
ASADD: Attribute Similarity-Aware Database

Designer for Partitioning and Indexes

Rym Bouchakri1 and Ladjel Bellatreche2

1 National High School of Computer Science Algiers, Algeria
r bouchakri@esi.fr

2 LISI/ENSMA Poitiers University, Futuroscope, France
bellatreche@ensma.fr

Abstract. We present an automatic database design tool that exploits
similarities between attributes when recommending horizontal data par-
titioning (HDP) and bitmap join indexes (BJI). Although there is a cou-
ple of related work done on how to select an appropriate set of BJI and
HDP schemes for a given workload, none of this work has explored the
effect of similarity of attributes candidate for HDP and BJI. Commer-
cial DBMS offer advisors recommending indexes and partitioning using
a workload or generate a hypothetical workload for a specified schema.
Most of these tools consider each physical design technique in isolation
and ignore their interdependencies (an attribute can be either used for
HDP or BJI). Our tool identifies a set of BJI and partitioning schemes
by taking into account their interaction materialized by attribute inter-
changeability, which can dramatically improve query performance. The
originality of our design is that it assigns to each optimization technique
its own attributes before launching its selection algorithm. This assign-
ment is done using K-means method. We compare our designer with a
state-of-the-art work on one workload APB-1. Our results show that a
similarity-aware database designer can improve significantly query per-
formance within the less space budget.

1 Introduction

In traditional databases, the main tasks of administrators (DBA) are mainly
concentrated on the management of users, the selection of a restricted num-
ber of optimization techniques such as mono table indexes and the choice of
relevant implementation of join operations (e.g., nested loop, sort merge, etc.).
Recently, medium and large companies increase their demand on developing
applications requiring extremely large databases, such as data warehouses and
scientific databases. Administering such databases becomes crucial performance
and economic issues. DBA have to perform several complicated tasks during the
physical design phase: (1) the choice of optimization techniques (OT), (2) the
choice of their selection mode (isolation or combined), (3) the development of
selection algorithms, (4) the generation of scripts corresponding to each selected
OT and (5) the validation and deployment of the obtained solutions. These tasks

increase the workload of DBA, consequently, their costs become more significant
compared to the total cost of ownership [21].

Face to this situation, one of the economic strategies of companies is to sim-
plify the role of DBA by making their tasks less demanding in terms of time and
expertise in order to reduce their costs [9]. To satisfy company’s requirements,
commercial DBMS editors have recently proposed tools to make self-managing
databases [9]. One of their objectives is to find solutions toward alleviating the
burden on the DBA or, more ambitiously, totally replacing the DBA [9]. The
most important commercial tools are: SQL Server Database Tuning Advisor
(DTA), Oracle SQL Access Advisor and DB2 index advisor. They allow what-
if design exploration and propose DBA useful user interfaces. These tools are
based on greedy heuristics to select relevant OT for a given workload. Although
these heuristics make the existing design tools practical, they prune away large
fractions of the search space and often suggest locally optimal solutions instead
of the globally optimal one. To overcome this limitation, academic tools have
been proposed (such as SimulPh.D. [3] and PARINDA [15]). They use of some
advanced algorithms such as genetic, simulated annealing, etc.

Most of these tools are suitable when a single OT is asked. When a DBA
wants to select more then one OT, a trivial strategy would consist of multiple
runs of the tool equal to the number of suitable OT. The main drawback of this
strategy is its ignorance of interaction between OT. Ignoring this interaction
can significantly compromise the quality of recommendations proposed by tools
[17]. Two types of interaction have been considered by a couple of tools. In SQL
Database Tuning Advisor, interaction between materialized views and indexes is
based essentially on their structure – both are redundant (they duplicate data),
compete for the same resource representing storage space and cause update over-
head [17]. In DB2 Design Advisor tool, where four optimization techniques are
supported: indexes (defined on a single table), materialized views, partitioning
and clustering), interaction is based on the order of selection process of OT
[22]. To capture this interaction, two relations between pairs of OT have been
proposed: textitstrongly and weakly dependency. An OT ot1 ”strongly” depends
on optimization technique ot2, if a change in selection of ot2 often results in a
change in that of ot1. Otherwise, we say ot1 ”weakly” depends on ot2. Based
on the type of relation between pairs of OT, a selection order is established to
select them. The main limitation of the studied interactions is their ignorance
of the analysis of the bodies of OT3. Note that extremely large databases use
many attributes to encode related information (e.g., Sloan Digital Sky Survey’s
data management project [10]). These attributes are usually candidate to define
the same OT. Recently, some research efforts focused on body analysis of OT
and its impact on their selection. Project Coradd is an example of these efforts
[12]. The authors show the impact of correlation between attributes in defining
two redundant OT materialized views and indexes. In our work, we focus on the
phenomenon of attribute interchangeability, where an attribute may be candi-
date to define different OT. This phenomenon is studied on two OT: HDP and

3 The body describes the used tables, attributes, etc.

BJI. HDP is a non redundant that consists in segmenting a table into multiple
fragments each containing a subset of rows based on restriction attribute(s). BJI
is redundant structure (needs storage and maintenance costs). It is bitmap for
the table to be indexed is built for values coming from the joined tables. A BJI
optimizes selection and joins operations. It has been effectively utilized in many
major commercial DBMS (Oracle, IBM, Sybase, etc.).

Based on the identified similarities between HDP and BJI, we issue the fol-
lowing research reflexion that needs to be debated: if an attribute is used to
partition/index and this choice optimizes well queries then why it continues to
be candidate for indexing/partitioning?. Suppose it is discarded from indexing,
a gain of storage and maintenance overhead may be guaranteed. If it is not con-
sidered for partitioning, it may reduce the number of partitions of the database
and consequently facilitates its manageability. Note that the interaction between
HDP and BJI is not well established by commercial and academic tools, since to
best of our knowledge, only Oracle11G supports a large variety of partitioning
modes (e.g., referential partitioning [8]). Few academic works attempt to deal
with the combined selection. In [5], the authors propose the use of HDP is used
to prune the search space of BJI selection problem. The basic idea of their pro-
posal is to start by partitioning a data warehouse, and then selecting BJI for
only queries that do not get benefit from HDP (called non profitable queries).
The authors do not explicit the identification procedure of profitable queries
and ignores the attribute interchangeability phenomena. This work is used in
SimulPh.D..

In this paper, we present a tool, named, ASADD, that recommends HDP
(with two modes) and BJI that takes into account attribute interchangeability.
Our proposal is based on the following reflexion: instead of selecting HDP and
BJI schemes for a given database based on all attributes candidate, our tool
first assigns to each OT its relevant attribute(s) and then each one is selected
based on its own attributes. This approach allows a reduction of complexity of
each selection problem. We propose to use K-means method to perform this
assignment [13].

This paper is organized into four sections. Section 2 presents background
related to HDP and BJI. A genetic algorithm for selecting BJI is also given.
Section 3 describes our clustering approach based on K-means method. Section
4 experimentally compares selection algorithms used by ASADD with existing
studies. Section 5 concludes the paper.

2 Background

In this section, some concepts related to partitioning and BJI are given.

2.1 Horizontal Data Partitioning

HDP is supported by most commercial DBMS (Oracle, SQL Server, DB2, etc.)
and non commercial (Postgress, MySQL, etc.), where a native data definition

language is proposed. Two main types of HDP exist and supported by com-
mercial DBMS: mono table partitioning and table-dependent partitioning. In the
mono table partitioning, a table is partitioned using its own attributes. Several
modes are proposed to implement this partitioning: Range, List, Hash, Round
Robin (supported by Sybase), Composite (List-List, Range-List, Range-Range,
....), etc. Mono table partitioning may be used to optimize selections, especially
when partitioning key matches with their attributes (partition pruning). In table-
dependent partitioning, a table inherits the partitioning characteristics from
other table. For example a fact table of a star schema of a given data warehouse
may partitioned based on the fragmentation schemes of dimension tables4. This
partitioning is feasible if a parent-child relationship among these tables exists
[8]. It optimizes selections and joins simultaneously. This partitioning is recently
supported by Oracle11G under the name referential partitioning.

Example 1. The following SQL statement partitions a dimension table CUS-
TOMER into four horizontal fragments based on two attributes (that we call
fragmentation attributes): Gender and Age.

CREATE TABLE CUSTOMER(CID NUMBER, Name Varchar2(20), Gender CHAR, Age Number)
PARTITION BY RANGE (Age)
SUBPARTITION BY LIST (Gender)
SUBPARTITION TEMPLATE (SUBPARTITION Female VALUES (’F’), SUBPARTITION Male VALUES (’M’))
(PARTITION Cust_0_60 VALUES LESS THAN (60),
PARTITION Cust_60_120 VALUES LESS THAN (MAXVALUE));

The problem of HDP is formalized in the context of relational data warehouses
as follows [4, 14, 16]:
Given (i) a representative workload Q = {Q1, ..., Qn}, where each query Qi

(1 ≤ i ≤ n) has an access frequency fi, defined on a relational data warehouse
schema with d dimension tables {D1, ...,Dd} and a fact table F and (ii) a con-
straint (called maintenance bound B given by DBA) representing the maximum
number of fact fragments that he/she wants. The problem of HDP consists in
identifying dimension table(s) that could be used to referential partition the fact
table F into N fragments, such that (

∑
Qi∈Q fi×Cost(Q, FS)) is minimized and

maintenance constraint is satisfied (N ≤ B), where FS represents the generated
fragmentation schema. This problem is an NP-hard [4].

Several types of algorithms to find a near-optimal solution are proposed:
genetic, simulated annealing, greedy, data mining driven algorithms [4, 14].

2.2 Bitmap Join Indexes

a BJI computes the joins between the fact table and one or more dimension
tables using one or more attributes. This join is materialized through a set of bit
vectors built on the fact table based on one or more dimension attributes of low
cardinality. The BJI are effective for COUNT, AND, OR, NOT queries. The size
of the binary index is proportional to the cardinality of the indexed attributes.
Note that the problem of selecting an indexing scheme is NP-hard [6].

4 A fragmentation schema is the result of partitioning process.

Example 2. The following statement defines a BJI on a fact table SALES using
the attribute City of dimension table CUSTOMER.

CREATE BITMAP INDEX sales_cust_gender
ON SALES(CUSTOMER.Gender)
FROM SALES S, CUSTOMER
WHERE S.CID= C.CID

Fig. 1. An example of chromosome

Examples 1 and 2 show the attribute interchangeability phenomenon, where
Gender is used to partition and index the data warehouse. The formalization of
the problem of selecting BJI is quite similar to HDP problem, except it uses a
storage cost (S) as a constraint [1, 2]. The selected BJI shall minimize the query
processing cost and satisfy the storage constraint S. To the best of our knowledge,
only two classes of algorithms were proposed to deal with BJI selection problem:
one uses greedy heuristics [2] and others based on data mining techniques [1]. To
overcome the limitations of greedy heuristics; we propose a genetic algorithm
(GA). GA have been used in the database physical design [11, 20]. Given a
well-defined search space they apply three different genetic search operations,
namely, selection, crossover and mutation, to transform an initial population of
chromosomes, with the objective to improve their quality.

For BJI selection, each chromosome is represented by an array of bits, where
each cell corresponds to an indexable attribute. A cell value is set 1, if its cor-
responding attribute is used by a BJI, 0 otherwise. Figure 1 shows an example
of chromosome involving five indexable attributes. This coding generates three
different GJI defined on City, Year and Typeproduct.

Note that each chromosome ci of our GA represents a configuration of BJI.
Let Configci

and Nci
be the set of selected indexes and its cardinal. To evaluate

the quality of this configuration, two cost models are needed: (a) one for estimat-
ing the storage cost of Configci

another to calculate the global query processing
cost (in terms of inputs outputs)in the presented of Configci

. The storage cost
required for a BJI bjij of Configci

defined on attribute Ak is given by [1, 19]:

storage(bjij) = (|Ak|
8 +16)×||F ||, where |A| and ||F || represent respectively, the

cardinality of the attribute Ak and the number of instances of the fact table F .
The cost of executing a query Qi (1 ≤ i ≤ n) in presence of a BJI bjij is given

by: Cost(Qi, bjij) = logm|A| − 1 + |A|
m−1 + d× ||F ||

8×PS
+ |F | × (1− e−

Nr

||F ||), where
|F |, Nr, PS and V represent the number of pages occupied by fact table F , the
number of tuples accessed by BJI bjij , the size of disk page and the number of
bitmaps used to evaluate the query Qi. The global cost of executing all n queries
in the presence of the configuration Configci

is given by: Cost(Q,Config) =

∑n
k=1

∑Nci

j=1 Cost(Qk, idxj). To penalize a chromosome generating a configura-
tion violating the storage constraint, a penalty value is introduced as a part of

the fitness function. It is defined as follows: Pen(Configci
) =

storage(Configci
)

S
,

where storage(Configci
) =

∑Nci

j=1 storage(bjij). Our fitness function is defined

as follows: F (Configci
) = {

Cost(Q,Configci
)×Pen(Configci

),ifPen(Configci
)>1

Cost(Q,Configci
),ifPen(Configci

)≤1

3 Problem of Attribute Interchangeability

In this section, we position the problem of interchangeability of attributes and
we formalize it. This problem is an integral part of the whole problem that
selects conjointly HDP and BJI schemes that is formalized as follows: given a (i)
workload Q = {Q1, Q2, · · · , Qm}, where each query Qj has an access frequency
fj , (ii) a set of restriction attributes R extracted from Q, (iii) storage capacity
S for BJI and (iv) a threshold B representing the number of fact fragments.
This problem consists in selecting HDP and BJI schemes that reduce the query
processing cost and satisfy the defined constraints. The resolution of this problem
requires an exploration of the combined search space of HDP and BJI problems.
Let InsHDP and InsBJI be the number of instances of both problems. The
global research space that needs to be explored is given by: 2InsHDP +InsBJI ,
since their instances may interact [22]. To reduce this complexity, we propose
to DBA to first share attributes between these HDP and BJI and to select each
technique using her/his favourite algorithm.

Let R be a set of attributes candidate for HDP and BJI. To split R between
these two OT, DBA may perform it manually using its experience. This is feasible
when the cardinal of R is small. For extremely large databases with a large
number of attributes, this solution cannot work. As consequence, an automatic
and an efficient clustering method is required. To select the best clustering,
exhaustive enumeration is required to search for all potential clustering (given
by 2||R||, where ||R|| represents the cardinal of R) and each one is used to select
HDP and BJI and finally the optimal one is the clustering offering less cost of
executing a set of queries respecting the constraints is chosen. It is impracticable
to explore all clustering exhaustively, therefore the development of a non costly
solution is mandatory.

3.1 Clustering-based Approach for Attribute Interchangeability

In this section, we propose an approach to cluster attributes between HDP and
BJI. Before presenting it, an identification of how good an attribute is for each
OT is required.

Identification of Clustering Criteria This identification is done using exper-
iments on Oracle11G and data set of APB1 benchmark [7]. These experiments
allow identifying three clustering criteria:

1. Access frequency of restriction attribute: this criterion represents the num-
ber of appearance of each attribute in queries. Our experiments show that
usually HDP gives better performance when it is defined on most frequently
attributes. Also BJI defined on these attributes are efficient, especially for
some classes of queries like COUNT queries. When an attribute gives a sim-
ilar performance when it is used in both HDP and BJI, we privilege its use
for HDP, due to the non redundant nature of partitioning.

2. Attribute cardinality : when the cardinalities of attributes are higher, the size
of each fragment may increase, since HDP selection is based on the decom-
position of attribute’s domains into sub domains [4]. As result, a small piece
of fact table is required for some kind of queries. Unfortunately, this scenario
is not always possible, because HDP is constraint by a maintenance bound
B (Section 2). When BJI defined on higher cardinality, the storage cost in-
creases dramatically. Based on this observation, the following clustering rule
is established5: a high cardinality attribute is recommended for partitioning
whereas a lower cardinality attribute for BJI.

3. Selectivity factor defined on restriction predicates: Let Ai an attribute used
by ki(k ≥ 0) restriction predicates {P1, ..., Pki

}. When a BJI defined on Ai

with lower selectivity factors is recommended since, only a small piece of fact
table will be loaded to execute a given query (especially for sum, avg, min,
max,... queries).
We define the selectivity factor (SF) of a restriction attribute Ai as the

average of all its selectivity factors: SF (Ai) =
∑ ki

i=1
Sel(Pi)

ki
.

K-means Method In order to split R, several clustering techniques may be
used such as K-means, decision trees, etc. In this work, we choose the K-means
method for the following reasons: (1) it is well adapted to our sharing problem
and (ii) it has been used to partition XML data warehouses [14]. It classifies
a given data set T through k clusters a priori fixed [13]. The main idea is to
define k centroids, one for each cluster, and then assign each point to one of the
k clusters so as to minimize a measure of dispersion within the clusters. The
algorithm is composed of the following steps:

1. Place k initial points into the space represented by the data set T ;
2. Assign each object xi to the group that has the closest centroid cj (the

proximity is often evaluated with the euclidean metric);
3. Recompute the positions of the k centroids when all objects have been as-

signed;
4. Repeat Steps 2 and 3 until the centroids no longer move.

The best grouping is the partition of the data set T that minimizes the sum of
squares of distances between data and the corresponding cluster centroid.

The following correspondences between the general form of K-means method
and our clustering problem are done as follows:

5 This rule follows partially the proposal in [18]

Fig. 2. Architecture of ASADD

– the data set of K-means represents our set of restriction attributes R;

– K is equal to 2, since our combined selection problem concerns two OT:
HDP and BJI.

– The attributes are represented in ℜ2 space with coordinates (x, y) computed
as follows: We define a classification weight for each restriction attribute
Ai based on the three above criteria: Weight(Ai) = Frc(Ai) + SF (Ai) +
Card(Ai), where Frc(Ai), SF (Ai) and Card(Ai) represent respectively, the
frequency, selectivity factor and cardinality of Ai. During the development
of the weights of attributes, we have noticed that the three criteria have
different scales. To make the weight consistent, normalization is necessary.
Once the weight is calculated, the coordinates in ℜ2 of each attribute Ai are
specified as follows:
(x, y) = (position of attribute Ai, weight(Ai).

Example 3. Let us consider a set of queries involving five attributes: R =
{Month, Y ear, City, Country, Class}. The weight of each attribute is given
in Table 1. The coordinates of each attribute are given in Table 2.

Table 1. Weight computation

Attribute Frc SF Card NFrc NSF NCard Weight

Year 11 0.5 23 1.14 0.53 0.01 1.70
Month 5 0.33 12 0.26 1.41 -0.3 1.37
City 6 0.1 55 0.41 -0.13 0.94 1.22
Country 9 0.09 20 0.85 -0.2 -0.07 0.57
Class 3 0.02 62 0.02 -0.67 1.14 0.44

NFrc, NSF and NCard represent respectively the normalized factor of
frequency and selectivity factor and cardinality criteria.

Table 2. Coordinates of restriction attributes

Attribute Year Month City Country Class

Coordinates [1, 1.70] [2, 1.37] [3, 1.22] [4, 0.57] [5, 0.44]

Figure 3 shows a classification of restriction attributes into two subsets ClusterBJI =
{Country, Class} and ClusterHDP = {Y ear,Month,City}.

Fig. 3. Result of our classification Fig. 4. Result of K-means

4 Performance Study

To validate algorithms used by ASADD, we conduct intensive experiments us-
ing data set of ABP1 benchmark [7] and 47 queries6 involving 11 restriction
attributes. The schema of the used warehouse contains one fact table Actvars
(24 786 000 tuples) and 4 dimension tables Prodlevel (9000 tuples), Custlevel
(900 tuples), Timelevel (24 tuples) and Chanlevel (9 tuples). A Core 2 Duo ma-
chine with 2 GB of memory is used. The section of HDP schema is ensured by
an adaptation of the genetic algorithm developed in [4]. The selection of BJI is
done by the genetic algorithm developed in Section 2. All our algorithms are
implemented using JAVA Eclipse with two API. The first one dedicated for the
K-means clustering method and the second, named, JGAP (Java Genetic Algo-
rithms Package7) used to implement our two genetic algorithms. JGAP requires
essentially coding of chromosome and fitness function. To compute the real ex-
ecution cost for each query, we developed a JAVA class named ORACLECOST
that calls EXPLAIN PLAN Oracle Optimizer tool that displays execution plans
and then accesses PLAN TABLE (a system table) to get the query’s cost.

6 47 queries available at: http://www.lisi.ensma.fr/ftp/pub/documents/reports/2010/2010-

LISI-.pdf
7 A framework implementing genetic algorithms: http://jgap.sourceforge.net

4.1 Steps of our Selection Methodology

To conduct our experiments, we establish the following steps:

1. Classification of the 11 restriction attributes: for 50 iterations, k-means gen-
erates two clusters: ClusterHDP = {Gender,Month, Y ear,All,Quarter,Group}
and ClusterBJI = {Family,Division,Class, City,Retailer} (Figure 4).

2. Selection of HDP and BJI schemes: HDP is executed with a maintenance
constraint B = 70. The execution of our algorithm gives a HDP schema with
64 fragments of the fact table. BJI genetic algorithm generates 4 BJI defined
on attributes belonging to Cluster BJI. These indexes occupy 500 Mo.

3. The obtained optimization schemes are directly applied on the real data
warehouse using appropriate scripts.

4.2 Tests and Results

In this section, we present different experiments that we consider relevant for
our studies. Unfortunately we could not compare our tool methodology to solve
the combined selection problem of HDP and BJI with commercial and academic
ones because they do not support well referential partitioning and its interaction
with BJI. Therefore, we compare the ASADD methodology, baptised OWC with
two other methodologies dealing with the combined selection: (i) Boukhalfa et
al.’s methodology [5] based on the principle of profitable queries (Section 1),
named, OPQ and a (ii) methodology that ignores the interchangeability attribute
problem, named, OWS (described by only the two last steps described in Section
4.1). For each methodology, the cost of executing of 47 queries is computed on
Oracle11G. Each methodology is compared against the non optimization mode
(none OT is selected) and isolated mode characterized by two sub modes: (i)
only HDP is used and (ii) only BJI are used. Our methodology is implemented
as follows: we first partition the warehouse and then index it (HP&BJI). The
storage space reserved for BJI is 500 MB. Figure 5 and 6 present the costs of
executing the 47 queries and the rate of optimized queries offered by each mode.
These results show that HP&BJI outperforms the other modes, especially when
attribute clustering is used. Indeed, the cost raised from 28.4 to 12.5 million of
inputs outputs (I/O), which represents a reduction of 56 % of the total cost
and 91 % of the optimized queries. Several lessons can be learned from these
results: (a) the combined selection outperforms largely the isolated one, (b) the
HDP defined on attributes identified relevant by k-means gives a better results
than HDP done on all restriction attributes. Indeed, for OWC approach, the
most appropriate attributes are selected for HDP, (c) the OPQ outperforms
slightly OWS only for HP&BJI mode. Indeed, OPQ selects BJI only for non
profitable queries. As results, it participates in improving their performance.
Generally, OWC outperforms other methodologies whatever the used mode.

To study the impact of the maintenance bound B (representing the maximum
number of fact fragments) on query performance, we varied B while fixing the
storage constraint S = 500 Mo. For each value of B, we consider the three

 0

 5

 10

 15

 20

 25

 30

 35

Without Optimisation

BJI Optimisation

HDP Optimisation

HDP&BJI

C
os

t
 (

M
illi

on
s

I/O
)

OWS
OPQ
OWC

Fig. 5. Query performance with different
optimization modes

 0

 20

 40

 60

 80

 100

Without Optimisation

BJI Optimisation

HDP Optimisation

HDP&BJI

O
pt

im
is

ed
 Q

ue
rie

s
 R

at
e

(%

)

OWS
OPQ
OWC

Fig. 6. Optimised queries Rate with dif-
ferent optimization modes

methodologies for the combined problem. The results illustrated in Figure 7
show that the best optimization is achieved when OWC is used, especially for
W > 100. Indeed, the cost is reduced from 58 % to 61 %, where 91% of 47
of queries are optimized. When the maintenance bound B becomes larger, the
probability that all attributes will be used in the partitioning process becomes
higher.

 8

 10

 12

 14

 16

 18

 20

20 30 50 70 90 100 150 200

C
os

t
 (

M
illi

on
s

I/O
)

Threshold B

OWS
OPQ
OWC

Fig. 7. Query Performance vs. Mainte-
nance Bound B

 50

 60

 70

 80

 90

 100

20 30 50 70 90 100 150 200

O
pt

im
is

ed
 Q

ue
rie

s
 R

at
e

(%

)

Threshold B

OWS
OPQ
OWC

Fig. 8. Optimised Queries Rate vs. Main-
tenance Bound B

We conduct other experiments to evaluate the impact of the storage con-
straint S on query performance. To do so, we vary S while fixing the value of
maintenance bound B = 20 (this value leaves for indexing a large number of
attributes). Figure 9 shows the obtained results. We note that, for S < 900 Mo,
OPQ gives better results than OWS. Indeed, for these values of S, choosing
restriction attributes candidate for indexing from a subset of queries (not prof-
itable) reduces the complexity of the problem of selection indexes. But, when
storage space increases, the costs corresponding to OPQ and OWS become lin-
ear. Whatever the value of S, our approach outperforms OPQ and OWS. This is

because the selected attributes for indexing are those that give the most benefit
for BJIs. Indeed, the query processing cost, for OWC is reduced by 19.1 million
I/O when S = 50MO to 15.8 million I/O when S > 600MBO.

 12

 14

 16

 18

 20

 22

100
200

300
400

500
600

700
800

900
1000

1100
1200

1300
1400

C
os

t
 (

M
illi

on
s

I/O
)

Space Storage S (Mo)

OWS
OPQ
OWC

Fig. 9. Query Performance vs. Space Storage S

Tests conducted so far selects HDP schema and then BJI (HDP then BJI).
We conduct experiments by considering two other selection orders to show their
impact on query performance: BJI then HP and HP//BJI (meaning that each
selection is made on its corresponding classes of attributes without taking into
account the attributes not selected by the other selection). B and S are set to
500 Mo and 70. Figure 10 summarizes the obtained results. The best perfor-
mance of combined selection is obtained when OWC selects HDP schema and
then BJI which requires 12.5 million of I/O to execute the 47 queries. The sec-
ond best approach is OWC with HP//BJI order (13.7 millions of I/O). The
worst strategy is OPQ with HP followed by BJI order (15.1 millions of IO).
Several lessons can be learned from these results: (a) BJI followed by HP gives
worst performance. Indeed, the non selected attributes by BJI will be added to
the cluster of attributes dedicated for HDP and may distort the choice of opti-
mization scheme. Contrary to the selection of BJI, where an attribute is either
chosen or rejected, the selection of a scheme of HDP can choose an attribute
with a reduced number of fragments, (b) the results of OWS and OPQ in the
mode HP followed by BJI (15.6 and 15.1 million I/O) are better than OWC
in the mode BJI followed by HP (17.2 million I/O). This is mainly due to the
selection of HDP schema. Indeed, HDP in OWS or OPQ (HP followed by BJI)
is done on all restriction attributes. On the other hand, HDP in OWC (BJI
then HP) relies on only restriction attributes identified by clustering process, (c)
the order HP//BJI is less beneficial than the HDP followed by BJI, since the
separation of the two selections do not allow BJI to take into account attributes
not selected by HDP .

Recall that the weight classification is based on three factors: Frc, SF and
Card. To investigate their relevance, we conduct an experiment, where only
OWC methodology is used, by changing the weight formula. This gives seven

possible combinations. The results are shown in Figure 11. We note that the best
optimization is obtained when all factors are used. These experiments confirm
our choice of these criteria.

 0

 5

 10

 15

 20

 25

HDP then BJI

BJI then HDP

HDP // BJI

C
os

t
 (

M
illi

on
s

I/O
)

OWS
OPQ
OWC

Fig. 10. Variation of selection order be-
tween Partitioning and BJI

 6

 8

 10

 12

 14

 16

 18

Card SF Frc SF+Card
Frc+Card

Frc+SF
Frc+SF+Card

C
os

t
 (

M
illi

on
s

I/O
)

Fig. 11. Factors relevancy for the weight
classification

4.3 Description of ASADD

To ease the use of our proposal, we develop a tool, called, ASADD that assists
DBA to perform an isolated and a combined selection of HDP and BJI. This
tool is developed in Eclipse IDE and integrates all proposed algorithms. ASADD
is connected to Oracle11G and offers DBA nice user interfaces to realize the
following main tasks: (1) visualization of the data warehouse schema and the
workload; (2) choosing of type of selection: isolated and combined with various
modes; (3) parameterization of different used algorithms; (4) visualization of
the different recommendations proposed by each OT (Figure 13): partitioning
and indexable attributes, number of partitions, query execution cost before and
after optimization (Figure 12) and (5) generation of final scripts implementing
the obtained optimizations.

5 Conclusion

To meet the complex queries requirement, a combined selection of OT has be-
come a key solution. It is more complex than single selection due the large search
space that should be explored. In addition to this complexity, interaction between
certain OT shall be considered during the selection process. In this paper, we
identify a new phenomenon called attribute interchangeability that affects dra-
matically the combined selection problem of two OT: HDP (considered as a non
redundant structure) and BJI (considered as a redundant structure). Similarities
are identified – both are defined on attributes of dimension tables and optimize
restrictions and joins. These similarities are exploited to propose a solution of

Fig. 12. General view Fig. 13. Recommendations

the combined selection problem that reduces the complexities of two problems.
Instead of dealing with the combined problem exploring large search space (for
both HDP and BJI selection problems), we propose to first partition restriction
attributes between HDP and BJI and then each OT is selected using its own at-
tributes. The clustering is ensured using a K-means method with three criteria
identified by empirical experimentations: attribute frequency, selectivity factor
and cardinality of attributes. To validate our proposal, we conduct intensive
experiments, where a comparison with the existing approaches was proposed.
The obtained results show the efficiency of recommendations. To facilitate the
use of our methodology and algorithms, we developed a tool (ASADD) offering
graphical interfaces to DBA to perform her/his tasks during the physical design
phase.

It is interesting to consider other criteria when sharing the restriction at-
tributes, such as storage and profiles of used queries. Other directions that should
be addressed are: (i) incorporation in ASADD other OT such as parallel pro-
cessing and (ii) make it able to handle dynamic changes.

References

1. K. Aouiche, O. Boussaid, and F. Bentayeb. Automatic Selection of Bitmap Join
Indexes in Data Warehouses. pages 64–73, August 2005.

2. L. Bellatreche and K. Boukhalfa. Yet another algorithms for selecting bitmap
join indexes. In International Conference on Data Warehousing and Knowledge
Discovery (DaWaK’2010), pages 105–116, September 2010.

3. L. Bellatreche, K. Boukhalfa, and Zaia Alimazighi. Simulph.d.: A physical design
simulator tool. In 20th International Conference on Database and Expert Systems
Applications (DEXA’09), pages 263–270, 2009.

4. L. Bellatreche, K. Boukhalfa, and P. Richard. Referential horizontal partitioning
selection problem in data warehouses: Hardness study and selection algorithms.
International Journal of Data Warehousing and Mining, 5(4):1–23, March 2009.

5. K. Boukhalfa, L. Bellatreche, and Z. Alimazighi. Hp&bji: A combined selection
of data partitioning and join indexes for improving olap performance. Annals of

Information Systems, Special Issue on new trends in data warehousing and data
analysis, Springer, 3:179–2001, November 2008.

6. S. Chaudhuri. Index selection for databases: A hardness study and a princi-
pled heuristic solution. IEEE Transactions on Knowledge and Data Engineering,
16(11):1313–1323, November 2004.

7. OLAP Council. Apb-1 olap benchmark, release ii.
http://www.olapcouncil.org/research/bmarkly.htm, 1998.

8. G. Eadon, E. I. Chong, S. Shankar, A. Raghavan, J. Srinivasan, and S. Das. Sup-
porting table partitioning by reference in oracle. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, pages 1111–1122, 2008.

9. K. EL Gebaly and A. Aboulnaga. Robustness in automatic physical database
design. In in 11th International Conference on Extending Database Technology
(EDBT’08), pages 145–156, 2008.

10. J. Gray and D. Slutz. Data mining the sdss skyserver database. Techreport Tech-
nical Report MSR-TR-2002-01, Microsoft Research, 2002.

11. Y. Ioannidis and Y. Kang. Randomized algorithms algorithms for optimizing large
join queries. Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pages 9–22, 1990.

12. H. Kimura, G. Huo, A. Rasin, S. Madden, and S. Zdonik. Coradd: Correlation
aware database designer for materialized views and indexes. PVLDB, 3(1):1103–
1113, 2010.

13. J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics
and Probability”, Berkeley, University of California Press, pages 281–297, 1967.

14. H. Mahboubi and J. Darmont. Data mining-based fragmentation of xml data ware-
houses. In ACM 11th International Workshop on Data Warehousing and OLAP
(DOLAP’08), pages 9–16, 2008.

15. C. Maier, D. Dash, I. Alagiannis, A.Ailamaki, and T. Heinis. Parinda: an in-
teractive physical designer for postgresql. In 13th International Conference on
Extending Database Technology (EDBT’10), pages 701–704, 2010.

16. S. Papadomanolakis and A. Ailamaki. Autopart: Automating schema design for
large scientific databases using data partitioning. pages 383–392, June 2004.

17. A. Sanjay, C. Surajit, and V. R. Narasayya. Automated selection of materialized
views and indexes in microsoft sql server. In Proceedings of the International
Conference on Very Large Databases, pages 496–505, September 2000.

18. T. Stöhr, H. Märtens, and E. Rahm. Multi-dimensional database allocation for
parallel data warehouses. In Proceedings of the International Conference on Very
Large Databases, pages 273–284, 2000.

19. M.-C. Wu. Query optimization for selections using bitmaps. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 227–238,
1999.

20. J. X. Yu, C-H. Choi, and G. Gou. Materialized view selection as constrained
evolution optimization. IEEE Transactions On Systems, Man, and Cybernetics,
Part 3, 33(4):458–467, November 2004.

21. D. C. Zilio, S. Lightstone, K. A. Lyons, and G. M. Lohman. Self-managing tech-
nology in ibm db2 universal database. In ACM International Conference on In-
formation and Knowledge Management (CIKM), pages 541–543, 2001.

22. D. C. Zilio, J. Rao, S. Lightstone, G. M Lohman, A. Storm, C. Garcia-Arellano, and
S. Fadden. Db2 design advisor: Integrated automatic physical database design. In
Proceedings of the International Conference on Very Large Databases, pages 1087–
1097, August 2004.

6 Appendix

Name Queries

Q1 select Time level,count(*) from ACTVARS A,PRODLEVEL P
where A.PRODUCT LEVEL=P.CODE LEVEL and P.Class LEVEL=’P70J55L4HYBV’
group by Time level

Q2 select max(Time level) from ACTVARS A,PRODLEVEL P
where A.PRODUCT LEVEL=P.CODE LEVEL and P.GROUP LEVEL=’P66L03PSAFVQ’

Q3 select Time level,Avg(UNITSSOLD) from ACTVARS A,Timelevel T
where A.TIME LEVEL=T.TID and (t.quarter level=’Q1’ or t.quarter level=’Q2’)
Group by Time level

Q4 select division level,count(*) from ACTVARS A,PRODLEVEL P
where A.PRODUCT LEVEL=P.CODE LEVEL and P.group LEVEL=’S7JWEUJRYIWN’
group by division level

Q5 select Time level,count(*) from ACTVARS A,PRODLEVEL P
where A.PRODUCT LEVEL=P.CODE LEVEL and P.family LEVEL=’URT1B3VOSSHH’
group by Time level

Q6 select year level,sum(Dollarcost) from ACTVARS A,PRODLEVEL P, Timelevel T
where A.PRODUCT LEVEL=P.CODE LEVEL and A.time level=T.TID
and P.GROUP LEVEL=’P66L03PSAFVQ’
group by year level

Q7 select Avg(Unitssold) from ACTVARS A,PRODLEVEL P
where A.PRODUCT LEVEL=P.CODE LEVEL and P.family LEVEL=’URT1B3VOSSHH’
and P.GROUP LEVEL=’P66L03PSAFVQ’

Q8 select Customer level,Avg(Unitssold) from ACTVARS A,PRODLEVEL P
where A.PRODUCT LEVEL=P.CODE LEVEL and P.family LEVEL=’IXG0C4HQG2DW’
and P.GROUP LEVEL=’P66L03PSAFVQ’
group by Customer level

Q9 select Product level,count(*) from ACTVARS A, Timelevel T
where A.TIME LEVEL=T.TID and T.month level=’1’
and (t.quarter level=’Q3’ or t.quarter level=’Q4’)
group by Product level

Q10 select retailer level,Avg(unitssold) from ACTVARS A,PRODLEVEL P ,Custlevel C
where A.PRODUCT LEVEL=P.CODE LEVEL AND A.customer level=C.Store level
and P.DIVISION LEVEL = ’E6QF1IHDEV0E’
group by retailer level

Q11 select count(*) from ACTVARS A,PRODLEVEL P
where A.PRODUCT LEVEL=P.CODE LEVEL and P.DIVISION LEVEL = ’E6QF1IHDEV0E’

Q12 select Avg(Unitssold) from ACTVARS A,TIMELEVEL T
where A.TIME LEVEL=T.TID and t.year level=’1996’

Q13 select Product level,count(*) from ACTVARS A,TIMELEVEL T
where A.TIME LEVEL=T.TID and T.year LEVEL = ’1995’
group by Product level

Q14 select division level,Avg(Unitssold) from ACTVARS A,TIMELEVEL T, Prodlevel P
where A.TIME LEVEL=T.TID AND A.product level=P.Code level and t.month level=’7’
group by division level

Q15 select count(*) from ACTVARS A,TIMELEVEL T
where A.TIME LEVEL=T.TID and t.year level=’1995’

Q16 select division level,Sum(Dollarcost) from ACTVARS A,TIMELEVEL T ,Prodlevel P
where A.TIME LEVEL=T.TID AND A.product level=P.Code level
and (t.month level=’1’ or t.month level=’2’) and p.Class level=’P70J55L4HYBV’
group by division level

Q17 select month LEVEL, Avg(Unitssold) from ACTVARS A,TIMELEVEL T, custlevel c
where A.TIME LEVEL=T.TID and A.CUSTOMER LEVEL=C.STORE LEVEL
and c.gender level=’M’
group by month LEVEL

Q18 select time level, Avg(unitssold) from ACTVARS A,prodlevel p, custlevel c
where A.CUSTOMER LEVEL=C.STORE LEVEL and A.PRODUCT LEVEL=P.CODE LEVEL
and P.group LEVEL=’S7JWEUJRYIWN’ and C.RETAILER level =’ZSTV6MYCBS7U’
group by time level

Q19 select product level, sum(dollarcost) from actvars a,timelevel t, prodlevel p
where a.time level=t.tid and a.product level=p.code level
and (t.month level=’1’ or t.month level=’2’) and (t.quarter level=’Q1’ or t.quarter level=’Q2’)
and P.DIVISION LEVEL = ’E6QF1IHDEV0E’
group by product level

Name Queries

Q20 select year level, Max(unitssold) from ACTVARS A, Prodlevel p, custlevel c, timelevel t
where a.time level=t.tid and A.CUSTOMER LEVEL= C.STORE LEVEL
and A.PRODUCT LEVEL=P.CODE LEVEL and P.DIVISION LEVEL = ’E6QF1IHDEV0E’
and C.RETAILER level =’ZSTV6MYCBS7U’
group by year level

Q21 select Product level,Time level,Avg(unitssold) from ACTVARS A,TIMELEVEL T, custlevel c
where A.TIME LEVEL=T.TID and A.CUSTOMER LEVEL=C.STORE LEVEL
and (t.month level=’1’ or t.month level=’2’) and c.gender level=’F’
group by Product level,Time level

Q22 select year level,month level, Max(unitssold) from ACTVARS A,prodlevel p ,Timelevel T
where A.PRODUCT LEVEL=P.CODE LEVEL and A.time level=T.TID
and (t.month level=’1’ or t.month level=’2’)
and P.DIVISION LEVEL = ’E6QF1IHDEV0E’
group by year level,month level

Q23 select count(*) from ACTVARS A,CUSTLEVEL C where A.CUSTOMER LEVEL=C.STORE LEVEL
and C.City LEVEL=’Dijon’

Q24 select class level, month level, Min(unitssold)
from ACTVARS A,CUSTLEVEL C, prodlevel p, timelevel t
where A.PRODUCT LEVEL=P.CODE LEVEL AND A.CUSTOMER LEVEL=C.STORE LEVEL
and A.TIME LEVEL=T.TID
and C.City LEVEL=’Dijon’ and C.RETAILER level =’ZSTV6MYCBS7U’
group by class level, month level

Q25 select max(Unitssold) from ACTVARS A,CHANLEVEL CH
where A.CHANNEL LEVEL=CH.BASE LEVEL AND CH.ALL LEVEL =’EFGHIJKLMNOP’

Q26 select count(*) from ACTVARS A,CHANLEVEL CH,TIMELEVEL T
where A.CHANNEL LEVEL=CH.BASE LEVEL and A.TIME LEVEL=T.TID
and (t.quarter level=’Q1’ or t.quarter level=’Q2’)
AND t.year level=’1995’ and CH.ALL LEVEL =’BCDEFGHIJKLM’

Q27 select Time level,count(*) from ACTVARS A,CHANLEVEL CH,CUSTLEVEL C
where A.CHANNEL LEVEL=CH.BASE LEVEL and A.CUSTOMER LEVEL=C.STORE LEVEL
and C.City LEVEL=’Dijon’ and CH.ALL LEVEL =’EFGHIJKLMNOP’
group by Time level

Q28 select channel Level, sum(dollarcost) from ACTVARS A,CUSTLEVEL C,PRODLEVEL P
where A.CUSTOMER LEVEL=C.STORE LEVEL and A.PRODUCT LEVEL=P.CODE LEVEL
and P.CLASS LEVEL=’P70J55L4HYBV’
AND C.RETAILER LEVEL=’M5TAHN7GUMLT’ and c.gender level=’F’
group by channel Level

Q29 select sum(dollarcost) from ACTVARS A, PRODLEVEL P,TIMELEVEL T
where A.PRODUCT LEVEL=P.CODE LEVEL and A.TIME LEVEL=T.TID
and (t.quarter level=’Q1’ or t.quarter level=’Q2’)
AND P.DIVISION LEVEL = ’PHPET5VW6SLG’

Q30 select sum(dollarcost), Avg(Unitssold)
from ACTVARS A, CUSTLEVEL C,TIMELEVEL T
where A.CUSTOMER LEVEL=C.STORE LEVEL and A.TIME LEVEL=T.TID
and (T.month LEVEL = ’1’ or T.month LEVEL = ’2’)
and C.RETAILER level =’ZSTV6MYCBS7U’ and C.CITY LEVEL=’Dijon’

Q31 select Customer Level, Time level,Min(unitssold) from ACTVARS A,TIMELEVEL T, CUSTLEVEL C
where A.CUSTOMER LEVEL=C.STORE LEVEL AND A.TIME LEVEL=T.TID
and (t.quarter level=’Q3’ or t.quarter level=’Q4’)
AND C.GENDER LEVEL=’M’
group by Customer level, Time level

Q32 select month Level, all level, Time level, Sum(Dollarcost)
from ACTVARS A, CUSTLEVEL C,TIMELEVEL T ,Chanlevel H
where A.CUSTOMER LEVEL=C.STORE LEVEL and A.channel level=H.Base level
and A.TIME LEVEL=T.TID and T. month level=’2’ and T.YEAR LEVEL=’1995’
and C.RETAILER LEVEL =’COGHFPROJP9Z’ AND (c.city level=’Paris’or c.city level=’Poitiers’)
group by month level,all level, Time level

Q33 select count(*) from ACTVARS A,CHANLEVEL CH,TIMELEVEL T
where A.CHANNEL LEVEL=CH.BASE LEVEL and A.TIME LEVEL=T.TID
and (t.quarter level=’Q1’ or t.quarter level=’Q2’) AND T.month LEVEL = ’7’
and CH.ALL LEVEL =’BCDEFGHIJKLM’

Name Queries

Q34 select time level, Max(Unitssold)
from ACTVARS A, CHANLEVEL H,CUSTLEVEL C,TIMELEVEL T
where A.CUSTOMER LEVEL=C.STORE LEVEL and A.CHANNEL LEVEL=H.BASE LEVEL
and A.TIME LEVEL=T.TID and (T.month LEVEL = ’1’ or T.month LEVEL = ’2’)
and t.year level = ’1996’ and c.city level=’Paris’ and C.RETAILER level =’ZSTV6MYCBS7U’
and H.ALL LEVEL=’BCDEFGHIJKLM’
group by time level

Q35 select Min(Unitssold)
from ACTVARS A, CHANLEVEL H,CUSTLEVEL C,PRODLEVEL P,TIMELEVEL T
where A.CUSTOMER LEVEL=C.STORE LEVEL and A.PRODUCT LEVEL=P.CODE LEVEL
and A.CHANNEL LEVEL=H.BASE LEVEL and A.TIME LEVEL=T.TID
and (T.month LEVEL = ’1’ or T.month LEVEL = ’2’) and t.year level=’1996’
and P.family LEVEL=’IXG0C4HQG2DW’ and H.ALL LEVEL=’BCDEFGHIJKLM’ and t.quarter level=’Q2’

Q36 select count(*)
from ACTVARS A,CHANLEVEL CH,TIMELEVEL T, custlevel c
where A.CHANNEL LEVEL=CH.BASE LEVEL and A.TIME LEVEL=T.TID and
A.CUSTOMER LEVEL=C.STORE LEVEL and c.gender level=’M’ and
T.month LEVEL = ’7’ and CH.ALL LEVEL =’BCDEFGHIJKLM’

Q37 select count(*)
from ACTVARS A, Prodlevel p,TIMELEVEL T, CUSTLEVEL C
where A.PRODUCT LEVEL=P.CODE LEVEL and A.CUSTOMER LEVEL=C.STORE LEVEL
AND A.TIME LEVEL=T.TID and P.group LEVEL=’S7JWEUJRYIWN’
AND (t.quarter level=’Q3’ or t.quarter level=’Q4’) AND C.GENDER LEVEL=’M’

Q38 select product level, count(*)
from ACTVARS A,CHANLEVEL CH, CUSTLEVEL C
where A.CHANNEL LEVEL=CH.BASE LEVEL and A.CUSTOMER LEVEL=C.STORE LEVEL
and CH.ALL LEVEL =’BCDEFGHIJKLM’ and C.RETAILER level =’ZSTV6MYCBS7U’
group by product level

Q39 select max(Dollarcost) from ACTVARS A, prodlevel p
where A.PRODUCT LEVEL=P.CODE LEVEL and P.family LEVEL=’HNMC1GO57W3Y’
and P.DIVISION LEVEL = ’E6QF1IHDEV0E’

Q40 select count(*) from ACTVARS A,Custlevel C
where A.CUSTOMER LEVEL=C.STORE LEVEL and C.GENDER LEVEL=’F’

Q41 select month level, Sum(Dollarcost)
from ACTVARS A,Custlevel C, timelevel t, prodlevel p
where A.CUSTOMER LEVEL=C.STORE LEVEL and A.PRODUCT LEVEL=P.CODE LEVEL
and A.TIME LEVEL=T.TID
and C.GENDER LEVEL=’M’ and C.RETAILER LEVEL=’ZSTV6MYCBS7U’
and P.family LEVEL=’URT1B3VOSSHH’
group by month level

Q42 select count(*) from ACTVARS A, CUSTLEVEL C, prodlevel p
where A.PRODUCT LEVEL=P.CODE LEVEL and A.CUSTOMER LEVEL=C.STORE LEVEL
and P.family LEVEL=’HNMC1GO57W3Y’ and P.DIVISION LEVEL = ’E6QF1IHDEV0E’
and P.GROUP LEVEL=’P66L03PSAFVQ’ and C.City LEVEL=’Dijon’

Q43 select avg(Dollarcost) from ACTVARS A,CUSTLEVEL C
where A.CUSTOMER LEVEL=C.STORE LEVEL and c.city level=’Dijon’
and c.gender level=’M’

Q44 select gender level,max(Dollarcost) from ACTVARS A,CUSTLEVEL C, prodlevel p
where A.CUSTOMER LEVEL=C.STORE LEVEL and A.PRODUCT LEVEL=P.CODE LEVEL
and C.RETAILER LEVEL=’ZSTV6MYCBS7U’
and P.DIVISION LEVEL = ’E6QF1IHDEV0E’
group by gender level

Q45 select product level, sum(dollarcost) from actvars a,timelevel t, prodlevel p, chanlevel h
where a.time level=t.tid and a.product level=p.code level
and a.channel level=h.base level and t.year level = ’1996’ and p.class level= ’P70J55L4HYBV’
and h.all level=’EFGHIJKLMNOP’ and P.family LEVEL=’HNMC1GO57W3Y’
group by product level

Q46 select product level, sum(dollarcost) from actvars a,timelevel t, prodlevel p
where a.time level=t.tid and a.product level=p.code level
and (t.quarter level=’Q1’ or t.quarter level=’Q2’) and P.group LEVEL=’S7JWEUJRYIWN’
group by product level

Q47 select Sum(Dollarcost) from ACTVARS A, timelevel t, Custlevel C
where A.TIME LEVEL=t.TID and A.CUSTOMER LEVEL=C.STORE LEVEL
and C.City LEVEL=’Dijon’ and (t.quarter level=’Q1’ or t.quarter level=’Q2’)

