Dropout improves Recurrent Neural Networks for Handwriting Recognition

Vu Pham
Théodore Bluche
Christopher Kermorvant
Jérôme Louradour

tb@a2ia.com, jl@a2ia.com
Outline

1. RNN for Handwritten Text Line Recognition
 - Offline Handwritten Text Recognition
 - Recurrent Neural Networks (RNN)

2. Dropout for RNN

3. Experiments
 - Improvement of RNN
 - Improvement of the complete recognition system
Outline

1 RNN for Handwritten Text Line Recognition
 - Offline Handwritten Text Recognition
 - Recurrent Neural Networks (RNN)

2 Dropout for RNN

3 Experiments
 - Improvement of RNN
 - Improvement of the complete recognition system
Dear Charlize.

You are cordially invited to the grand opening of my new art gallery intitled «The new era of Media Music and paintings». on July 17th 2012.

P.S: UR presence is obligatory due to your great help of launching my career.

- Line segmentation in the front-end
- “Temporal Classification”: Variable-length 1D or 2D input \mapsto 1D target sequence (different length)
Modeling: Recurrent Neural Networks (RNN)

State-of-the-art in Handwritten Text Recognition

Task: Image (2D sequence) \mapsto 1D sequence of characters

RNN Network Architecture (Graves & Schmidhuber, 2008)

- Multi-Directional layers of LSTM unit
 “Long-Short Term Memory” – 2D recurrence in 4 possible directions
- Convolutions: parameterized subsampling layers
- Collapse layer: from 2D to 1D (output $\sim \log P$)
RNN for Handwritten Text Line Recognition

Modeling: Recurrent Neural Networks (RNN)

State-of-the-art in Handwritten Text Recognition

Task: Image (2D sequence) \mapsto 1D sequence of characters

1. **RNN Network Architecture** (Graves & Schmidhuber, 2008)
 - Multi-Directional layers of LSTM unit
 - “Long-Short Term Memory” – 2D recurrence in 4 possible directions
 - Convolutions: parameterized subsampling layers
 - Collapse layer: from 2D to 1D (output $\sim \log P$)

2. **CTC Training** (“Connectionist Temporal Classification”)
 - The network can output all possible symbols and also a *blank* output
 - Minimization of the Negative Log-Likelihood $-\log(P(Y|X))$ (NLL)
Modeling: Recurrent Neural Networks (RNN)

State-of-the-art in Handwritten Text Recognition

The recurrent neurons are Long Short-Term Memory (LSTM) units.
Loss function: Connectionist Temporal Classification (CTC)

Deal with several possible alignments between two 1D sequences

\[\sim \to - \log P(Y|X) \]

- \(U = 3 \): Number of target symbols
- \(T \): Number of RNN outputs \(\propto \) image width
- Basic decoding strategy (without lexicon neither language model):

\[[\emptyset \ldots] T \ldots [\emptyset \ldots] E \ldots [\emptyset \ldots] A \ldots [\emptyset \ldots] \quad \mapsto \quad "TEA" \]
Loss function: Connectionist Temporal Classification (CTC)
Deal with several possible alignments between two 1D sequences

- $U = 3$: Number of target symbols
- T: Number of RNN outputs \propto image width
- Basic decoding strategy (without lexicon neither language model):

$$[[\emptyset \ldots] T \ldots [\emptyset \ldots] E \ldots \emptyset \ldots E \ldots [\emptyset \ldots] \mapsto \text{"TEE"}$$

$\sim - \log P(Y|X)$
Optimization: Stochastic Gradient Descent

Simple and efficient

- No mathematical guarantee (no chance to converge to the real global minimum)
- But popular with deep networks: works well in practice! (find "good" local minima)

```plaintext
for (input, target) in Oracle() do
    output = RNN.Forward(input)
    outGrad = CTC_NLL.Gradient(output, target)
    paramGrad = RNN.BackwardGradient(input, ..., outGrad)
    RNN.Update(paramGrad)
end for
```
Outline

1. RNN for Handwritten Text Line Recognition
 - Offline Handwritten Text Recognition
 - Recurrent Neural Networks (RNN)

2. Dropout for RNN

3. Experiments
 - Improvement of RNN
 - Improvement of the complete recognition system
Dropout

General Principle [Krizhevsky & Hinton, 2012]

Training:
- Randomly set to 0 intermediate activities (*) with probability p
 (typically $p = 0.5$)
- (*) neurons outputs usually in $[-1, 1]$, $[0, 1]$ or $[0, \infty)$
- \sim Sampling from 2^N different architectures that share weights

Decoding:
- All intermediate activities are scaled, by $1 - p$
- \sim Geometric mean of the outputs from 2^N models

Featured in award-winning convolutional networks (ImageNet)
Dropout

Dropout with recurrent layer

- Recurrent connections are kept untouched
- Dropout can be implemented as separated layer (outputs identical to inputs, except at dropped locations)
Dropout

Overview of the full network

After recurrent LSTM layers

Before feed-forward layers (convolutional and linear layers)
Outline

1 RNN for Handwritten Text Line Recognition
 - Offline Handwritten Text Recognition
 - Recurrent Neural Networks (RNN)

2 Dropout for RNN

3 Experiments
 - Improvement of RNN
 - Improvement of the complete recognition system
Databases and performance assessment

<table>
<thead>
<tr>
<th>Database</th>
<th>Language</th>
<th># different characters</th>
<th>Training subset</th>
<th># labelled lines</th>
<th># characters (in lines)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAM</td>
<td>English</td>
<td>78</td>
<td></td>
<td>9,462</td>
<td>338,904</td>
</tr>
<tr>
<td>Rimes</td>
<td>French</td>
<td>114</td>
<td></td>
<td>11,065</td>
<td>429,099</td>
</tr>
<tr>
<td>OpenHaRT</td>
<td>Arabic</td>
<td>154</td>
<td></td>
<td>91,811</td>
<td>2,267,450</td>
</tr>
</tbody>
</table>

Training:
Minimizing Negative Log-Likelihood (NLL) with CTC alignments.

Decoding:
Pick the best label at each timestep, Remove duplicates, then blanks.

Evaluation:
Character Error Rate (%), on a separate dataset.
Reduction w/ and w/o dropout.

Training convergence time is also interesting, but not critical.
Results: Dropout on the topmost LSTM layer

- Dropout on high-level features used in Logit Regression
- Error rate reduction when varying the number of hidden units in the topmost layer
Results: Dropout on all LSTM layers

- Use the good recipe whenever possible!
- Number of hidden units tuned (on validation dataset) to reach best performance
Results analysis: Dropout acts as Regularization

Convergence curves

- **Less overfitting:**
 the gap between training and validation loss is smaller

- **Training with dropout is slower:**
 There is a trade-off between accuracy & training speed.
 (However, decoding speed is the same for a given neural archi.!)

- Dropout improves Recurrent Neural Networks for Handwriting Recognition
Results analysis: Dropout acts as Regularization

Outgoing weights are smaller: L1 and L2 norms are greatly reduced
Better than L1/L2 Weight Decay (and also simple to implement)
- Data-driven approach.
- No need to tune \(\lambda \in [0, +\infty) \) to control the Bias-Variance Tradeoff.
 Only one hyper-parameter \(p \in [0, 1) \) that is less sensitive.
 NB: \(p = 0.5 \) works well!

On the other hand, tanh activations (in \([-1,1]\)) are sharper:
More “helpful” features learned by “preventing co-adaptation”
(Hinton et al., 2012)
Intergration in a complete recognition system

Performance improves when language constraints (vocabulary, LM) are added.

Decoding in a hybrid RNN/HMM framework \(\frac{p(y|x)}{p(y)} \propto \frac{p(x|y)}{p(x)} \)

- **HMM:** One state for each label including blank, with self-loop and outgoing transition
- **Lexicon:** Each word is the sequence of character HMMs with optional blanks in between
- **Language Model:** Word \(n \)-grams

The goal is to find the optimal word sequence \(\hat{W} \)

\[
\hat{W} = \arg \max_W p(W|X) = \arg \max_W p(X|W)p(W)
\] \((1) \)
Results in a complete system:

Word Error Rate of Full Systems (Optical Model + Lexicon/Language Model):

<table>
<thead>
<tr>
<th>Database</th>
<th>Language</th>
<th># words</th>
<th># words in vocabulary</th>
<th>% OOV</th>
<th>LM</th>
<th>Perplexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rimes</td>
<td>French</td>
<td>5,639</td>
<td>12k</td>
<td>2.6%</td>
<td>4-gram</td>
<td>18</td>
</tr>
<tr>
<td>IAM</td>
<td>English</td>
<td>25,920</td>
<td>50k</td>
<td>3.7%</td>
<td>3-gram</td>
<td>329</td>
</tr>
<tr>
<td>OpenHaRT</td>
<td>Arabic</td>
<td>47,837</td>
<td>95k</td>
<td>6.8%</td>
<td>3-gram</td>
<td>1162</td>
</tr>
</tbody>
</table>

Dropout improves Recurrent Neural Networks for Handwriting Recognition

Vu Pham Théodore Bluche Christopher Kermorvant Jérôme Louradour
Conclusions and future work

- Dropout acts as a regularizer: outgoing weights tend to be lower
- Dropout improves accuracy of Offline Text Recognition with RNN
 about 10-20% improvement in CER and WER
- Training convergence with dropout is longer
 roughly twice slower
Thank you for your attention!

Questions and comments are welcome.

tb@a2ia.com, jl@a2ia.com