MICROCIRCULATION IN SEPSIS: NEW PERSPECTIVES

Glenn Hernandez MD (1,2)
Alejandro Bruhn MD PhD (2)
Can Ince PhD (1)

(1) Department of Translational Physiology, Academic Medical Center, University of Amsterdam, The Netherlands
(2) Departamento de Medicina Intensiva, Pontificia Universidad Catolica de Chile, Chile

Corresponding Author

Can Ince PhD
Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
+31653444684
ABSTRACT

Microcirculatory dysfunction has been recently recognized as a key pathophysiologic process in the evolution of sepsis. In the present review, we discuss fundamental aspects of microcirculatory abnormalities during septic shock, including pathogenic mechanisms, technological assessment, clinical correlates and potential therapies.

The most important function of the microcirculation is the regulation and distribution of flow within the different organs. In septic shock, microcirculatory dysfunction may arise as a result of several factors such as endothelial dysfunction, leukocyte-endothelium interactions, coagulation and inflammatory disorders, hemorheologic abnormalities, and functional shunting. Severity and persistence of these microcirculatory abnormalities are associated with bad prognosis and are not necessarily predicted by systemic variables.

The introduction of bedside techniques that allow evaluation of the microcirculation into clinical practice has opened up a new field of functional hemodynamic monitoring. Recent data suggest that microcirculatory abnormalities can be staged in severity. Some microcirculatory indices are more accurately related to morbidity and mortality, and thus a definition of clinically relevant microcirculatory abnormalities is feasible. On the other hand, although several systemic variables do not predict microcirculatory status, high norepinephrine (NE) requirements and hyperlactatemia are associated with a much higher prevalence of relevant microcirculatory derangements. Therefore, severe septic shock patients could represent a more precise target for interventions, particularly in microcirculation-oriented clinical trials.

Clinical research has identified various therapeutic approaches that are successful in modifying the microcirculation. Future research must determine whether some of these approaches are successful in improving outcome of critically ill patients by recruiting the microcirculation.

Key Words

Sepsis, septic shock, microcirculation, OPS SDF imaging , lactate, fluids, vasoactive drugs

Introduction
Microcirculatory dysfunction has been recently recognized as a key pathophysiologic process in the evolution of sepsis. In the present review, we discuss fundamental aspects of microcirculatory abnormalities during septic shock, including pathogenic mechanisms, technological assessment, clinical correlates and potential therapies.

I. Characteristics of normal microcirculation

By microcirculation we refer to the network of small blood vessels (<100 µm diameter), which comprises arterioles, capillaries, and venules (microcirculatory units) [1]. It includes 10 billion capillaries and is lined with endothelial cells, which on total make up more than 0.5 km² of endothelial surface. In addition to endothelial cells, it includes smooth muscle cells (mostly in arterioles), red blood cells (RBC), leukocytes, and platelets. Microcirculation plays several key roles such as ensuring oxygen delivery to tissues, exchange of nutrients and waste products, and modulating inflammation and coagulation. Most of these functions are controlled by endothelial cells, which release several biologic signals to regulate local blood flow, cell adhesion, permeability, and coagulation activation [2].

Microvascular oxygen delivery cannot be directly predicted from systemic or even regional oxygen delivery. First, microvascular hematocrit is lower than systemic hematocrit due to the Fahraeus effect (dynamic reduction of hematocrit due to axial migration of erythrocytes near the center of the vessel). Second, the distribution of hematocrit is nonlinear at vascular branch points. Third, microvascular partial oxygen pressure (pO₂) is also lower than systemic pO₂ and is heterogeneously distributed. Hence, oxygen delivery is heterogeneously distributed throughout the microcirculatory network [3].

The structure and function of microcirculation is highly heterogeneous in different organs, and it is closely related to the functional role played by a particular organ as a whole. The number of capillaries per unit mass of organ or tissue (capillary density) may be related to the organ metabolic requirements (muscles, heart, brain) or to other functional requirements (skin, gut, kidney) [4].

Microcirculation normally ensures adequate oxygen delivery to meet the oxygen demands of every cell within an organ. A strict regulatory mechanism is in place to achieve this, with multiple
signaling pathways interacting at different levels. In this way, oxygen transport to tissues with high oxygen needs is augmented and oxygen transport to tissues with low metabolic activity is restricted [5]. This regulatory mechanism allows microcirculatory flow to occur independent of changes in systemic blood pressure, a mechanism called autoregulation [4]. In general, driving pressure, arteriolar tone, hemorrhheology, and capillary patency, are the main determinants of microcirculatory blood flow. Although regional blood flow is determined by large vessels (medium-sized arterioles), which are mainly controlled by the sympathetic nervous system, local distribution of blood flow to tissues is regulated by microcirculation. When terminal arterioles are vasodilated, perfusion of capillaries increases; when terminal arterioles are vasoconstricted, the number of recruited capillaries decreases. These microvessels are primarily under local control, which is possible because endothelial cells sense metabolic and physical signals, and respond to them by modulating arteriolar smooth muscle cell tone [2]. Nitric oxide (NO) is one of the critical signals produced by endothelial cells to exert this regulation.

II. Microcirculatory alterations in Sepsis

Although microcirculatory alterations in sepsis have been recognized from long ago from experimental data, clinical interest in this field has been growing strongly during the last decade after the introduction of bedside videomicroscopic techniques which have validated that similar microcirculatory disturbances can be observed in septic patients. The presence and persistence of such abnormalities has been found to be associated with prognosis. De Backer [6] reported a significant decrease in vessel density and in the proportion of small perfused vessels in septic patients compared to healthy volunteers, where this impairment of microcirculation was more severe in non-survivors. These results were later confirmed by Trzeciak [7]. Interestingly, Trzeciak also found that alterations in microcirculation were related to the severity of organ failure, as assessed by the Sequential Organ Failure Assessment (SOFA) score. Sakr [8] has characterized the time course of microcirculatory alterations in patients with septic shock and its relation to outcomes. Although similar at baseline, microcirculation improved rapidly in survivors as compared to non-survivors, even though global hemodynamic variables did not differ. More importantly, capillary perfusion when shock resolved was related to the severity of organ failure. However, the reported statistical association between outcome and microcirculatory abnormalities does not imply a mechanistic relation. Such potential relationship could
only be demonstrated by a large multicentric trial targeting these abnormalities and showing an outcome improvement.

Microcirculatory alterations during sepsis may be explained by multiple mechanisms, involving all the components of microcirculation [1, 9, 10]: redistribution of blood flow from compliant vascular beds (skin and the splanchnic area) to more crucial body areas (brain, heart), with secondary microvascular derecruitment; endothelial activation and injury; loss of the glycocalyx, which covers the endothelium and forms an important barrier and transduction system; increased microvascular permeability with capillary leakage, edema formation, and hypovolemia; decreased RBC deformability, with secondary capillary plugging; increased leukocyte adhesion to the endothelial surface; production of reactive oxygen species (ROS) that directly disrupt microcirculatory structures, cellular interactions, and haemostasis; capillary obstruction by platelet/fibrin clots secondary to disseminated intravascular coagulation; and impaired arteriolar smooth muscle cell tone and reactivity, secondary to dysregulation of NO production. The role of endothelial dysfunction, and the consequent increase in platelet and leukocyte adhesion, has been recently emphasized as a potential mechanism contributing to microcirculatory flow abnormalities [11]. Increased expression of adhesion molecules on both, endothelial and immune cells, has been consistently demonstrated during sepsis.

The combination of these mechanisms contributes to a reduction in perfused capillaries (decreased functional capillary density), the development of heterogeneous abnormalities in microcirculatory blood flow, and the loss of intrinsic vasoregulation in most vascular beds. The decreased capillary density implies that the diffusion distance for oxygen is increased [4]. The increased heterogeneity of microcirculation, in which some vascular beds exhibit a preserved functional capillary density, whereas others have a sluggish blood flow and still others have no flow at all, generates areas of hypoxia and impairs oxygen extraction in both mathematical and animal models of septic shock [9]. These alterations generate an impaired ability to regulate local oxygen delivery, which translates to rapid onset of tissue hypoxia [12].

III. Bedside visualization of microcirculation
Early detection and correction of tissue hypoxia may limit organ dysfunction and improve outcomes in septic patients. However, tissue hypoxia is very difficult to detect at bedside because there are no specific clinical signs or simple laboratory tests to assess it. On the other hand, measurements of hemodynamic and oxygen-derived parameters fail to assess the microcirculation network, where oxygen delivery to cells really occurs.

Experimental data on the microcirculation has traditionally been obtained using intravital microscopy. Unfortunately this approach, which requires fixed tissue preparations and dyes, can not be used easily on patients. One of the most important advances in the study of sepsis in recent years has been the development of microscopic imaging techniques incorporated in hand held devices designed to filter out surface reflections caused by illumination light. These techniques for filtering out surface reflections have been termed orthogonal polarization spectral (OPS) imaging and sidestream dark field (SDF) imaging and are based on intravital microscopy principles developed more than 20 years ago[13, 14], but only recently implemented in handheld device[15, 16]. If one applies a light source on a tissue, the light is reflected by the deeper layers of the tissue providing transillumination of the superficial layers of the tissue [14]. With both techniques, the selected wavelength (530 nm) is absorbed by the hemoglobin contained in the RBCs, independently of its oxygenation state, so that these can be seen as black / gray bodies [15, 17].

The first generation hand-held video microscopes used OPS imaging to filter out surface reflections of incident light[16]. These devices needed powerful light sources attached to the hand held microscope and consisted of low grade analogue video cameras with limited resolution. This was improved upon by a second generation type of devices such as the basically off-line SDF imaging device (MicroVision Medical BV) fitted with an analogue[14] camera and the device of KK Technology (www.kktechnology.com) which is based on a digital camera with USB output. However these first and second generation device are fitted with low resolution cameras with hand operated focus mechanism causing movement artifacts and requiring off-line analysis images limiting their use for routine clinical applications. Recently a third generation device has been introduced by Braedius Scientific BV with a high-resolution digital camera tightly integrated with a dedicated PC with control software (www.braedius.com). Its digital camera has a high pixel density and acquisition rate while the computer controlled illumination system allows a high illumination level with a short pulse time and very short exposure times. It also features motorized
focusing with a depth control and measurement at the micrometer level. These features provide the technical conditions for the implementation of on-line software for automatic bed side analysis of microcirculatory images with calculation of functional parameters (functional density, flow) allowing immediate identification of microcirculatory abnormalities needed for evaluation of the response to therapy and clinical decision making.

One of the main challenges of these videomicroscopic techniques has been how to analyze the images obtained in order to get reliable and timely information. Three different variables can be analyzed: density, flow and heterogeneity [18]. From a conceptual point of view each of these variables could give valuable and complementary information. Density is perhaps the most interesting as it determines the distance required for the oxygen to diffuse to the surrounding tissue. In experimental research functional capillary density is the most validated parameter to assess microcirculation function.

Several quantitative and semi-quantitative parameters have been proposed to assess each of these variables but there is not enough data to determine which is most relevant. A recent consensus proposed five parameters to analyze microcirculatory images: (i) total microvascular density (TVD), (ii) perfused microvascular density (PVD), (iii) proportion of perfused microvessels (PPV), (iv) microvascular flow index (MFI), and (v) heterogeneity of microvascular flow index [18]. The first two reflect density, (iii) and (iv) reflect flow, and (v) represents heterogeneity of flow.

Recently, Bezemer and co-worker developed a software system which allows rapid automated analysis of microcirculatory movies[19]. Although this software is mathematically able to perform instant analysis of vascular density, perfused vessel density and microcirculatory flow, implementation of this software in actual SDF images only allowed instant determination of vascular density but not of any flow related parameters. This is due to the technical limitations of the quality of movies obtained by SDF devices. It is anticipated that implementation of this software in the third generation computer controlled high resolution computer controlled digital cameras will allow automatic evaluation of perfused vessels density needed for clinical decision making.
A second limitation of OPS/SDF is that only few regions can be directly assessed at bedside. The sublingual mucosal has been the most extensively explored up to now, and the largest body of information has been collected from this area. However, it is unclear as to what extent sublingual microcirculation reflects the local situation at other relevant areas such as splanchnic mucosa. There is large evidence of the heterogeneity of microcirculation within and between various vascular beds during sepsis from animal studies. These findings have been corroborated in various clinical studies using videomicroscopic techniques. Boerma [20] studied patients with abdominal sepsis and demonstrated that there was a complete dispersion between sublingual and intestinal microcirculatory parameters on day 1. However, Verdant and co-workers observed that sublingual microcirculatory alterations were closely paralleled by gut mucosal microcirculatory alterations in a swine severe septic shock model [21]. Interestingly, in the clinical study of Boerma previously mentioned, on day 3, microcirculatory blood flow almost normalized at both sites, and there was a significant correlation between sublingual and intestinal microvascular beds at this time point [20]. This results underline how limited is our understanding of the dynamics and distribution of microcirculatory abnormalities across different organs, or even within a single organ, during septic shock.

Microcirculatory blood flow can be assessed at bedside not only by videomicroscopic techniques, but also by laser Doppler flowmetry, near infrared spectroscopy (NIRS), tissue reflectance spectrophotometry, or even by tonometry. These techniques may offer the advantage of providing simple and readily available quantitative data. However, their ability to reflect microcirculatory and not just regional blood flow is debatable [22].

IV. Clinical relevance of microcirculatory abnormalities, and relationship with systemic hemodynamics and perfusion parameters.

Several recent small studies have been focused on potential therapies to improve microcirculatory flow [23-27]. However, there are still fundamental aspects that need to be resolved before launching a major controlled clinical trial. First, the prevalence of microcirculatory disorders in critically ill patients is unknown. This subject is being addressed by the microSOAP study (Microcirculatory Shock Occurrence in Acutely ill Patients registered at ClinicalTrials.gov (NCT01179243)), which will include at least 400 patients and is currently in the phase of image analyses. Second, although several indices to evaluate sublingual microcirculation have been proposed, specific cut-off values that correlate to severity have not been identified, and thus the clinical relevance of individual microcirculatory abnormalities is unknown [18]. In addition, the dynamic relationship between
systemic hemodynamics, global perfusion parameters and microcirculatory abnormalities is still obscure and far from being well established [7, 28, 29]. Therefore, it is not clear if, and to what extent, macrohemodynamic or perfusion parameters can predict the finding of severe microcirculatory derangements.

To address these subjects, Hernandez et al. conducted a multinational retrospective cross-sectional study. One hundred and sixty-five septic shock patients recruited in 7 different clinical studies were included. All were managed with perfusion-driven protocols, and were subjected to at least one microcirculatory assessment, concomitantly to evaluation of systemic hemodynamic and perfusion parameters, during the first 24 h of resuscitation. ROC curve analysis demonstrated that among microcirculatory parameters, PPV and PVD exhibited a significant predictive value for mortality, with cut-offs of 86% for PPV, and 12 n/mm for PVD, while MFI exhibited only a trend toward significance. Sensitivity analyses confirmed that these cut-off values could be defined as clinically relevant microcirculatory abnormalities, since both were associated with highly significant differences in mortality, organ dysfunctions, and severity of shock. Although these findings should be tested and confirmed in a prospective study, they could be relevant. In fact, they are consistent with previous studies involving smaller sample sizes and different methodology, describing that a PPV >80% could be significantly related to survival in septic patients [8, 29, 30]. With regard to PVD, there are no clear normal reference values. Nevertheless, some studies have described basal pre-resuscitation PVD values of 12-13 n/mm that can improve with therapy [25, 27]. Thus, the cut-off value of 12 n/mm for PVD is also consistent with literature. The lack of predictive value for MFI in this study is intriguing since this parameter has been related to outcome in previous studies [7, 31]. Since MFI is inherently subjective, it is possible that intercenter differences in analysis may have compromised its prognostic value.

Additionally, logistic regression analysis demonstrated that among systemic variables, only NE doses (OR 39 [4-341]) and lactate levels (OR 1.3 [1.1-1.6]) were significantly associated with the probability of finding a PPV<86%. NE requirements ≥ 0.3 mcg/kg/min and hyperlactatemia ≥ 4 mmol/l, more than doubled the probability of presenting clinically relevant microcirculatory abnormalities. These results tend to confirm that hyperlactatemia during septic shock effectively reflects a wide array of derangements among the determinants of tissue perfusion, including an

abnormal microcirculatory flow. This could explain at least in part, the high mortality risk associated with hyperlactatemia. In contrast, a relatively better preserved microcirculation in patients with septic-related hypotension but without hyperlactatemia, could explain the better prognosis associated with this condition [32]. Nevertheless, the preceding studies do not clarify if hyperlactatemia in the setting of microcirculatory dysfunction may reflect hypoxia or simply a stagnant lactate accumulation.

On the other hand, mean arterial pressure (MAP), cardiac index (CI), or central / mixed venous O$_2$ saturation (SvO$_2$) values, commonly used to assess response to septic resuscitation, failed to predict microcirculatory abnormalities. In the case of SvO$_2$, it could be surprising since an impaired O$_2$ extraction capacity has been attributed to potential microcirculatory abnormalities during septic shock [33, 34]. Even more, a normal SvO$_2$ in the presence of hyperlactatemia has been advocated as an indication for the use of vasodilators to improve microcirculatory flow [35], and SvO$_2$ is a commonly recommended resuscitation goal [36]. Thus, in contrast to common beliefs [37], microcirculatory status may not be predicted by any SvO$_2$ value.

In summary, recent data suggest that microcirculatory abnormalities can be staged in severity. Some microcirculatory indices are more accurately related to morbidity and mortality, and thus, a definition of clinically relevant microcirculatory abnormalities is feasible. On the other hand, although several systemic variables do not predict microcirculatory status, high NE requirements and hyperlactatemia are associated with a much higher prevalence of relevant microcirculatory derangements. Therefore, severe septic shock patients could represent a more precise target for interventions, particularly in microcirculation-oriented clinical trials.

V. Therapeutic strategies

Fluid resuscitation

Fluid resuscitation is a fundamental therapy aimed at restoring circulating volume, and consequently increasing cardiac output and arterial blood pressure in septic shock patients. Fluid loading may improve microcirculatory blood flow through several mechanisms. Among them, volume resuscitation could increase perfusion pressure and/or CI, induce rheologic changes with decreased microvascular blood viscosity, trigger local vasodilation, or modulate interactions between the endothelium and circulating cells [26, 38]. Pottecher et al. showed that sublingual microcirculatory
perfusion in septic shock patients was significantly improved following fluid loading [26]. Interestingly, both passive leg raising maneuver and effective volume expansion simultaneously increased microcirculatory functional capillary density (FCD) and flow (MFI and PPV), and reduced microvascular heterogeneity. Since MFI is known to be sensitive to flow variations, while changes in FCD or PPV are more likely related to microcirculatory recruitment, these results reflect a global impact of fluid resuscitation over several determinants of microcirculatory perfusion.

Another interesting aspect of the previous study [26] is that in contrast to other reports [38], changes in microcirculatory flow exhibited some correlation with improvement in global hemodynamics, particularly with CI. These results in preload-responsive patients confirm the findings of Trzeciak et al. showing correlations between macrocirculatory and microcirculatory variables in patients studied within 6 h of early goal-directed therapy [7]. Thus, it appears that during early resuscitation, microcirculatory flow can be improved with aggressive fluid resuscitation in parallel with changes in systemic hemodynamics. In fact, the very low values of MFI found by Trzeciak et al. early on after emergency room admission in pre-resuscitated patients have not been reproduced in the ICU arena. In the same line, Boerma et al. reported that MFI increased from 1.42 to 2.25, after only 2 hours of resuscitation in the placebo arm of their nitroglycerin trial [23]. These data taken together suggest that MFI values are very low in non-resuscitated patients but may improve rapidly after initial fluid expansion, resembling what happens with SvO₂. In summary, fluid loading is an essential first step in the resuscitation of the microcirculation.

Concerning the type of fluids, Dubin et al. demonstrated that a hydroxyethyl starch solution (HES) had superior microcirculatory recruitment power compared to a saline solution in early goal-directed therapy in septic patients [24]. The beneficial effects of HES on sublingual microcirculation seen in this study might be related to potential effects on several mechanisms involved in septic-related microcirculatory dysfunction, as has been suggested by several experimental studies. Infusion of HES could modulate the inflammatory response, including reductions in extravascular fluid losses, endothelial cell activation [39], neutrophil adhesion and transendothelial migration [40]. A HES solution could also reduce platelet aggregation [41], but the effect of different HES solutions on blood viscosity is variable and probably depends on molecular weight [42]. Finally, other explanations for the favorable effects of HES could be a better intravascular volume expansion and less edema formation [43].
Red blood cell transfusions

RBC transfusions are commonly used in critically ill patients to restore oxygen carrying capacity and thus improve global oxygen transport (DO$_2$). However, transfusion decisions are based on serum hemoglobin levels, and the final effect on microvascular flow is difficult to predict, especially since normal microvascular hematocrit is much lower than systemic values [44]. Additionally, several rheologic properties of transfused RBCs may be altered during storage, or secondary to sepsis, including a reduction in RBC deformability, and 2,3-diphosphoglycerate and ATP levels, thus compromising microcirculatory flow or oxygenating capacity [44]. Finally, vasoactive properties of stored RBCs are modified as their capacity to capture nitric oxide is enhanced. The resulting drop in nitric oxide bioavailability in small vessels may lead to worsening microcirculatory dysfunction [44].

Response to RBC transfusions may be quite variable. Sakr et al. studied the sublingual microcirculation in 35 septic patients. They performed the measurements just before RBC unit transfusion and one hour after transfusion of leuko-reduced RBC units with a mean age of 24 days. They found that although global hemodynamics increased following RBC transfusion, oxygen uptake and microcirculatory parameters did not. It must be noted, however, that there was inter-individual variability with an increase in sublingual capillary perfusion in patients with depressed perfusion at baseline and a decrease in perfusion in patients with normal baseline perfusion [45]. These findings were confirmed by Creteur et al. in a study evaluating the impact of RBC transfusions on near-infrared spectroscopy (NIRS)-derived oxygenation parameters [46]. The authors reported a divergent response, with an improvement in microvascular reactivity in patients with altered microvascular reactivity at baseline, and deterioration in patients with preserved baseline microvascular reactivity. The complexity of this subject is highlighted by a recent pilot study, which failed to demonstrate any beneficial effect of RBC transfusions on sublingual microcirculatory density in adult septic patients 2.

In contrast, several studies have demonstrated an increase in skin and sublingual functional capillary densities, or in NIRS-derived oxygenation parameters after RBC transfusions in other settings [47-49]. These studies confirmed that RBC transfusions are effective in improving tissue oxygen transport by promoting RBC delivery to the microcirculation. Yuruk et al demonstrated in cardiac

2 Ayhan B, Yuruk K, Bakker J, de Mol BAJM, Ince C: Blood transfusions recruit the microcirculation in on-pump cardiac surgery patients, but not in septic patients. Intensive Care Med 2010; 36 (Suppl 2):0489 (abstract)
surgery patients that red blood cell transfusions were effective in increasing RBC availability and oxygenation at the microcirculatory level using respectively sublingual SDF imaging and fibre reflectance spectrophotometry (for measurement of microcirculatory Hb saturation) [43]. They identified in this interesting study the mechanism by which RBC transfusions cause an increase in microcirculatory RBC availability thereby improving tissue oxygenation. The mechanism of efficacy of RBC transfusions for improving tissue oxygenation was identified as RBC transfusion filling previously empty capillaries and thus reducing oxygen diffusion distances to cells and not by increasing RBC convective flow. Similar results were obtained in other non-septic patients such as anemic hemotological patients [44].

In summary, there are conflicting data concerning the effect of RBC transfusions over microcirculatory parameters in septic patients, although at least patients with more severe microvascular dysfunction at baseline may benefit. This fact highlights the relevance of monitoring sublingual microcirculation in critically ill septic patients to target therapies on an individual basis.

Arterial pressure and vasopressors

When MAP decreases below an autoregulatory threshold of 60 to 65 mm Hg, organ perfusion becomes pressure dependent and, consequently, the use of vasopressors to increase MAP could improve tissue perfusion in septic shock patients. Georger et al. evaluated the effects of increasing MAP on NIRS-derived thenar oxygenation parameters in 28 severely hypotensive septic shock patients [50]. Administration of NE in doses up to 0.7 mcg/kg/min was associated with significant increases on MAP from 54 ± 8 to 77 ± 9 mmHg, on CI from 3.14 ± 1.03 to 3.61 ± 1.28 L/min/m², on thenar tissue oxygen saturation (StO₂) from 75 ± 9 to 78 ± 9%, and on StO₂ recovery slope from 1.0 ± 0.6 to 1.5 ± 0.7%/s.

However, vasopressors, although effective in increasing blood pressure, may do so at the expense of microcirculatory flow suggesting that in some circumstances excessive vasoconstriction could be deleterious to the microcirculation [51]. Jhanji et al. recently demonstrated that increasing MAP from 60 to 90 mm Hg with NE resulted in an increase in global DO₂, but caused no change in cutaneous microvascular flow and tissue pO₂, or in sublingual microcirculation [52]. Dubin et al. titrated NE to increase MAP from 65 to 75 and then to 85 mm Hg to evaluate effects on sublingual microcirculation in septic patients [53]. Their main finding was that increasing MAP failed to improve sublingual microcirculation or any other variable related to tissue oxygenation or
perfusion such as arterial lactate, anion gap, pCO\textsubscript{2} gradients, and oxygen-derived parameters. Interestingly, there was considerable variation in the individual responses that were strongly dependent on the basal condition of microcirculation. In fact, PVD improved in patients with an altered sublingual perfusion at baseline and decreased in patients with a preserved baseline microvascular perfusion.

There are conflicting reports about the microcirculatory effects of other vasopressors such as phenylephrine or vasopressin analogues, but at least some studies have demonstrated detrimental effects, and thus should be used with caution in patients with suspected microcirculatory dysfunction [51].

In summary, there is no doubt that increasing MAP with NE in refractory hypotension improves microcirculatory flow, but the preceding data suggest that optimal MAP for microcirculatory perfusion is quite variable and should be selected on an individual basis.

Vasodilators

The rationale for the use of vasodilators in sepsis is based on experimental findings of pockets of ischemic areas lying close to well-perfused zones [54]. Vasodilators may increase the driving pressure of blood flow at the entrance of the microcirculation and perfuse hypoxic zones [5]. Nitroglycerin undergoes intracellular metabolism in order to produce NO-mediated vasodilatation. Despite the fact that excessive NO production is believed to play an important role in sepsis-induced hypotension, it has also been suggested as a therapeutic strategy to overcome heterogeneity in microcirculatory blood flow [55]. The general idea that increasing MAP results in a higher net microcirculatory perfusion pressure is not in line with physiological theory of the microcirculation as a low-pressure vascular compartment [51, 56].

In a small series of septic patients who fulfilled static systemic hemodynamic resuscitation endpoints, Spronk et al. found an improvement in sublingual perfusion despite a significant decrease in MAP, after a bolus of 0.5 mg followed by an infusion of 2 mg/h nitroglycerin (NTG) [57]. Of note, improvement of microcirculatory blood flow after the NTG bolus was instantaneous, indicating some NO-mediated endothelial ability for vasodilatation. However, it is important to consider that this study protocol included a large fluid challenge, and thus it is rather difficult to isolate the effects of concomitant fluids vs. NTG. Nevertheless, Spronk’s observations together
with the recent report of sublingual microcirculatory recruitment after topical acetylcholine in already resuscitated septic patients [29], challenge the general idea of endothelial hyporesponsiveness in sepsis-induced hypotension. More recently Boerma et al, in a double-blind placebo-controlled study, demonstrated that sublingual microcirculatory perfusion improved significantly over time, but no effect of NTG in comparison to placebo could be shown [23]. Although other NO-donors or vasodilators have been tested in experimental or clinical settings, the role of vasodilators in sepsis as a therapeutic strategy to recruit “microcirculatory weak units” is yet to be elucidated [51].

Inodilators

Dobutamine has both inotropic and vasodilatory effects. In an open label setting addition of dobutamine in septic patients was associated with improved OPS-measured sublingual microcirculatory perfusion over time, irrespective of changes in systemic hemodynamic variables [29]. However, this was an uncontrolled study and it is rather difficult to isolate net dobutamine effects from previous fluid loading or ongoing background resuscitation. In contrast, other controlled experimental and clinical studies in sepsis challenge the common view that dobutamine can improve regional or microcirculatory flow [25, 58, 59].

Levosimendan, a calcium-sensitizer drug with inotropic and vasodilator effects has been proven useful in cardiogenic shock. Some recent experimental and small clinical trials have shown favorable effects on regional and microcirculatory flow as compared to dobutamine, in septic shock [25, 58, 59]. The place of these inodilators in a microcirculation-oriented resuscitation strategy has yet to be defined in view of the discordant results cited above.

Activated protein C

Another agent potentially useful for improving microvascular function in critically ill patients is recombinant activated protein C (APC), which decreases the uncontrolled cascades of inflammation and coagulation and impaired fibrinolysis in sepsis [60, 61]. Several experimental studies with sepsis models showed beneficial effects of APC over different aspects of microcirculatory dysfunction, including a decrease in oxidative stress and glycopalyx destruction during

endotoxemia [62-64]. Bernard et al. demonstrated that exogenous APC administration significantly reduced organ failure and improved survival in severely septic patients [65]. Later, De Backer et al. reported that severely septic patients had an increased proportion of perfused microvessels while receiving continuous infusion of APC [66]. Once APC infusion stopped, microvascular perfusion transiently decreased. Thus, APC appeared as an interesting drug for microcirculatory-oriented resuscitation. However the recent failure of several studies including the PROWESS Shock trial to demonstrate any outcome benefit, not only lead to withdrawal of the drug from the market, but also challenged the view that microcirculatory abnormalities in sepsis can be improved by a single drug approach.

Steroids
Despite conflicting studies, hydrocortisone is frequently used as an adjunctive therapy in patients with septic shock. The drug may have opposite effects over microcirculatory flow. It induces some degree of arterial vasoconstriction and thus could alter capillary perfusion. On the other hand, due to its anti-inflammatory effects, it could improve endothelial dysfunction and thereby ameliorate the distributive defect [67]. In a clinical observational study in 20 septic shock patients, Buchele et al. observed only mild effects of hydrocortisone over sublingual microvascular perfusion [68]. Clearly more studies are needed to establish the role of steroids in microcirculatory dysfunction in septic shock.

High-volume hemofiltration
High volume hemofiltration (HVHF) has been used as a rescue therapy to revert refractory hypotension in severe septic shock patients in a couple of small uncontrolled studies [69, 70]. In this setting, more than 50% of patients responded with an improvement in global hemodynamics and lactate clearance, and responders exhibited a much lower mortality than non-responders. The mechanism of HVHF potential favorable effects is still debated but includes removal of pro-inflammatory mediators and an improvement in immunological homeostasis [69]. Since HVHF may decrease NE requirements by increasing systemic vascular resistance, this effect could potentially have detrimental effects over microcirculatory flow. To address this subject, Ruiz et al. explored the effects of a 12-h course of HVHF over sublingual microcirculatory parameters in twelve severe septic shock patients [27]. Microcirculatory flow index increased after 12 hours of HVHF and this increase persisted 6 hours after stopping the procedure. A similar trend was observed for the proportion of perfused microvessels. The increase in microcirculatory blood flow
was inversely correlated with baseline levels, resembling what happens with MAP manipulation and RBC transfusions. The potential beneficial role of HVHF or other extracorporeal depurative therapies over septic microcirculation should be explored in future studies, especially since some recent large controlled studies have failed to show an impact of less intense hemofiltration rates on major clinical outcomes.

Conclusion

In conclusion the present review has covered the current state of knowledge concerning the effects on the microcirculation of disease and therapy in critically ill patients. These insights have been obtained by use of first and second generation OPS and SDF based devices. These types of measurements have allowed for the first time the direct observations of the cellular response to disease and therapy at the bed-side and has given much new insight into the nature of critical illness. The latest third generation computer controlled high resolution digital camera with short illumination time devices are expected to bring one step closer to instant analysis of the nature of microcirculatory dysfunction at the bedside and provide more sensitive detail about the (sub)cellular nature of disease and response to therapy at the bed-side to support clinical decision making.

Competing interests

CI is the inventor of SDF technology which is commercialized by MicroVision Medical. He has been a consultant for this company in the past, but he has broken all contact with this company for more than two years now, and he has no competing interests. CI has also no competing interests in Cytometrics, KK Technology or Braedius Scientific other than his commitment to promote the importance of the microcirculation in the care of critically ill patients.

References

22 Knotzer H, Hasibeder WR. Microcirculatory function monitoring at the bedside--a view from the intensive care. Physiol Meas. 2007 Sep;28(9):R65-86.

42 Neff TA, Fischler L, Mark M, Stocker R, Reinhart WH. The influence of two different hydroxyethyl starch solutions (6% hes 130/0.4 and 200/0.5) on blood viscosity. Anesth Analg. 2005 Jun;100(6):1773-1780.

