Weak Equivalences in Psi-calculi

Magnus Johansson Jesper Bengtson Joachim Parrow Björn Victor
Dept. of Information Technology, Uppsala University, Sweden

Abstract—Psi-calculi extend the pi-calculus with nominal datatypes to represent data, communication channels, and logics for facts and conditions. This general framework admits highly expressive formalisms such as concurrent higher-order constraints and advanced cryptographic primitives. We here establish the theory of weak bisimulation, where the τ actions are unobservable. In comparison to other calculi the presence of assertions poses a significant challenge in the definition of weak bisimulation, and although there appears to be a spectrum of possibilities we show that only a few are reasonable. We demonstrate that the complications mainly stem from psi-calculi where the associated logic does not satisfy weakening.

We prove that weak bisimulation equivalence has the expected algebraic properties and that the corresponding observation congruence is preserved by all operators. These proofs have been machine checked in Isabelle. The notion of weak barb is defined as the output label of a communication action, and weak barred equivalence is bisimilarity for τ actions and preservation of barbs in all static contexts. We prove that weak barred equivalence coincides with weak bisimulation equivalence.

I. INTRODUCTION

In our earlier work [4] we introduced psi-calculi: a framework for advanced mobile process calculi. These accommodate applications with complex data structures and their operations, and high level logics for use in conditional constructs. Extensions of the pi-calculus are not new as such, but psi-calculi provide a single general and parametric framework with a clean theory and machine-checked proofs. In [4] we presented the labelled semantics, strong bisimulation congruence and algebraic properties; its implementation in the theorem prover Isabelle was presented in [5]; a fully abstract symbolic semantics appeared in [17].

In the present paper we establish the theory of weak (or observational) equivalences for psi-calculi. These equivalences abstract from the internal behaviour of the processes and are essential for applications, e.g. in simplifying descriptions in a modular way, and in verifying implementations against more abstract specifications. Interactions between internal components are disregarded unless they affect the externally visible behaviour. If the weak equivalence is compositional then the abstract specification can also be used as a part when building even larger systems, and this facilitates modular construction and reasoning.

The canonical weak equivalence is often considered to be barbed bisimulation congruence [18], [21] which is defined using the possible interactions, often called barbs, and reductions, closing under all contexts to form a congruence. Although natural and easy to understand this universal quantification of contexts makes the relation hard to use in proofs. It is a known hard problem to define weak equivalences that abstract from as much detail as possible and yet are both compositional and computationally tractable. A standard approach is to use weak bisimulations, where a single transition $a \xrightarrow{\tau}$ is simulated by a sequence of transitions where the internal τ actions are considered invisible, a so called weak transition \Rightarrow. In the pi-calculus several alternatives have been investigated for weak bisimulation, e.g. open, late and early; the latter coincides with barred equivalence [21].

Weak bisimulation has been studied for some extensions of the pi-calculus, but the results are not conclusive and a general framework is lacking. In the case of spi-calculus [2] the weak labelled bisimulations are rather complex and the spectrum of equivalences includes framed [2], alley [7], [8], [6], fenced [13], trellis [7], and hedged [9], where framed coincides with hedged [6], [9] and fenced with trellis [14]. For the applied pi-calculus, the weak labelled bisimulation defined in [1] does not coincide with barred equivalence and turns out to be non-compositional unless further restrictions on the calculus are imposed (as remarked in [4]). The explicit fusion calculus [23] defines weak barred equivalence which is compositional but computationally awkward because of a universal quantification over contexts. Extensions of the pi-calculus for constraint programming have been defined e.g. in [12] (the π^τ-calculus) and [11] (the CC-Pi calculus). The first defines only barred equivalence; the second defines only (strong) labelled bisimulation which turns out to be non-compositional (also as remarked in [4]).

In this paper we present a labelled weak bisimulation for psi-calculi and its associated congruence, without a universal quantification of contexts. We formally establish its algebraic properties, including compositionality. All results have been verified in nominal Isabelle.

The general framework of psi-calculi allows non-monotonic logics where a formula which holds at one point may be falsified by a transition, as in e.g. the “retract” construct of CC-Pi [10]. While adding expressive power, the non-monotonicity also poses new and unexpected challenges for weak bisimulation. With the possibility of new assertions (statements about data) appearing after any transition, “ob-
vious” laws such as \(P \approx \tau P \) become invalid. Intuitively this is because \(P \) may contain a retract that invalidates an action of its environment. As an example, consider an agent \(P \) which through a retract jams an internal communication in \(Q \), so that \(P \mid Q \) cannot progress. The agent \(\tau . P \) represents a state where the jamming has not yet started. Consequently \(Q \) can progress in the constellation \(\tau . P \mid Q \). In other words, \(P \) and \(\tau . P \) have demonstrably different effects on their environment: the \(\tau \) prefix might postpone a jamming and thereby allow other actions. This is in contrast to the situation in the standard pi-calculus where \(\tau . P \mid Q \) has no more actions than \(P \mid Q \). We prove that if monotonicity is enforced, by a logical weakening law saying that whatever is true stays true, this situation cannot arise and the definition of weak bisimulation can be significantly simplified.

We finally introduce a weak barbed bisimulation where the observations, or bars, are simply the immediately available output actions. This results in a more intuitively obvious definition. We prove that it coincides with weak labelled bisimulation. In this way the intuitively attractive barbed equivalence is given the powerful proof technique of labelled bisimulation which does not require closure under all contexts.

In the next section we review the basic definitions of syntax, semantics, and strong bisimulation of psi-calculi. In Section III we present the first variant of weak bisimulation. This is intended for psi-calculi where logical weakening holds, and results in a relatively traditional bisimulation definition. In Section IV we present the second more general variant of weak bisimulation, applicable to all psi-calculi, and explain and motivate it by examples. Section V presents our results on algebraic properties and compositionality, and the related notion of weak congruence. In Section VI we introduce the notions of bar and barbed bisimulation equivalences, and prove that this equivalence coincides with weak bisimilarity. Finally in Section VII we conclude and describe ongoing and future work.

II. PSI-CALCULI

This section is a brief recapitulation of psi-calculi; for a more extensive treatment including motivations and examples see [4].

We assume a countably infinite set of atomic names \(N \) ranged over by \(a, b, \ldots, z \). Intuitively, names will represent the symbols that can be scoped, and also represent symbols acting as variables in the sense that they can be subject to substitution. A nominal set [20], [15] is a set equipped with a formal notion of what it means for a name \(a \) to occur in an element \(X \) of the set, written \(a \in n(X) \) (often pronounced “\(a \) is in the support of \(X \)”). We write \(a \# X \), pronounced “\(a \) is fresh for \(X \)”, for \(a \notin n(X) \), and if \(A \) is a set of names we write \(A \# X \) to mean \(\forall a \in A . a \# X \). A nominal data type is a nominal set equipped with a set of operators on it.

A psi-calculus is defined by instantiating three nominal data types and four operators:

Definition 1 (Psi-calculus parameters). A psi-calculus requires the three (not necessarily disjoint) nominal data types: the (data) terms \(T \), ranged over by \(M, N \), the conditions \(C \), ranged over by \(\varphi \), the assertions \(A \), ranged over by \(\Psi \), and the four operators:

\[
\begin{align*}
\leftrightarrow : T \times T & \rightarrow C \quad \text{Channel Equivalence} \\
\otimes : A \times A & \rightarrow A \quad \text{Composition} \\
1 : A & \quad \text{Unit} \\
\vdash \subseteq A \times C & \quad \text{Entailment}
\end{align*}
\]

We assume that there exists a simultaneous substitution function \(\sigma[a := M] \) for any term, assertion or condition \(X \). The binary functions above will be written in infix. Thus, if \(M \) and \(N \) are terms then \(M \leftrightarrow N \) is a condition, pronounced “\(M \) and \(N \) are channel equivalent” and if \(\Psi \) and \(\Psi' \) are assertions then so is \(\Psi \otimes \Psi' \). We say that a term is a channel if it is channel equivalent to something. Also we write \(\Psi \vdash \varphi \), “\(\Psi \) entails \(\varphi \)”, for \((\Psi, \varphi) \in \vdash \).

We say that two assertions are equivalent, written \(\Psi \approx \Psi' \) if they entail the same conditions, i.e. for all \(\varphi \) we have that \(\Psi \vdash \varphi \iff \Psi' \vdash \varphi \). We impose certain requisites on the sets and operators. In brief, channel equivalence must be symmetric and transitive, \(\otimes \) must be compositional with regard to \(\simeq \), and the assertions with \((\otimes, 1) \) form an abelian monoid. For details see [4].

In the following \(\bar{a} \) means a finite (possibly empty) sequence of names, \(a_1, \ldots, a_n \). The empty sequence is written \(\epsilon \) and the concatenation of \(\bar{a} \) and \(\bar{b} \) is written \(\bar{a} \bar{b} \). When occurring as an operand of a set operator, \(\bar{a} \) means the corresponding set of names \(\{a_1, \ldots, a_n\} \). We also use sequences of terms, conditions, assertions, etc., in the same way.

A frame \(F \) can intuitively be thought of as an assertion with local names: it is of the form \((\nu \bar{b})\Psi \) where \(\bar{b} \) is a sequence of names that bind into the assertion \(\Psi \). We use \(F, G \) to range over frames. We overload \(\Psi \) to also mean the frame \((\nu \bar{e})\Psi \) and \(\otimes \) to mean composition on frames defined by \((\nu \bar{b})\Psi_1 \otimes (\nu \bar{b})\Psi_2 = (\nu \bar{b}_1 \bar{b}_2)(\Psi_1 \otimes \Psi_2) \) where \(\bar{b}_1 \# \bar{b}_2, \Psi_2 \) and vice versa. We also write \((\nu \bar{c})(\nu \bar{b})\Psi \) to mean \((\nu \bar{c} \bar{b})\Psi \).

Alpha equivalent frames are identified. We define \(F \vdash \varphi \) to mean that there exists an alpha variant \((\nu \bar{b})\Psi \) of \(F \) such that \(\bar{b} \# \varphi \) and \(\Psi \vdash \varphi \). We also define \(F \approx G \) to mean that for all \(\varphi \) it holds that \(F \vdash \varphi \) iff \(G \vdash \varphi \). Intuitively a condition is entailed by a frame if it is entailed by the assertion and does not contain any names bound by the frame. Two frames are equivalent if they entail the same conditions.
Definition 2 (Psi-calculus agents). Given valid psi-calculus parameters as in Definition 1, the psi-calculus agents, ranged over by \(P, Q, \ldots \), are of the following forms.

\[
\begin{align*}
0 & \quad \text{Nil} \\
\overline{M} \cdot N.P & \quad \text{Output} \\
\overline{M}(\lambda x) \cdot N.P & \quad \text{Input} \\
\text{case } \nu \varphi_1 : P_1 \mid \cdots \mid \nu \varphi_n : P_n \mid P & \quad \text{Case} \\
\nu \varphi \mid P & \quad \text{Restriction} \\
!P & \quad \text{Parallel} \\
\{P\} & \quad \text{Replication} \\
\{\Psi\} & \quad \text{Assertion}
\end{align*}
\]

In the Input \(\overline{M}(\lambda x) \cdot N.P \) we require that \(\overline{x} \subseteq \mathbb{N}(N) \) is a sequence without duplicates, and the names \(\overline{x} \) bind occurrences in both \(N \) and \(P \). Restriction binds \(\alpha \) in \(P \). An assertion is guarded if it is a subterm of an Input or Output. In a replication \(!P\) there may be no unguarded assertion in \(P \), and in case \(\nu \varphi_1 : P_1 \mid \cdots \mid \nu \varphi_n : P_n \mid P \) there may be no unguarded assertion in any \(P_i \). We identify alpha-equivalent agents.

Some notational conventions: We sometimes abbreviate the agent case \(\nu \varphi_1 : P_1 \mid \cdots \mid \nu \varphi_n : P_n \) as case \(\nu \overline{\varphi} : \overline{P} \), or if \(n = 1 \) as if \(\nu \varphi \) then \(P \). In psi-calculi where a condition \(T \) exists such that \(\Psi \vdash T \) for all \(\Psi \) we write \(P \vdash Q \) to mean case \(T : P \mid T : Q \). We introduce the prefix form \(\tau.P \) through a communication over a restricted channel.\(^1\)

The frame \(F(P) \) of an agent \(P \) is defined inductively as follows:

\[
\begin{align*}
F(\overline{M}(\lambda x)N.P) &= F(\overline{M} \cdot N.P) = F(0) \\
F(\text{case } \nu \overline{\varphi} : \overline{P}) &= F(\nu \overline{P}) = 1 \\
F(P | Q) &= F(P) \otimes F(Q) \\
F(\nu \varphi \cdot P) &= (\nu \varphi)F(P)
\end{align*}
\]

A consequence is that \(F(\tau.P) \approx 1 \).

The actions ranged over by \(\alpha, \beta \) are of the following three kinds: Output \(\overline{M}(\nu a) \cdot N \) where \(\alpha \subseteq \mathbb{N}(N) \), Input \(\overline{M} \cdot N \), and Silent \(\tau \). Here we refer to \(\overline{M} \) and \(\overline{N} \) as the object. We define \(\text{bn}(\overline{M}(\nu a) \cdot N) = \overline{a} \) and \(\text{bn}(\alpha) = \emptyset \) if \(\alpha \) is an input or \(\tau \). We also define \(\text{u}(\tau) = 0 \) and \(\text{u}(\alpha) = \mathbb{N}(M) \cup \mathbb{N}(N) \) for the input and output actions. As in the pi-calculus, the output \(\overline{M}(\nu a) \cdot N \) represents an action sending \(N \) along \(M \) and opening the scopes of the names \(\overline{a} \). Note in particular that the support of this action includes \(\overline{a} \). Thus \(\overline{M}(\nu a) \cdot \overline{M}(\nu b) \) are different actions.

Definition 3 (Transitions). A transition is of the kind \(\Psi \vdash P \rightarrow P' \), meaning that in the environment \(\Psi \) the agent \(P \) can do an \(\alpha \) to become \(P' \). The transitions are defined inductively in Table I. We write \(P \rightarrow P' \).

Agents, frames and transitions are identified by alpha equivalence. In a transition the names in \(\text{bn}(\alpha) \) bind into both the action object and the derivative, therefore \(\text{bn}(\alpha) \) is in the support of \(\alpha \) but not in the support of the transition. This means that the bound names can be chosen fresh, substituting each occurrence in both the object and the derivative.

Definition 4 (Strong bisimulation). A strong bisimulation \(R \) is a ternary relation between assertions and pairs of agents such that \(R(\Psi, P, Q) \) implies all of

1. Static equivalence: \(\Psi \otimes F(P) \cong \Psi \otimes F(Q) \)
2. Symmetry: \(R(\Psi, Q, P) \)
3. Extension of arbitrary assertion: \(\forall \Psi'. R(\Psi \otimes \Psi', P, Q) \)
4. Simulation: for all \(\alpha, P' \) such that \(\text{bn}(\alpha) \# \Psi \), there exists a \(Q' \) such that

\[
\Psi \vdash P \rightarrow P' \quad \Psi \vdash Q \rightarrow Q' \quad R(\Psi, P', Q')
\]

We define \(P \sim Q \) to mean that there exists a bisimulation \(R \) such that \(R(\Psi, P, Q) \), and write \(\sim \) for \(\sim_1 \).

Definition 5 (Strong congruence). \(P \sim Q \) means that for all \(\overline{x} : M \) it holds \(P[\overline{x} : M] \sim Q[\overline{x} : M] \), and we write \(P \sim Q \) for \(P \sim_1 Q \).

In [4] we explore the algebraic properties of \(\sim \), in particular we prove it a congruence for any psi-calculus.

III. WEAK BISIMULATION

We introduce weak bisimulation equivalence, \(\approx \), with the intuition that \(\tau \) actions are invisible. This notion is standard in many variants of the pi-calculus, but in our framework it poses unexpected challenges. As an example, consider the law \(P \approx \tau.P \). This law looks obvious and indeed holds for weak bisimulation in the pi-calculus. But in psi-calculi in general it would imply that parallel composition does not preserve \(\approx \). Consider a situation where it holds that \(1 \vdash \nu \varphi \) and \(F(P) \not\vdash \varphi \). In other words, \(F(P) \) makes condition \(\varphi \) false. Now consider

\[
P \mid \nu \varphi \quad \text{then} \quad Q \\
\tau.P \mid \nu \varphi \quad \text{then} \quad Q
\]

Here only the right hand side has the possibility of acting like \(Q \). Therefore the left and right hand sides are not in general equivalent. If parallel preserves \(\approx \) then it follows that \(P \approx \tau.P \) are not always equivalent.

The root of this issue is that the frame of \(P \) can falsify the condition \(\varphi \). There are some circumstances where this might happen; an example is if the assertions represent constraint stores and the constraint system admits retracts. Suppose that \(P \) represents a retract of \(\varphi \). A system sitting in parallel with \(P \) cannot infer \(\varphi \), and therefore if \(\varphi \) then \(Q \) will have

\[\text{Formally, let } M_\alpha \text{ be a term that contains the name } \alpha. \text{ Define } \tau.P = (\nu a)(\overline{M}_\alpha \cdot P[M_\alpha, 0]) \text{ for } a \# P \text{ in psi-calculi where } \forall \Psi. \Psi \vdash M_\alpha \leftrightarrow M_\alpha \text{ and for all other terms } N \text{ we have that } \forall \Psi. \Psi \not\vdash M_\alpha \leftrightarrow N. \text{ This is the generalisation of the usual definition of } \tau \text{ in psi-calculi: } \tau.P = (\nu a)(\overline{\Psi} \cdot P[\overline{0}]) \text{ for } a \# P.\]
Since the law other words, no assertion can falsify any condition. With this and with weakening this implies \(\tau \). Actions can be inserted or removed when \(\tau \) becomes blocked. Thus actions can be deemed equivalent: the parallel context of \(\tau.P \) then \(Q \) should simulate by doing zero or more \(\tau \) actions before and after.

Clauses 2 and 3 are unchanged.

We define \(\Psi \vdash P \implies P' \) to mean that there exist \(P_1, \ldots P_n \) where \(P = P_1 \), \(P' = P_n \), and \(\Psi \vdash P_i \xrightarrow{\tau} P_{i+1} \) for all \(i \) in \([1, n - 1]\), allowing the case where \(n = 1 \) and \(P = P' \). The weak transition \(\Psi \vdash P \xrightarrow{\alpha} P' \) is defined as \(\Psi \vdash P \implies P'' \) and \(\Psi \vdash P'' \xrightarrow{\alpha} P''' \) and \(\Psi \vdash P''' \implies P' \). We also define \(P \preceq Q \), pronounced \(P \) statically implies \(Q \), to mean that \(\forall \varphi. \Psi \vdash P \vdash \varphi \implies (\Psi \vdash Q) \vdash \varphi \). We write \(P \preceq Q \) for \(P \preceq Q \).

Definition 6 (Simple weak bisimulation). A simple weak bisimulation \(\mathcal{R} \) is a ternary relation between assertions and pairs of agents such that \(\mathcal{R}(\Psi, P, Q) \) implies all of

1. Weak static implication: There exists \(Q' \) such that \(\Psi \vdash Q \implies Q' \) and \(P \preceq Q' \) and \(\mathcal{R}(\Psi, P, Q') \).
2. Symmetry: \(\mathcal{R}(\Psi, Q, P) \)
3. Extension of arbitrary assertion: \(\forall \Psi'. \mathcal{R}(\Psi', Q, P) \)
4. Weak simulation: for all \(\alpha, P' \) such that \(\text{bn}(\alpha) \# \Psi, Q \) and \(\Psi \vdash P \xrightarrow{\alpha} P' \) it holds

\[
\begin{align*}
\text{if} \ \alpha = \tau : & \quad \exists Q'. \Psi \vdash Q \implies Q' \land \mathcal{R}(\Psi', Q') \\
\text{if} \ \alpha \neq \tau : & \quad \exists Q'. \Psi \vdash Q \xrightarrow{\alpha} Q' \land \mathcal{R}(\Psi, P', Q')
\end{align*}
\]

We define \(P \preceq_{\text{simple}} Q \) to mean that there exists a simple weak bisimulation \(\mathcal{R} \) such that \(\mathcal{R}(\Psi, P, Q) \), and write \(P \preceq_{\text{simple}} Q \) for \(P \preceq_{\text{simple}} Q \).

The one point which may not be immediately obvious is Clause 1, weak static implication, where the conjunct \(\mathcal{R}(\Psi, P, Q') \) may be surprising. It states that \(Q \) must evolve to a \(Q' \) that is statically implied by \(P \), and also bisimilar to \(P \). This last requirement may seem unnecessarily strong, but in fact without it the resulting simple weak bisimulation equivalence would not be preserved by the parallel operator. To prove this, let \(\preceq_{\text{simple}} \) be defined as simple weak bisimulation above but without the conjunct \(\mathcal{R}(\Psi, P, Q') \) in Clause 1. Let

\[
\begin{align*}
\text{COM:} & \quad \Psi \otimes \Psi \otimes \Psi \vdash P \xrightarrow{\alpha} P' \quad \Psi \otimes \Psi \otimes \Psi \vdash Q \xrightarrow{K} Q' \quad \tilde{\alpha} # Q

\text{PAR:} & \quad \Psi \otimes \Psi \vdash P \xrightarrow{\alpha} P' \quad \Psi \otimes \Psi \vdash P Q \xrightarrow{\alpha} P Q' \quad \text{bn}(\alpha) # Q

\text{OPEN:} & \quad \Psi \vdash P \xrightarrow{\alpha} P' \quad \Psi \vdash (ob) P \xrightarrow{\alpha} (ob) P' \quad b \in n(\alpha)

\text{Table I}
\end{align*}
\]
there be an assertion \(\Psi \) and condition \(\varphi \) such that \(\Psi \vdash \varphi \) and
\(1 \not\vdash \varphi \), and let \(L, M, N \) be distinct terms. Here and in the
following we elide unimportant prefix objects. Consider the
following agents (the diagrams illustrate agents informally):
\[
\begin{align*}
P &= (\Psi) | (\tau \cdot M \cdot 0 + \tau \cdot N \cdot 0) \\
Q &= \tau \cdot (\Psi) | \tau \cdot (\Psi) | \tau \cdot (\Psi) | N \cdot 0 \\
R &= \text{if } \varphi \text{ then } L \cdot 0 \\
\end{align*}
\]

The transitions from \(P \) and \(Q \) are identical, only their frames

differ in that \(\mathcal{F}(P) = \Psi \) and \(\mathcal{F}(Q) = 1 \). With our original
definition \(P \not\approx_{\text{mp}} Q \), since there is no appropriate \(Q' \) for
Clause 1. In contrast we have \(P \approx_{\text{mp}} Q \) since \(Q \xrightarrow{\tau} Q' \)
implies \(\mathcal{F}(Q') = \mathcal{F}(P) \). But to simulate \(P|R \xrightarrow{\tau} P|0 \)
from \(Q|R \) the only possibilities are \(Q|R \xrightarrow{\tau} (\Psi)|M \cdot 0 |0 \)
and \(Q|R \xrightarrow{\tau} (\Psi)|N \cdot 0 |0 \). Neither of these can continue
to simulate \(P|0 \) which can perform both actions \(M \) and \(N \).
Therefore \(P|R \not\approx_{\text{mp}} Q|R \).

Simple weak bisimulation is the natural weak counterpart
of Definition 4. For all psi-calculi that satisfy the weakening
requisite it is sufficient. As we demonstrate in the following
section, without weakening the simple weak bisimulation is
in general not preserved by parallel composition and also not
transitive; therefore a more elaborate definition is required
in these cases.

IV. PSI-CALCULI WITHOUT WEAKENING

We now generalise to psi-calculi without the weakening
requisite. It turns out that the definition of weak labelled
bisimulation needs to be adjusted in Clauses 1 and 4, where
the interplay of assertions and transitions is quite subtle.
We proceed to give the full definition of weak labelled
bisimulation and a proof that it coincides with \(\approx_{\text{mp}} \) for psi-
calculi with weakening, followed by a series of examples
motivating the need for the added complexities.

Definition 7 (Weak bisimulation). A weak bisimulation \(R \)
is a ternary relation between assertions and pairs of agents
such that \(R(\Psi, P, Q) \) implies all of

1) Weak static implication:
\[
\forall \Psi \exists Q'', Q' . \\
\Psi \vdash Q \Longrightarrow Q'' \land P \leq_Q Q'' \land \\
\Psi \otimes \Psi' \vdash Q'' \Longrightarrow Q' \land R(\Psi \otimes \Psi', P, Q')
\]

2) Symmetry: \(R(\Psi, Q, P) \)

3) Extension of arbitrary assertion:
\[
\forall \Psi' . R(\Psi \otimes \Psi', P, Q)
\]

4) Weak simulation: for all \(\alpha, P' \) such that \(\text{bn} (\alpha) \# \Psi, Q \)
and \(\Psi \vdash P \xrightarrow{\alpha} P' \) it holds
\[
\begin{align*}
&\text{if } \alpha = \tau : \exists Q'. \Psi \vdash Q \Longrightarrow Q' \land R(\Psi, P', Q') \\
&\text{if } \alpha \neq \tau : \forall \Psi \exists Q'''. Q'''. \\
\Psi \vdash Q \Longrightarrow Q''' \land P \leq_Q Q''' \land \\
\Psi \vdash Q''' \xrightarrow{\alpha} Q'' \land \\
\exists Q'. \Psi \otimes \Psi' \vdash Q'' \Longrightarrow Q' \land R(\Psi \otimes \Psi', P', Q')
\end{align*}
\]

We define \(P \approx_{\Psi} Q \) to mean that there exists a weak
bisimulation \(R \) such that \(R(\Psi, P, Q) \) and write \(P \approx Q \)
for \(P \approx_{\Psi} Q \).

Theorem 8. For psi-calculi that satisfy weakening, \(\approx_{\text{mp}} \) and
\(\approx_{\Psi} \) coincide.

The proof has been verified in Isabelle. Proof sketch for
Clause 4: In one direction, every weak bisimulation with
weakening is also a simple weak bisimulation (just take
\(\Psi' = 1 \)). For the other direction we must show that in psi-
calculi that satisfy weakening, every simple weak bisimulation
is a weak bisimulation. We explain how the additional
requirements of clause 4 in weak bisimulation are satisfied.
First, use Clause 1 to find \(Q' \) such that \(\Psi \vdash Q \Longrightarrow Q' \)
and \(P \leq_Q Q' \) and \(R(\Psi, P, Q') \). Using the latter with
Clause 4 we get that \(\Psi \vdash Q' \Longrightarrow Q' \) with \(R(\Psi, P', Q') \),
and since \(\Psi \vdash Q \Longrightarrow Q' \) we get a corresponding
\(\Psi \vdash Q \Longrightarrow Q' \), where the first part of the weak transition
passes through \(Q' \). Now use the lemma (which requires
weakening) \(P \leq_Q Q \) and \(\Psi \vdash Q\xrightarrow{\alpha} Q' \Longrightarrow P \leq_Q Q' \).
This gives the conjunct \(P \leq_Q Q'' \) in Clause 4. Next use
the lemma \(\Psi \vdash P \xrightarrow{\alpha} P' \Rightarrow \Psi \otimes \Psi' \vdash P \xrightarrow{\alpha} P' \)
(which also requires weakening). This means that the part
\(\Psi \otimes \Psi' \vdash Q'' \ldots \) follows from the simpler Clause 4 (which
have the same without \(\otimes \Psi' \)). Finally the last conjunct
\(R(\Psi \otimes \Psi', P', Q') \) follows from \(R(\Psi, P', Q') \) of the simpler
Clause 4, and Clause 3.

We now proceed to motivate the added complexity of
Clause 4.

Example: the use of \(P \leq_Q Q'' \). We shall demonstrate
that with a simplification omitting \(P \leq_Q Q'' \) in Clause 4,
i.e., if we do not take into account the conditions that hold
at the point of executing the visible part of a simulation,
then equivalence is not in general preserved by parallel. Let
\(\approx' \) be defined with this simplification. Choose an instance
with an assertion \(\Psi \) and condition \(\varphi \) such that \(\Psi \vdash \varphi \) and
\(1 \not\vdash \varphi \), i.e., \(\Psi \) makes \(\varphi \) false. Consider the agents
\[
\begin{align*}
P &= \tau \cdot (\Psi) | \tau \cdot M \cdot 0 + M \cdot (\Psi) \\
Q &= \tau \cdot (\Psi) | \tau \cdot M \cdot 0 \\
R &= \text{if } \varphi \text{ then } M \cdot N \cdot 0
\end{align*}
\]
Here $P \simeq' Q$. To see this, consider the only transition that differs between the agents, namely $P \overset{M}{\longrightarrow} (\{\Psi\}).$ This can be simulated by $Q \overset{\tau}{\longrightarrow} (\{\Psi\}) \cup M.0 = Q''$ and $Q'' \overset{M}{\longrightarrow} (\{\Psi\}) \cup M.0$. But in composition with R, we have through the second branch of P that $P|R \overset{\tau}{\longrightarrow} (\{\Psi\}) \cup N.0$. This cannot be weakly simulated by $Q|R$ since $Q|R \overset{\tau}{\longrightarrow} (\{\Psi\}) \cup M.0 \parallel R$ which has no N transition. Therefore $P|R \not\simeq Q|R$ and \simeq' is not preserved by parallel.

Example: the quantification $\forall \Psi'$. Next we motivate the quantification of Ψ' in the subclause $\alpha \neq \tau$ of weak simulation, showing that without it, equivalence would not be preserved by parallel. Let \simeq be defined with this simplification. Let Ψ and φ be such that $1 \vdash \varphi$ and $\Psi \not\models \varphi$ and let

$P = \overline{M}. \text{if } \varphi \text{ then } \tau.P'$

$Q = P + \text{if } \varphi \text{ then } \overline{M}.P'$

$R = \overline{M}. (\{\Psi\})$

Here $P \simeq' Q$. Clearly we have $Q|R \overset{\tau}{\longrightarrow} P'|\{\Psi\}$ through the second branch of Q. This cannot be weakly simulated by $P|R$. Here the only transition is $P|R \overset{\tau}{\longrightarrow} \text{if } \varphi \text{ then } \tau.P'|\{\Psi\}$ which has no further transition. Therefore $P|R \not\simeq Q|R$ and \simeq' is not preserved by parallel.

Example: quantifier order of Ψ' and Q''. Next we motivate the order of the quantifiers, showing that if we commute the quantifiers $\forall \Psi'$ and $\exists Q''$ the resulting “equivalence” would not be transitive. Let \simeq be defined with these quantifiers commuted. Let all Q_i for $i = 1, 2, 3$ be distinct but weakly equivalent, and let $\varphi, \neg \varphi$ be two conditions that partition the assertions in two disjoint sets $\{\Psi, \Psi \not\models \varphi \land \Psi \not\models \neg \varphi\}$ and $\{\Psi, \Psi \not\models \varphi \land \Psi \models \neg \varphi\}$. Let \top be a condition that is entailed by all assertions, and let

$U = \text{case } \varphi : \tau.Q_1 \parallel \neg \varphi : \tau.Q_2$

$V = \text{case } \varphi : \tau.Q_1 \parallel \neg \varphi : \tau.Q_2 \parallel \top : \tau.Q_3$

Here $U \simeq V$. The rightmost branch in $\Psi \triangleright V \overset{\tau}{\longrightarrow} Q_3$ is simulated by one of the two branches in U (which one depends on Ψ). Let

$P = \overline{M}.Q_1 + \overline{M}.U$

$Q = \overline{M}.U$

$R = \overline{M}.V$

Our point is that although $P \simeq R \simeq Q$ we have $P \not\simeq' R$ and $R \not\simeq Q$, but not $P \not\simeq Q$. The crucial difference between the equivalences is explained as follows. $P \simeq Q$ holds because the only nontrivial simulation is for Q to simulate the first branch of P. This is done by first doing \overline{M} leading to U, and then for all Ψ' continuing to either Q_1 or Q_2, depending on whether $\Psi' \not\models \varphi$ or not. Here the quantification order is important. If the final bisimulation clause would read $\exists Q'' \forall \Psi'$, then Q cannot simulate the first branch of P and therefore $P \not\simeq Q$. Note that $P \simeq R$ since the only nontrivial case is again for R to simulate the first branch of P. This can be done through the third branch leading to Q_3. This holds for any Ψ'.

Example: quantifier order of Ψ' and Q''. In Clause 4, the quantifier order is $\forall \Psi' \exists Q''$. Let \simeq' be defined with the alternative order $\exists Q'' \forall \Psi'$. The difference is highlighted by the following example. Let φ and $\neg \varphi$ be two conditions such that for any assertion exactly one of them is entailed, as in the previous example. Let

$P = \overline{M}.Q' + Q$

$Q = \overline{M}. \text{if } \varphi \text{ then } \tau.Q' + \overline{M}. \text{if } \neg \varphi \text{ then } \tau.Q'$

Here $P \simeq Q$ and $P \not\simeq' Q$. To see this consider how Q can simulate $P \overline{M}.Q'$. Using \simeq', for all Ψ' we must find a Q'' such that $Q \overline{M}.Q' \parallel Q''$ and $Q'' \equiv Q'$. This holds, since the choice of Q'' may depend on Ψ'. Using \simeq' we must find one Q'' suitable for all Ψ', and there is none.

As it turns out \simeq' is a viable definition, in the sense that it is transitive and preserves parallel. But from an observational point of view it is hard to argue that P and Q should be different — in essence that would give the observer the power to observe that a conditional branch has been
passed. The difference between \approx and \approx' is reminiscent of the difference between late and early equivalence, and as we shall see in Section VI the weak barbed bisimulation corresponds to \approx and not to \approx'.

Example: quantifiers in Clause 1.: Keeping the simpler Clause 1 from Definition 6 will also yield an equivalence \approx that preserves parallel. A distinguishing example is similar to the one above. Again, let φ and $\neg \varphi$ be two conditions such that for any assertion exactly one of them is entailed. Let Ψ be an assertion such that $1 \leq \Psi$ and $\Psi \not\leq 1$ and $\Psi \otimes \Psi \approx 1$.

$$
P = (\Psi \mid \tau. \varphi \Rightarrow \tau. Q' + \tau. \neg \varphi \Rightarrow \tau. Q')$$
$$Q = \tau. (\Psi \mid \varphi \Rightarrow \tau. Q') + \tau. (\Psi \mid \neg \varphi \Rightarrow \tau. Q')$$

Then $P \approx Q$. The critical argument is that in Clause 1, depending on whether $\Psi \otimes \Psi \vdash \varphi$ or not, Q can evolve to either $(\Psi \mid \varphi \Rightarrow \tau. Q')$ or $(\Psi \mid \neg \varphi \Rightarrow \tau. Q')$, in either case reaching an agent with a frame Ψ. It can then continue to $(\Psi \mid Q' \approx (\Psi \otimes \Psi) \mid Q \approx Q$. In contrast $P \not\approx Q$, since Q cannot evolve to an agent that has Ψ as frame and is bisimilar to P. Again, it is hard to argue that they should be different from an observational point of view, and they are indeed weakly barbed equivalent.

V. Algebraic properties

In this section we establish results about weak bisimulation equivalence and the related congruence. First, note that weak bisimulation is not preserved by the case construct. The reasoning is analogous to why weak bisimulation is not preserved by the operator $+$ in CCS or the pi-calculus: $\tau.0 \not\approx 0$ but $a.0 + \tau.0 \not\approx a.0 + 0$. If the left-hand process does its τ action, the right-hand can only simulate by standing still. In the next step, the right-hand can do the a action which the left-hand can no longer simulate. This problem is solved in a standard way: in the simulation clause of bisimulation where $\alpha = \tau$, Q must simulate the τ action made by P with a τ chain containing at least one τ action.

Weak bisimulation is also not preserved by input prefixes, again for the same reason as in the pi-calculus. Closing the relation under substitution in the same way as is done for strong bisimulation leads to the definition of weak congruence, denoted \sim.

Definition 9 (Weak congruence). P and Q are weakly τ-bisimilar, written $\Psi \vdash P \sim_{\tau} Q$, if $P \approx_{\Psi} Q$ and they also satisfy weak congruence simulation:

for all P' such that $\Psi \vdash P \xrightarrow{\tau} P'$ it holds:

$$\exists Q'. \Psi \vdash Q \xRightarrow{\psi} Q' \wedge P' \approx_{\Psi} Q'$$

and similarly with the roles of P and Q exchanged. We define $P \approx Q$ to mean that for all Ψ, and for all \bar{x}, M of equal length it holds that $\Psi \vdash P[\bar{x} := M] \approx_{\tau} Q[\bar{x} := M]$.

An expected result is:

Theorem 10. If $P \sim Q$ then $P \approx Q$.

With this and the results in [4] it is straightforward to infer:

Theorem 11 (Structural laws).

$$P \approx P \mid 0$$
$$P \mid (Q \mid R) \approx (P \mid Q) \mid R$$
$$P \mid Q \approx Q \mid P$$
$$\nu a.0 \approx 0$$
$$\nu M.\nu a.P \approx (\nu a)\nu M.\nu a.P$$
$$\nu a.\nu M.N.P \approx (\nu a)\nu M.\nu a.N.P$$
$$\nu a.\nu M \approx (\nu a)\nu M$$

As noted, weak bisimilarity preserves all operators except case and input prefix:

Theorem 12. For all Ψ such that $\alpha, \bar{a} \not\# \Psi$:

1. $P \approx_{\Psi} Q \implies P \mid R \approx_{\Psi} Q \mid R$
2. $P \approx_{\Psi} Q \implies (\nu a)P \approx_{\Psi} (\nu a)Q$
3. $P \approx_{\Psi} Q \implies \nu P \approx_{\Psi} \nu Q$
4. $P \approx_{\Psi} Q \implies \nu M.N.\nu M.\nu a.P \approx (\nu a)\nu M.\nu a.N.P$.
5. $\forall \bar{L}. \nu a \approx_{\Psi} \nu a \approx_{\Psi} M.\nu a \approx_{\Psi} \nu M.\nu a.P$.

Weak congruence is aptly named:

Theorem 13. Weak congruence \approx is preserved by all operators.

We have also proved the usual τ laws:

Theorem 14.

1. $P \approx_{\Psi} \tau. P$ in psi-calculi with weakening.
2. $P + \tau. P \approx \tau. P$.
3. $\alpha . \tau. P \approx \alpha . P$ in psi-calculi with weakening.
4. $\alpha . P + \alpha . (\tau. P + Q) \approx \alpha . (\tau. P + Q)$.

As noted in the beginning of Section III, Theorem 14(1) is not valid in general for psi-calculi that do not satisfy weakening. The same holds for Theorem 14(3), for a similar reason. In contrast, the remaining τ laws (2 and 4) are valid also in calculi without weakening.

The results in this section have been proved using the interactive theorem prover Isabelle [3] with its nominal datatype package [22].
VI. Barbed equivalence

We here introduce a straightforward notion of barbed equivalence, and demonstrate that it coincides with weak labelled bisimilarity. The barbed equivalence is defined in a traditional manner [18], [21] and is more intuitively obvious than the technically intricate Definition 7. At the same time, the barbed equivalence definition is not very practical for proofs since it embodies an explicit universal quantification over contexts. The result that the equivalences coincide means that we bestow the intuitively correct notion with the practical proof method of labelled bisimulations.

Barbed equivalence is derived from a few basic principles based on an informal notion of an observer. The first is to identify what are the barbs, or immediate observations, of an agent. In this paper the barbs will simply be the output actions: an agent has the barb $\nu (v\alpha) N$ precisely if it has a transition with that label. The second is to identify what it means for an agent to reduce, or evolve, to another agent. We choose the transitions $\xrightarrow{\tau}$ to represent this. In other words, for the purpose of barbed equivalence we use the same semantics as in Table I. Finally we identify what kind of contexts an observer may use. We here follow the work based on an informal notion of an observer. We here comment briefly on alternatives for the definition of weak barbed equivalence. As far as we know, previous barbed equivalences do not include the object of an action in the barb. In contrast, we include the whole label including the object. The necessity for this is illustrated by a psi-calculus where there are no assertions except 1 and no conditions, and where both k and $f(k)$ are terms but not channels, and M is a channel. Consider:

$$R = (\nu k)(f(k)) + (\nu k)Mk$$
$$S = (\nu k)(f(k))$$

R and S are not bisimilar since S cannot simulate R by performing an input of kind $M(\lambda x)N.T$. The only input pattern that matches $(\nu k)k$ is $(\lambda x)x$ and this also matches $(\nu k)f(k)$. Observe that the pattern $(\lambda x)k$ does not match $(\nu k)k$ because of the side condition $\bar{a}#Q$ in the COM rule.

An alternative to including objects in the barbs could be to require a condition name(x) that is entailed only if x is a name. In that case a parallel composition with $M(x).\text{if name}(x)$ then ... distinguishes between P and Q.

Note that input actions are not needed as barbs. Including such barbs would not change the proof of the theorem. We conjecture that the output subjects can be excluded in barbs, but removing them complicates the proof.

A consequence of Definition 16 is that the closure under static contexts recurs: after a reduction the agents are required to be barbed bisimilar and again satisfy Clause 3. In this we have followed [1]. An alternative is to close

The main theorem of this section is:

Theorem 17. $P \approx_{\text{barb}} Q$ if and only if $P \approx_{\text{barb}} Q$.

Proof sketch: The (\Rightarrow)-direction is immediate. Barb similarity and reduction simulation follow directly from Clause 4 in the definition of weak bisimulation, and closure under static contexts is proved using Theorem 12(1) and (2). The (\Leftarrow)-direction is more involved. The idea is to show \approx_{barb} to be a weak bisimulation by constructing contexts which expose transitions. The proof requires a minimum of expressiveness for the psi-calculus. It uses a set of channels written M_a that do not occur in any process under consideration. In other words, $\Psi \vdash M_a \lif M_a$, and for all other terms N we have that $\Psi \not\vdash M_a \lif N$. The proof also uses conditions ϕ_P for agents P with the property $N \lif \phi_P$ if and only if $F(P) \leq F$, for any frame F. In other words, ϕ_P is a condition that can be used to test if the environment is exactly the frame of P. If the terms M_a and conditions ϕ_P are not available in a psi-calculus, then they must be added for the proof of the theorem to hold. The details are found in [16].

We here comment briefly on alternatives for the definition of weak barbed equivalence. As far as we know, previous barbed equivalences do not include the object of an action in the barb. In contrast, we include the whole label including the object. The necessity for this is illustrated by a psi-calculus where there are no assertions except 1 and no conditions, and where both k and $f(k)$ are terms but not channels, and M is a channel. Consider:

$$R = (\nu k)(f(k)) + (\nu k)Mk$$
$$S = (\nu k)(f(k))$$

R and S are not bisimilar since S cannot simulate R by performing an input of kind $M(\lambda x)N.T$. The only input pattern that matches $(\nu k)k$ is $(\lambda x)x$ and this also matches $(\nu k)f(k)$. Observe that the pattern $(\lambda x)k$ does not match $(\nu k)k$ because of the side condition $\bar{a}#Q$ in the COM rule.

An alternative to including objects in the barbs could be to require a condition name(x) that is entailed only if x is a name. In that case a parallel composition with $M(x).\text{if name}(x)$ then ... distinguishes between P and Q.

Note that input actions are not needed as barbs. Including such barbs would not change the proof of the theorem. We conjecture that the output subjects can be excluded in barbs, but removing them complicates the proof.

A consequence of Definition 16 is that the closure under static contexts recurs: after a reduction the agents are required to be barbed bisimilar and again satisfy Clause 3. In this we have followed [1]. An alternative is to close
under contexts at top level, i.e., Clause 3 is omitted from the recursive definition, and barbed congruence is defined as barbed equivalence in all contexts. This is the approach in the original work on bars [18], [21]. The proofs become quite involved and use contexts with infinite sums. This technique is not available in psi-calculi since we require all terms to have finite support.

Finally, an alternative is to close under all contexts (and not merely static contexts). Since input contexts can be used to effect a substitution on any free name, this is akin to a recurring closure under arbitrary substitutions, and would correspond to a smaller equivalence, probably similar to the hyperequivalence of [19]. Consider an example from the polyadic pi-calculus, which as explained in [4] is a psi-calculus with 1 as the only assertion. We elide unimportant objects.

\[R = (\nu xy)\pi(x,y).([\pi]|y) \]

\[S = (\nu xy)\pi(x,y).([\pi]|y+y.\pi) \]

\(R \) and \(S \) are weakly bisimilar. If arbitrary substitutions recur in a barbed equivalence \(R \) and \(S \) will not be barbed equivalent. To see this consider \(R | a(xy) \rightarrow [\pi]|y \) simulated by \(S | a(xy) \rightarrow [\pi]|y+y.\pi \). Closure under all contexts means that \(\pi y | a(x).([\pi]|y) \) should be barbed bisimilar to \(\pi y | a(x).([\pi]|y+y.\pi) \), but the former can reduce twice to reach an inert state without bars, whereas the latter after a reduction has a bar \(\pi \).

VII. Conclusion

We have presented two definitions of weak labelled bisimulation for psi-calculi: one is simple and traditional and the other is more involved. They coincide for calculi where the weakening assumption holds, and therefore the simpler definition is preferable in those cases. In other calculi they can be different, and the more complicated definition turns out to be necessary. Algebraic properties including compositionality have been established, and the proofs are mechanized in the interactive theorem prover Isabelle. They are freely available for anyone who wants to extend our work, for example by implementing specific instances of the framework.

To strengthen the motivations of the definitions we have established the connection between weak labelled bisimulation and weak barbed bisimulation. The latter gives a more intuitive understanding of the equivalence, since it is based on observations (bars) and closure of contexts. The result that the equivalences coincide constitutes an independent confirmation of weak labelled bisimulation.

In earlier work we presented a fully abstract symbolic version of strong bisimulation for psi-calculi with weakening [17]. In order to be practically useful this result should be extended to weak bisimulation. A more ambitious project is to extend proof mechanisation in Isabelle to include barbed equivalence.

We intend to build tools for bisimulation checking in instances of psi-calculi. For this, an algorithm for deciding weak symbolic bisimulation needs to be developed and implemented; an attractive approach would be to integrate it as an oracle in Isabelle.

References

