increases above 15%, the hole obstruction effect of FIrPic becomes stronger, the increased number
of electrons become less than the reduced number of holes, which results in decreased total current
density. This phenomenon can be justified by the change tendency of turn-on voltages (voltage at
luminance of 1 cd/m2) of devices A–D. Device C shows the lowest turn-on voltage of 3.38 V.
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Figure 5a shows the normalized electroluminescence (EL) spectra normalized to the blue emission
peak of devices A–D at 7 V. It is clear that all the devices show four emission peaks at 470, 509, 550, and
598 nm, originating from FIrPic, Ir(ppy)3, PO-01, and Ir(MDQ)2(acac), respectively. It is interesting
to note that, with the FIrPic concentration increasing from 5% to 15%, the relative emission intensity
of red, orange and green sharply increases, and then decreases as the concentration of FIrPic reaches
20%. The phenomenon has also been confirmed in our previous works [24]. With FIrPic concentration
increasing from 5% to 15%, more electrons can inject into FIrPic, and the carrier coefficient of utilization
is increased. In the four devices, the doping concentrations of PO-01 and Ir(MDQ)2(acac) are low
(both fixed at 0.5%), so that the emission sites easily reach saturation, leading to the weaker emission
intensity than the green emission intensity. Figure 5b exhibits the normalized EL spectra of device C at
different luminance. As we can see, the spectra are extremely stable over a large range of luminance.
Device C shows a dinky CIE coordinates variation of (0.022, 0.023) from 1501 to 30,000 cd/m2.
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The emission mechanism of devices A–D is depicted in Figure 6. For blue-orange EML, electrons
prefer to inject into FIrPic easily, rather than TmPyPb, due to its lower lowest unoccupied molecular
orbital (LUMO). Thus, excitons can directly generate in FIrPic and PO-01. Considering the lower T1 of
PO-01 than that of FIrPic, efficient energy transfer from FIrPic to PO-01 could certainly occur. Moreover,
due to the great electron transport ability of FIrPic, electrons can easily permeate the blue-orange
EML and reach the interlayer. The interlayer composed of MCP and TmPyPb with bipolar transport
ability improves the transport balance of holes and electrons in each EML, leading to enhanced
device efficiency as well as color stability. Furthermore, balanced charge transport also reduced
the exciton accumulation, which further expands the exciton recombination zone to reduce TTA
behavior. Then, electrons can inject into green-red EML without any obstacles in view of the bipolar
transmission characteristics of the interlayer and the lower LUMO of Ir(MDQ)2(acac). Moreover,
the red emission dye of Ir(MDQ)2(acac) owns the ability to trap electrons [25,26], which makes for
the direct generation of excitons in green-red EML. Considering the higher T1 of Ir(ppy)3 and the
low doping level of Ir(MDQ)2(acac), inefficient energy transfer from Ir(ppy)3 to Ir(MDQ)2(acac) is
inevitable. It is concluded that the both FIrPic molecules with optimized doping concentration and the
mixed interlayer can facilitate the charge transport balance simultaneously, which leads to improved
efficiency and suppressive efficiency roll-off of devices. The appropriate doping concentration of
dopants makes full emission of four colors to achieve white OLEDs with broad spectra.
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Figure 6. The emission mechanism of white devices A–D.

4. Conclusions

In summary, efficient white OLEDs based on double EMLs with low efficiency roll-off were
demonstrated. The two EMLs separated by a mixed interlayer were both doped with two
phosphorescent dyes. We found that the blue phosphorescent dye plays an important role in adjusting
charge carrier balance. The resulting white device exhibits a maximum current efficiency of 31.0 cd/A
with a low efficiency roll-off of 17.7% at 10000 cd/m2. We also discussed the emission mechanism
and drew conclusions that the high efficiency and low efficiency roll-off were mainly attributed to the
broader recombination zone and stable sequential energy transfer among the dopants.
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