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Abstract Resumen
This investigation is focused on the design of a neural
network for the prediction of the friction factor in
turbulent flow regime, being this factor indispensable
for the calculation of primary losses in closed ducts or
pipes. MATLAB®Neural Networks Toolbox is used
to design the artificial neural network (ANN), with
backpropagation. The database includes 724 points
obtained from the Moody diagram. The Reynolds
number and the relative roughness of the pipe are the
input variables of the ANN, the output variable is
the coefficient of friction. The Levenberg-Marquardt
algorithm is used for training the ANN by using dif-
ferent topologies, varying the number of hidden layers
and the number of neurons that are hidden in each
layer. The best result was obtained with a 2-30-30-1
topology, exhibiting a mean squared error (MSE) of
1.75E-8 and a Pearson correlation coefficient R of
0.99999 between the neural network output and the
desired output. Furthermore, a descriptive analysis
of the variable was performed in the SPSS® software,
where the mean relative error obtained was 0.162%,
indicating that the designed model is able to general-
ize with high accuracy.

La presente investigación está orientada al diseño de
una red neuronal para la predicción del factor de
fricción en régimen de flujo turbulento, siendo este
indispensable para el cálculo de pérdidas primarias
en conductos cerrados o tuberías. Se utiliza Neural
Networks Toolbox de MATLAB®para diseñar la red
neuronal artificial (RNA), con retropropagación, cuya
base de datos comprende 724 puntos obtenidos del dia-
grama de Moody. Las variables de entrada de la RNA
son el número de Reynolds y la rugosidad relativa de
la tubería; la variable de salida es el coeficiente de
fricción. Utilizando el algoritmo de entrenamiento de
Levenberg-Marquardt se entrena la RNA con distin-
tas topologías, variando el número de capas ocultas y
el número de neuronas ocultas en cada capa. Con una
estructura 2-30-30-1 de la RNA se obtuvo el mejor re-
sultado, exhibiendo un error cuadrático medio (ECM)
de 1,75E-8 y un coeficiente de correlación de Pearson
R de 0,99999 entre la salida de la red neuronal y la
salida deseada. Además, mediante un análisis descrip-
tivo de variable en el software SPSS®, se obtiene que
el error relativo medio es de 0,162 %, indicando que
el modelo diseñado es capaz de generalizar con alta
precisión.

Keywords: Moody diagram, friction factor, head loss,
artificial neural network, backpropagation, turbulent
flow.

Palabras clave: diagrama de Moody, factor de fric-
ción, pérdida de carga, red neuronal artificial, retro-
propagación, flujo turbulento.
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1. Introduction

The most widely used method to transport fluids from
one place to another is to drive them through a pipe
system, with circular sections being the most common
for this purpose, providing greater structural strength
and a greater cross section for the same outer perimeter
than any another way [1].

The flow of a fluid in a pipeline is accompanied by
a load loss that is accounted for in terms of energy per
weight unit of the fluid that flows through it [2].

The primary losses or load losses in a rectilinear
conduit of constant section are due to the friction of
the fluid against itself and against the walls of the
pipe that contains it. On the other hand, secondary
losses are load losses caused by elements that modify
the direction and speed of the fluid. For both types of
loss, part of the energy of the system is converted into
thermal energy (heat), which is dissipated through the
walls of the pipeline and of devices such as valves and
couplings [2, 3].

The estimation of the losses of load due to the
friction in pipes is an important task in the solution
of many practical problems in the different branches
of the engineering; hydraulic design and the analysis
of water distribution systems are two clear examples.

In the calculation of the pressure losses in pipes,
whether the current regime is laminar or turbulent
plays a discriminating role [3]. The flow regime de-
pends mainly on the ratio of inertial forces to viscous
forces in the fluid, known as Reynolds number (NR) [4].
Thus, if the is less than 2000 the flow will be laminar
and if it is greater than 4000 it will be turbulent [2].
The majority of flows that are found in practice are tur-
bulent [2–4], for this reason the present investigation
is developed with this type of flow regime.

Equation 1 proposed by Darcy-Weisbach is valid for
the calculation of frictional losses in laminar and tur-
bulent regime in circular and non-circular pipes [2–4].

hL = f × L

D
× v2

2g
(1)

Where:

hL : loss of energy due to friction (N.m/N).
f : friction factor.
L : length of the flow stream (m).
D : diameter of the pipe (m).
v : average flow speed (m/s).
g : gravitational acceleration (m/s2).

Equation 2, the implicit relationship known as the
Colebrook equation, is universally used to calculate
the friction factor in turbulent flow [3, 4]. Note that it
has an iterative approach.

1√
f

= −2.0log

(
ε/D

3.7

)
+ 2.51

NR

√
f

(2)

Where:
ε/D: relative roughness. It represents the ratio

of the average roughness height of the pipe
to the diameter of the pipe.

An option for the direct calculation of the turbu-
lent flow friction factor is Equation 3 developed by K.
Swamee and K. Jain [2].

f = 0.25[
log
(

ε/D
3.7 + 5.74

N0.9
R

)]2 (3)

Equations (2) and (3), and others such as that of
Nikuradse, Karman and Prandtl, Rouse, Haaland, are
obtained experimentally and their use can be cumber-
some. Thus, the Moody diagram is one of the most
used means to determine the friction factor in turbulent
flow [2–4]. This shows the friction factor as a function
of the Reynolds number and the relative roughness.
The use of the Moody diagram or the aforementioned
equations is a traditional means of determining the
value of the friction factor when solving problems with
manual calculations. However, this can be inefficient.
For the automation of the calculations it is necessary to
incorporate the equations in a program or spreadsheet
to obtain the solution.

This investigation presents an alternative proposal
for the prediction of the friction factor using artificial
intelligence, specifically an ANN that allows the cal-
culation to be automatic and reliable, thus reducing
time and avoiding errors that may occur when using
the previously mentioned alternatives.

2. Materials and methods

2.1. ANN design

The multilayer network to be developed has forward
connections (feedforward) and employs the backpropa-
gation algorithm which is a generalization of the least
squares algorithm. It works through supervised learn-
ing and, therefore, it needs a set of training instructions
that describe the response that the network should
generate from a given input [5].

2.1.1. ANN database

The initialization parameters of the ANN are obtained
from a set of 724 data tabulated in Microsoft Excel.
These data were acquired using Moody’s diagram, that
is, through the graphical method that contemplates a
sequence of steps based on [2]. The data set considers 43
Reynolds Number values, (4000 ≤ ε/D ≤ 1× 108), 20
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curves of relative roughness, (1× 10−6 ≤ ε/D ≤ 0, 05),
and the respective friction factors.

The Reynolds numbers used, shown in Table 1, cor-
respond to those marked on the scale of the abscissas
of Figure 1, with the purpose of achieving an exact
calculation in the Moody diagram.

The Reynolds number and the relative roughness
are the ANN’s input variables and the friction factor
is the output variable or variable to be predicted. In
order to establish an adequate database, only the fric-
tion factors that are the consequence of an obvious
intersection of any of the 43 Reynolds Numbers in each
of the relative roughness curves are considered.

Table 1. Reynolds numbers used

N.° Value N.° Value N.° Value
NR NR NR

1 4000 16 100000 31 7000000
2 5000 17 200000 32 8000000
3 6000 18 300000 33 9000000
4 7000 19 400000 34 10000000
5 8000 20 500000 35 20000000
6 9000 21 600000 36 30000000
7 10000 22 700000 37 40000000
8 20000 23 800000 38 50000000
9 30000 24 900000 39 60000000
10 40000 25 1000000 40 70000000
11 50000 26 2000000 41 80000000
12 60000 27 3000000 42 90000000
13 70000 28 4000000 43 100000000
14 80000 29 5000000
15 90000 30 6000000

Figure 1. Moody’s diagram for the coefficient of friction in smooth and rough wall ducts [6].

2.2. ANN topology

No concrete rules can be given to determine the num-
ber of hidden layers and the number of hidden neurons
that a network must have to solve a specific problem;
the size of the layers, both input and output, is usu-
ally determined by the nature of the application [7, 8].

Thus, the problems of the present investigation suggest
that the Reynolds number and the relative roughness
are the two inputs applied in the first layer and the
friction factor, which is the output, is considered in
the last layer of the network.

The number of hidden neurons intervenes in the
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learning and generalization efficiency of the network;
in addition, a single hidden layer is usually sufficient
for the convergence of the solution. However, there are
occasions when a problem is easier to solve with more
than one hidden layer [7, 8].

Therefore, the optimal number of hidden layers
and neurons is determined through experimentation.

To be precise, the most appropriate topology of
the ANN is selected by testing different configurations
by varying the number of hidden layers from one to
three and the number of neurons within each hidden
layer from 5 to 40 with increments of 5.

2.2.1. ANN Training

The supervised learning of an ANN implies the ex-
istence of a training controlled by an external agent
so that the inputs produce the desired outputs by
strengthening the connections. One way to carry this
out is the establishment of previously known synaptic
weights [5]. For this reason, the set of input-output
pairs is applied to the ANN, that is, examples of inputs
and their corresponding outputs [5, 8, 9].

The network is trained with the Levenberg-
Marquardt backpropagation algorithm, as it is stable,
reliable and facilitates the training of standardized
data sets [10–12]. The training is an iterative process
and the software, by default, divides the set of 724
data into 3 groups: 70% is comprised by training data,
15% by test data and the remaining 15% by validation
data. In each iteration, when using new data from the
training set, the backpropagation algorithm allows the
output generated from the network to be compared
with the desired output and an error is obtained for
each of the outputs. As the error propagates backward,
from the output layer to the input layer, the synaptic
weights of each neuron are modified for each example,
so that the network converges to a state that allows all
training patterns to be successfully classified [9]. This
is to say that the ANN training is carried out by error
correction. As the network is trained, it learns to iden-
tify different characteristics of the set of inputs, so that
when presented with an arbitrary pattern after train-
ing, it possesses the ability to generalize, understood
as the ease of giving satisfactory outputs to entries not
submitted in the training phase [13].

Due to the nature of the input and output data of
the multilayer network, the activation or transfer func-
tions must be continuous, and may even be different
for each layer, as long as they are differentiable [9–13].
Thus, the tansig activation function is applied in the
hidden layers and the purelin activation function in
the output layer. These functions are commonly used
when working with the backpropagation algorithm.

The ANN learning process stops when the error
rate is acceptably small for each of the learned pat-
terns or when the maximum number of iterations

of the process has been reached [10], [14], [15]. The
performance function used to train the ANN is the
mean square error (MSE), denoted by Equation 4
[10–12]. The relative error, reflected arithmetically by
Equation 5, is involved in the analysis [10–16].

MSE = 1
n

n∑
i=1

(fMoodyi − fRNAi) (4)

Erelativo =
(

fMoodyi
− fRNA

fMoody

)
× 100 (5)

Summarizing the above, Table 2 contains the de-
sign characteristics of the ANN applied to the different
topologies tested.

Table 2. Design features of the ANN

Characteristic Description
Database 724

Type of network Backpropagation

Input variables N.° Reynolds;
relative rug.

Output variable Coefficient of friction
Training Levenberg-Marquardtalgorithm

Activation function tansig(hidden layers)
Activation function purelin(output layer)
Performance function MSE (default)

Iterations 1000 (default)

3. Results and discussion

3.1. ANN architecture selection

According to the proposed methodology, a total of
24 architectures are trained, the results of which are
shown in Table 3. It is observed that the topologies
2-30-30-1 and 2-25-25-25-1 present better results, since
they have an average relative error of 0.1620% and
0.2282%, respectively, and a Pearson correlation co-
efficient of 0.9999 for both cases. However, the first
one is selected because it shows a lower relative er-
ror of the predicted values compared to the desired
ones and demands a lower computational expenditure.
An outline of the structure of the selected ANN is
shown in Figure 2. It shows the two external inputs,
Reynolds number and relative roughness, applied to
the first layer, the 2 hidden layers with 30 neurons
each and in the last layer a neuron whose output is
the friction factor. Entries are limited only to the flow
of information while processing is carried out in the
hidden and output layers [5].
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Table 3. Results of the different architectures tested

N.° of N.° of Acerage Pearson R
hidden neurons in relative correlation
layers each layer error (%) coefficient

1 5 0,7422 0,99985
1 10 0,5995 0,99993
1 15 0,4743 0,99994
1 20 0,4707 0,99995
1 25 0,6497 0,99991
1 30 0,447 0,99996
1 35 0,464 0,99994
1 40 0,4227 0,99995
2 5 0,5362 0,99992
2 10 0,4737 0,99996
2 15 0,3641 0,99996
2 20 0,3587 0,99997
2 25 0,2617 0,99998
2 30 0,162 0,99999
2 35 0,3248 0,99996
2 40 0,4675 0,99984
3 5 0,4722 0,99995
3 10 0,4588 0,99995
3 15 0,2591 0,99998
3 20 0,3169 0,99997
3 25 0,2282 0,99999
3 30 0,2936 0,99997
3 35 0,3581 0,9999
3 40 0,3858 0,99994

Using the IBM SPSS Statistics 22® software, a
descriptive analysis of the relative error variable is
performed for the 724 data of the selected architecture.
The histogram of Figure 3 represents the frequency
distributions. The results show that the average is
0.1620%, the minimum relative error is 0% and the
maximum is 4.2590%.

Figure 2. Structure of the designed ANN.

In addition, the standard deviation is 0.327, indi-
cating that the dispersion of the data with respect
to the mean is small. The distribution of data shows
that there is a considerable predominance of relative
error less than 1% in 97% of the total data analyzed.
Supporting what is reflected in the histogram, Table 4
summarizes the values of the three quartiles obtained
from the statistical analysis. Under Q1 there are rela-
tive errors between the desired output and the network
output of less than 0.0313%. Q2, which is the median

value, points out that half of the relative errors are
below 0.0720%. Q3 states that three quarters of the
data have a relative error of less than 0.1758%. From
Q3, low relative errors are obtained, however, there are
lagged values that are greater than 1%, but these rep-
resent only 3% of the total data analyzed. The above
shows the quality of approximation of the predicted
values of the ANN with respect to those of the Moody
diagram.

Figure 3. Relative error histogram.

Table 4. Measures of non-central position of the relative
error

Statistical parameter Relative error value
First quartile (Q1) 0,03%
Second quartile (Q2) 0,07%
Third quartile (Q3) 0,18%

3.2. Model performance

The performance of training data sets, tests and val-
idation compared to the desired output is shown in
Figure 4. The sample intended for validation is used
to measure the degree of generalization of the network,
stopping training when it no longer improves, this
prevents overfitting [12], understood as a poor perfor-
mance of the model to predict new values. It is noted
that the training process of the ANN with topology
2-30-30-1 is truncated in 91 iterations, because it is
when the lowest MSE value of validation is obtained,
which is 1, 7492× 10−8.

That is, the performance function has been min-
imized to the maximum and will no longer have a
tendency to decrease after 91 iterations. Because the
MSE value is very small, closest to zero, the ANN
model is able to generalize with great precision.
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Figure 4. Performance of the ANN training process.

Figure 5 shows the results of the Pearson R cor-
relation coefficient for the designed ANN structure.
The line indicates the expected values and the black
circles represent the predicted values. The prediction
is efficient, and a good performance of the network is
observed, since a global index of 0.999999 is obtained
indicating a strong and positive linear relationship be-
tween the friction factors of the Moody diagram and
those granted by the ANN.

Figure 5. Correlation between expected and predicted
values

Several tests are performed with combinations of
input pairs that have not been used during training in
order to verify the correct performance of the model.
Thus, Table 5 details the 36 combinations of input data
applied to the ANN and the relative error reached by
each of them.

According to Table 5 and Figure 6, the relative
error is not distributed equally in the range of input
values. In the generated 3D surface graph, the predom-
inance of a relative error lower than 0.5% is observed,
corresponding to 24 of the 36 combinations of input
pairs applied to the ANN. In addition, there are only 2

relative errors above 1%, concerning the 2 most promi-
nent peaks on the surface, with a maximum of 1.325%
for NR = 1,5E5 y ε/D = 0,006. The results derived
from these 32 tests corroborate the correct functioning
of the network and its capacity to generalize by pre-
senting inputs different from those used in the training
phase.

Table 5. Relative error results for data not considered in
training

NR
ε/D

0,01 0,008 0,006 0,004 0,002 0,001
4, 5× 10+3 0,869 0,282 0,252 0,16 0,344 0,382
1, 5× 10+4 0,452 0,72 0,535 0,178 0,757 0,329
1, 5× 10+5 0,325 0,005 1,325 0,27 1,095 0,25
1, 5× 10+6 0,665 0,541 0,818 0,01 0,147 0,131
1, 5× 10+7 0,387 0,32 0,575 0,134 0,237 0,333
9, 5× 10+7 0,487 0,092 0,712 0,267 0,847 0,02

Figure 6. Relative error distribution.

4. Conclusions

The ANN designed in this research represents a reliable
and highly accurate alternative to predict the coeffi-
cient of primary losses in turbulent flow regime, giving
an average relative error of 0.1620% and a Pearson R
correlation coefficient of 0.99999 between the values
of the Moody diagram and the predicted ones.

The training process was stopped at 91 iterations,
reaching an MSE of 1.7492×10−8 that indicates the
generalization capacity of the proposed ANN.

The results obtained show that the set of 724 data
was sufficiently large to allow the ANN, during the
training, to be able to learn the relationship between
the inputs and outputs applied.

The developed model allows to solve flow problems
that involve calculations of the friction factor in an
automatic way, taking advantage of the computational
speed that the neural networks offer, reducing time
and avoiding errors that can be caused when using
traditional alternatives.
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