The chromatic index of multigraphs of order at most 10

Michael J. Plantholt*, Shailesh K. Tipnis

Department of Mathematics, Illinois State University, 313 Stevenson Hall, Normal, IL 61761, USA

Received 29 August 1995; revised 15 May 1996

Abstract

The maximum of the maximum degree and the ‘odd set quotients’ provides a well-known lower bound \(\phi(G) \) for the chromatic index of a multigraph \(G \). Plantholt proved that if \(G \) is a multigraph of order at most 8, its chromatic index equals \(\phi(G) \) and that if \(G \) is a multigraph of order 10, the chromatic index of \(G \) cannot exceed \(\phi(G) + 1 \). We identify those multigraphs \(G \) of order 9 and 10 whose chromatic index equals \(\phi(G) + 1 \), thus completing the determination of the chromatic index of all multigraphs of order at most 10.

1. Introduction

We refer the reader to [1] or [3] for all terminology and notation that is not defined in this paper.

Let \(G \) be a multigraph with vertex set \(V(G) \) and edge set \(E(G) \). The chromatic index of \(G \) (denoted by \(\chi'(G) \)) is the minimum number of colors that are required to color the edges of \(G \) in such a way that no two adjacent edges are assigned the same color. Thus, \(\chi'(G) \) is the minimum number of matchings of \(G \) that are required to cover \(E(G) \). Clearly, the maximum degree of \(G \) (denoted by \(\Delta(G) \)) is a lower bound for \(\chi'(G) \). Another lower bound for \(\chi'(G) \) can be derived as follows. We first note that if \(H \) is a multigraph of odd order at least 3 then, \(\chi'(H) \geq \lceil \frac{|E(H)|}{\frac{1}{2}(|V(H)|-1)} \rceil \) since any matching in \(H \) contains at most \(\frac{1}{2}(|V(H)|-1) \) edges. We denote this lower bound on \(\chi'(H) \) by \(t(H) \). Now, for \(S \subseteq V(G) \), denote by \(\langle S \rangle \) the subgraph of \(G \) induced by the vertices in \(S \).

Define \(\Gamma(G) \) by

\[
\Gamma(G) = \max \{ t(\langle S \rangle) : S \subseteq V(G), |S| \geq 3, |S| \text{ odd} \}.
\]

Clearly, \([\Gamma(G)] \) provides another lower bound for \(\chi'(G) \).

* Corresponding author. E-mail: mikep@math.ilstu.edu.

0012-365X/97/$17.00 Copyright © 1997 Elsevier Science B.V. All rights reserved

PHS 0012-365X(96)00364-0
Combining the two lower bounds, $\Delta(G)$ and $\lceil \Gamma(G) \rceil$ for $\chi'(G)$ we get an improved lower bound $\phi(G)$ for $\chi'(G)$. We have that

$$\chi'(G) \geq \phi(G) = \max\{\Delta(G), \lceil \Gamma(G) \rceil\}.$$

Goldberg [2] and Seymour [6] independently conjectured that this improved lower bound is quite tight, in the following sense (Goldberg’s conjecture is somewhat stronger than the one stated here).

Conjecture 1 (Goldberg [2] and Seymour [6]). For any multigraph G, $\chi'(G) \leq \max\{\Delta(G) + 1, \lceil \Gamma(G) \rceil\}$.

We find it convenient to work with the following slightly weaker form of Conjecture 1 that also appeared in [6].

Conjecture 2 (Seymour [6]). For any multigraph G, $\chi'(G) \leq \phi(G) + 1$.

We follow the terminology that was introduced by Seymour and call a multigraph G an r-graph if G is r-regular and $\Gamma(G) \leq r$. Hence, note that if G is an r-graph then $\phi(G) = r$. Plantholt [5] used properties of r-graphs to prove that if G is a multigraph of order $n \leq 8$, then $\chi'(G) = \phi(G)$, and that if G is a multigraph of order 9 or 10, then $\chi'(G) \leq \phi(G) + 1$, thus verifying Conjecture 2 for all multigraphs of order at most 10. Plantholt [5] also proved that if G is an r-graph of order 10, then unless G is the Petersen graph, there exists a 1-factor F of G such that $G - F$ is an $(r - 1)$-graph.

In this paper we use these results by Plantholt to classify multigraphs of order 9 and 10 according to whether $\chi'(G) = \phi(G)$ or $\chi'(G) = \phi(G) + 1$.

For a multigraph G, we write $H \subseteq G$ to mean that H is a subgraph of G, and for $v \in V(G)$, we denote by $G - v$ the multigraph obtained from G by deleting the vertex v and all edges incident on v. The simple graph underlying G, denoted by G^S, is the graph obtained from G by replacing all the multiple edges of G by single edges. We denote the Petersen graph by P and define P^* to be the set of all multigraphs G of order 10 that satisfy the following three properties.

1. G is an r-graph.
2. G^S is isomorphic to P.
3. There exists a 5-cycle in G with an odd number of edges (including multiple edges).

Note that for any multigraph $G \in P^*$, since G has order 10, Plantholt’s [5] theorem implies that $\chi'(G) \leq \phi(G) + 1$. In fact, for any multigraph $G \in P^*$ we must have that $\chi'(G) = \phi(G) + 1 = \Delta(G) + 1$ because if $\chi'(G) = \phi(G) = \Delta(G)$; then the edges of G can be partitioned into 1-factors of G, which in turn is impossible because each 1-factor of G must use an even number of edges from the 5-cycle in condition (3) of the definition of P^*. In this paper we show that in a sense P^* describes all multigraphs G of order at most 10 for which $\chi'(G) = \phi(G) + 1$.

In the next section we will prove Theorems 1 and 2 stated below. Theorem 1 is the main result in this paper and Theorem 2 will follow from Theorem 1, thus giving a classification of multigraphs of order at most 10 according to whether $\chi'(G)=\phi(G)$ or $\chi'(G)=\phi(G)+1$.

Theorem 1. Let G be an r-regular multigraph of order 10. Then,

$$\chi'(G)=\begin{cases}
\phi(G)+1 & \text{if } G \in P^*, \\
\phi(G) & \text{otherwise}.
\end{cases}$$

Theorem 2. Let G be a multigraph of order at most 10. Then,

$$\chi'(G)=\begin{cases}
\phi(G)+1 & \text{if there exists } G' \in P^* \text{ and } v \in V(G') \text{ such that } \\
G' - v \subseteq G \subseteq G', \\
\phi(G) & \text{otherwise}.
\end{cases}$$

2. Background results

We state some results that will be used to prove Theorems 1 and 2.

The following properties of the Petersen graph (denoted by P) are easily verified.

Proposition 2.1. There are six different 1-factors in P and each 1-factor contains 0 or 2 edges of each of the 5-cycles of P.

Proposition 2.2. Let u, v be nonadjacent vertices of P. Then $P + uv$ contains one 3-cycle and two 4-cycles. These cycles are edge-disjoint, except for the edge uv.

For a multigraph G and for $S \subseteq V(G)$, we denote by \overline{S} the complement of S. If $t(\langle S \rangle) = \Delta(G)$ then we say that the subgraph $\langle S \rangle$ is full and if $t(\langle S \rangle) > \Delta(G)$ then we say that the subgraph $\langle S \rangle$ is overfull. The following proposition is easily verified.

Proposition 2.3. Let G be a regular multigraph of even order n and S an odd cardinality subset of $V(G)$ with $1 < |S| < (n - 1)$. If $\langle S \rangle$ is full then $\langle \overline{S} \rangle$ is full. If $\langle S \rangle$ is overfull then $\langle \overline{S} \rangle$ is overfull.

The multigraph obtained from G by shrinking S, denoted by G_S, is defined to be the multigraph with vertex set $V(G_S) = (V(G) - S) \cup \{s^*\}$ and edge set $E(G_S) = E(G - S) \cup \{(u,s^*) : u \in \overline{S} \text{ and } (u,v) \in E(G) \text{ for some } v \in S\}$, where the multiplicity of the edge (u,s^*) equals the number of edges in G from vertex u to vertices in S. Theorem 3 [4–6] below states that shrinking a full subset of vertices of an r-graph produces an r-graph and Theorem 4 [6] below relates the chromatic index of an r-graph G to the chromatic indices of the r-graph obtained by shrinking a full subset S of vertices and the r-graph obtained by shrinking \overline{S}.
Theorem 3 (Marcotte [4], Plantholt [5] and Seymour [6]). Let G be an r-graph and S a nonempty, proper subset of $V(G)$. If (S) and (hence) (\bar{S}) are full subgraphs of G then, G_S and $G_{\bar{S}}$ are r-graphs.

Theorem 4 (Seymour [6]). Let G be an r-graph and S a nonempty, proper subset of $V(G)$. If (S) and (hence) (\bar{S}) are full subgraphs of G then, $\chi'(G) \leq \max\{\chi'(G_S), \chi'(G_{\bar{S}})\}$

The following theorem of Plantholt [5] verifies Conjecture 2 for multigraphs of order at most 10.

Theorem 5 (Plantholt [5]). Let G be any multigraph of order n. If $n \leq 8$, $\chi'(G) = \phi(G)$ and if $n \leq 10$, $\chi'(G) \leq \phi(G) + 1$.

Now, suppose that G is an r-graph of order 10, S is a subset of $V(G)$, with $1 < |S| < 9$, and (S) and (hence) (\bar{S}) are full subgraphs of G. Then, by Theorems 3–5 we have that

$$\chi'(G) \leq \max\{\chi'(G_S), \chi'(G_{\bar{S}})\} = \max\{\phi(G_S), \phi(G_{\bar{S}})\} \leq r = \phi(G).$$

Hence, we have the following useful corollary.

Corollary 2.1. Let G be an r-graph of order 10 and S a subset of $V(G)$ with $1 < |S| < 9$. If (S) and (hence) (\bar{S}) are full subgraphs of G, then $\chi'(G) = \phi(G)$.

The following theorem [6] asserts that every r-graph contains a 1-factor.

Theorem 6 (Seymour [6]). Every r-graph contains a 1-factor.

The following theorem of Plantholt [5] states that for r-graphs of order 10, Theorem 6 can be considerably strengthened unless G is the Petersen graph.

Theorem 7 (Plantholt [5]). Let G be an r-graph of order 10. Then, unless G is the Petersen graph, G contains a 1-factor F such that $G - F$ is an $(r - 1)$-graph.

The following theorem of Seymour [6] states that in order to prove Conjecture 2, it suffices to prove it for r-graphs.

Theorem 8 (Seymour [6]). Let G be any multigraph of order n and let $r = \phi(G)$. Then, G is contained in an r-graph of order n if n is even, and G is contained in an r-graph of order $(n + 1)$ if n is odd.

3. Proof of the main result

We are now ready to prove our main result.
Recall that we denoted the Petersen graph by P and defined P^* to be the set of all multigraphs G of order 10 that satisfy the following three properties.

1. G is an r-graph.
2. G^S is isomorphic to P^*.
3. There exists a 5-cycle in G with an odd number of edges (including multiple edges).

Let G be an r-graph of order 10. If there exists a subset S of $V(G)$ of odd cardinality, with $1 < |S| < (n - 1)$ such that (S) and (hence) (\bar{S}) are full subgraphs of G, then we will say that G is shrinkable; otherwise, we will say that G is non-shrinkable. Note that by Corollary 2.1, if G is a shrinkable r-graph of order 10 then $\chi'(G) = \phi(G)$.

Theorem 1. Let G be an r-regular multigraph of order 10. Then,

$$\chi'(G) = \begin{cases}
\phi(G) + 1 & \text{if } G \in P^*, \\
\phi(G) & \text{otherwise}.
\end{cases}$$

Proof. If $G \in P^*$ then since G has order 10, Theorem 5 implies that $\chi'(G) \leq \phi(G) + 1$. Since G is an r-regular multigraph with $\phi(G) = r$, if $\chi'(G) = \phi(G)$, the edges of G can be partitioned into 1-factors of G. But this is impossible since by Proposition 2.1, each 1-factor of G contains 0 or 2 edges of the 5-cycle in G that has been assumed to contain an odd number of edges (Property (3) in the definition of P^*). Hence, if $G \in P^*$ we have that $\chi'(G) = \phi(G) + 1$.

Now, suppose that $G \notin P^*$. We will prove that $\chi'(G) = \phi(G) = r$ in each of the following two cases.

Case 1: G is an r-graph. Since $G \notin P^*$, Subcases 1(a)–(c) below cover all possibilities for G.

- **Subcase 1(a):** G does not contain P as a subgraph. Theorem 7 can be applied repeatedly to obtain a partition of the edges of G into 1-factors, thus proving that $\chi'(G) = \phi(G) = r$.
- **Subcase 1(b):** G^S is isomorphic to P and G does not contain a 5-cycle with an odd number of edges. Again, Theorem 7 can be applied repeatedly to obtain a partition of the edges of G into 1-factors, thus proving that $\chi'(G) = \phi(G) = r$.
- **Subcase 1(c):** G contains P as a subgraph but G^S is not isomorphic to P. Theorem 7 implies that there exists a 1-factor F of G such that $(G - F)$ is an $(r - 1)$-graph. By Corollary 2.1 we may assume that both G and $(G - F)$ are non-shrinkable. Also, if $(G - F)^S$ is not isomorphic to P, repeated application of Theorem 7 either gives a partition of the edges of G into 1-factors, thus proving that $\chi'(G) = \phi(G) = r$ or we have k 1-factors, M_1, M_2, \ldots, M_k of G such that $G' = (G - M_1 - M_2 - \cdots - M_k)$ is an $(r - k)$-graph and G'^S is isomorphic to P.

To summarize, we may assume without loss of generality that G is a non-shrinkable r-graph of order 10 that contains P but G^S is not isomorphic to P, and there is a 1-factor F of G such that $(G - F)$ is a non-shrinkable $(r - 1)$-graph with $(G - F)^S$ isomorphic to P. At this point we first prove the following claim.
Claim. Let F_1, F_2, \ldots, F_6 be the six 1-factors of P (isomorphic to $(G-F)^S$) considered as subgraphs of G. Then, for some i, $1 \leq i \leq 6$, $(G - F_i)$ is an $(r-1)$-graph.

Proof of Claim. First assume that $r \geq 5$. By Theorem 7 $(G-F)$ contains a 1-factor, say F_k, such that $(G-F-F_k)$ is an $(r-2)$-graph. Note that $(G-F_k)$ is an $(r-1)$-graph.

Now assume that $r = 4$, so that $(G-F)$ is isomorphic to P and $(G-F-F_i)$ consists of two disjoint 5-cycles for each $i = 1, 2, \ldots, 6$. Suppose for the sake of contradiction that for each $i = 1, 2, \ldots, 6$, $\phi(G - F_i) > (r-1)$. Then, for each $i = 1, 2, \ldots, 6$, F must contain two edges induced by each 5-cycle of $(G - F - F_i)$. Since there are 12 such 5-cycles, F is forced to have at least 24 edges, including multiple counts. But it is straightforward to check that any edge of F can be induced in no more than four 5-cycles of P, so F must have at least $\frac{24}{4} = 6$ distinct edges, a contradiction. \Box

Now, without loss of generality suppose that F_1 is a 1-factor of P such that $(G - F_1)$ is an $(r-1)$-graph. As before by Corollary 2.1 and Theorem 7 we may assume that $(G - F_1)$ is a non-shrinkable $(r-1)$-graph and that $(G-F_1)^S$ is isomorphic to P. We will show that by ‘combining’ the 1-factors F and F_1 we can find a 1-factor F' of G such that $(G - F')$ is an $(r-1)$-graph and $(G-F')^S$ is not isomorphic to P. Then, iterating this procedure will imply that $\chi'(G) = \phi(G) = r$.

Let $(G-F)^S$ be labelled as in Fig. 1, and assume without loss of generality that F_1 consists of the five spokes $u_1v_1, u_2v_2, u_3v_3, u_4v_4, u_5v_5$. Since $(G-F)^S$ is isomorphic to P but G^S is not, F must contain an edge e that has multiplicity one in G. Since F_1 is a matching of $G-F$, edge e cannot be in F_1. Without loss of generality, let e be the edge u_5v_1, so that the graph in Fig. 2 is a subgraph of $(G-F_1)^S$. But $(G-F_1)^S$ is isomorphic to P, and the graph in Fig. 2 can be embedded within the Petersen graph in only two ways. Thus, $(G-F_1)^S$ must be one of the two graphs in Fig. 3. If $(G-F_1)^S$ is as in Fig. 3(a), let $F' = \{u_1v_2, u_2u_3, v_1v_3, u_4v_4, u_5v_5\}$; if $(G-F_1)^S$ is as in Fig. 3(b), let
In either case, we see that \((G - F')\) has the following three properties.

(i) \((G - F')\) is an \((r - 1)\)-regular multigraph, since \(F'\) is a matching of \(G\),

(ii) \((G - F')\) has no overfull subgraph, because \(|F' - F_1| \leq 3\) and \((G - F_1)\) has no full subgraph. Note that to make both \((S)\) and \((S')\) of \((G - F_1)\) overfull, we would need to replace at least two edges in each.

(iii) \((G - F')^S\) is not isomorphic to the Petersen graph. In Case 3a, \((G - F')^S\) contains the triangle \(u_1v_1u_5\). In Case 3b, \((G - F')^S\) contains the 4-cycle \(u_1u_2v_4v_1\).

The result now follows from these properties of \(F'\).

Case 2: \(G\) is not an \(r\)-graph. Let \(\phi(G) = \min\{r(G)\} = r' > r\). Let \(I(G) = \max\{t(S) : S \subseteq V(G), |S| \geq 3, |S| \text{ odd}\} = t(\langle S^* \rangle)\). Since \(\langle S^* \rangle\) is overfull, by Proposition 2.1, \(\langle S^* \rangle\) is
also overfull and so, without loss of generality, we may assume that \(|S^*| = 3\) or 5. Note that if \(|S^*| = 3\), then \(\tau(S^*)\) is an integer. If \(|S^*| = 5\) and if \(\tau(S^*)\) is not an integer then we can add an edge to \(S^*\) to obtain a multigraph \(G'\) such that \(A(G') \leq (r + 1)\) and \(\Gamma(G') = \tau(S^*; G') = \phi(G)\). Since \(\phi(G') > r\), we have that \(\phi(G') = \phi(G'') = \phi(G)\).

Now, by Theorem 8, there exists an \(r\)-graph \(G^*\) of order 10 such that \(G \subseteq G' \subseteq G^*\) and \(\langle S^* \rangle\) is full in \(G^*\). Hence, by Corollary 2.1 we have that \(\chi'(G^*) = \phi(G^*) = r' = \phi(G)\) and hence, \(\chi'(G) = \phi(G)\).

With the aid of Theorem 8 we now expand Theorem 1 to include the cases of non-regular multigraphs of order 10 and all multigraphs of order 9, thus obtaining a complete classification of multigraphs of order at most 10 according to whether \(\chi'(G) = \phi(G)\) or \(\chi'(G) = \phi(G) + 1\).

Theorem 2. Let \(G\) be a multigraph of order at most 10. Then,

\[
\chi'(G) = \begin{cases}
\phi(G) + 1 & \text{if there exists } G' \in P^* \text{ and } v \in V(G') \text{ such that } G' - v \subseteq G \subseteq G', \\
\phi(G) & \text{otherwise.}
\end{cases}
\]

Proof. Suppose that there exists \(G' \in P^*\) and \(v \in V(G')\) such that \(G' - v \subseteq G \subseteq G'\). Let \(\phi(G - v) = r\). By Theorem 8, there exists an \(r\)-graph \(G^*\) of order 10 such that \((G - v) \subseteq G^*\). Clearly, \(G^* = G'\). Hence, \(\phi(G' - v) = \phi(G) = \phi(G')\).

Now, suppose for contradiction that \(\chi'(G) = \phi(G)\). Then, \(\chi'(G' - v) \leq \phi(G) = r\). Consider any coloring \(\mathcal{C}\) of the edges of \((G' - v)\) in \(r\) colors. Note that \(|E((G' - v))| = 4r\). Each color in \(\mathcal{C}\) is therefore absent at exactly one vertex of \((G - v)\). Thus, the coloring \(\mathcal{C}\) of the edges of \((G' - v)\) in \(r\) colors can be extended to a coloring of the edges of \(G'\) in \(r\) colors, giving that \(\chi'(G') = r = \phi(G')\), and contradicting Theorem 1. Thus, \(\chi'(G) = \phi(G) + 1\).

Now, assume that there does not exist \(G' \in P^*\) and \(v \in V(G')\) such that \(G' - v \subseteq G \subseteq G'\). We need to show that \(\chi'(G) = \phi(G)\). If \(G\) has order no more than 8 then \(\chi'(G) = \phi(G)\) by Theorem 5. Thus, by adding an isolated vertex if necessary, we may assume that \(G\) has order 10.

Let \(r = \phi(G)\). By Theorem 8 there exists an \(r\)-graph, say, \(G^*\) of order 10 that contains \(G\). If \(G^* \notin P^*\), \(\chi'(G) = \chi'(G^*) = r\) by Theorem 1. Hence, we may now assume that \(G^* \in P^*\). Note that \(G^*\) cannot contain a shrinkable subgraph because by Theorem 1, \(\chi'(G^*) = (r + 1)\). Since there does not exist \(G' \in P^*\) and \(v \in V(G')\) such that \(G' - v \subseteq G \subseteq G'\), \(G^*\) must contain at least two independent edges, \(e_1 = (x, y)\) and \(e_2 = (w, z)\) that are not in \(G\). Let \(e_3\) and \(e_4\) be the edges \((x, w)\) and \((y, z)\) and let \(G^{**} = G^* - e_1 - e_2 + e_3 + e_4\). Since \(G^*\) contains no shrinkable subgraph, no subgraph of \(G^{**}\) can be overfull (the number of edges of any induced subgraph increases by at most one when going from \(G^*\) to \(G^{**}\)), and hence \(G^{**}\) is also an \(r\)-graph. But since \(e_1, e_2, e_3,\) and \(e_4\) form a 4-cycle and the simple graph underlying \(G^*\) is isomorphic to \(P\), \(G^*\) cannot contain both \(e_3\) and \(e_4\). Therefore, by Proposition 2.2, the simple graph underlying \(G^{**}\) is not isomorphic to \(P\) because at least three edges need to be
removed from $G^* + e_3 + e_4$ to eliminate 3-cycles and 4-cycles. Thus, by Theorem 1, $\chi'(G) = \chi'(G^{**}) = r = \phi(G)$. \qed

References