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Abstract: Bisphenol A (BPA), a well-known endocrine disruptor present in epoxy resins and poly-
carbonate plastics, negatively disturbs the male reproductive system affecting male fertility. In vivo
studies showed that BPA exposure has deleterious effects on spermatogenesis by disturbing the
hypothalamic–pituitary–gonadal axis and inducing oxidative stress in testis. This compound seems
to disrupt hormone signalling even at low concentrations, modifying the levels of inhibin B, oestra-
diol, and testosterone. The adverse effects on seminal parameters are mainly supported by studies
based on urinary BPA concentration, showing a negative association between BPA levels and sperm
concentration, motility, and sperm DNA damage. Recent studies explored potential approaches
to treat or prevent BPA-induced testicular toxicity and male infertility. Since the effect of BPA on
testicular cells and spermatozoa is associated with an increased production of reactive oxygen species,
most of the pharmacological approaches are based on the use of natural or synthetic antioxidants. In
this review, we briefly describe the effects of BPA on male reproductive health and discuss the use of
antioxidants to prevent or revert the BPA-induced toxicity and infertility in men.

Keywords: Bisphenol A; endocrine disruptors; male infertility; oxidative stress; antioxidants;
phytochemicals; medicinal plants

1. Introduction

Environment and diet strongly influence spermatogenesis, having significant conse-
quences on male fertility and reproductive potential. There was a rising concern about
human exposure to endocrine-disrupting chemicals (EDCs) and their release into the en-
vironment [1,2]. An endocrine disruptor is defined by the World Health Organization as
“an exogenous substance or mixture that alters the function(s) of the endocrine system
and consequently causes adverse health effects in an intact organism, or its progeny, or
(sub)populations” [3]. EDCs may act by mimicking the biological activity of an hormone
(agonistic effect), blocking its activity by binding to the receptor without activating it
(antagonistic effect) or interfering with the synthesis or elimination rates of the natural
hormones, even at extremely low doses (picomolar to nanomolar) [4,5]. Indeed, an im-
portant feature of EDCs is their unusual dose–response dynamics (usually inverted-U or
U-shaped curves), since low doses may in some cases exert more potent effects than higher
doses [5,6]. This characteristic, called non-monotonic response, complicates the assessment
of potential impacts of exposure and makes the use of a dose test to predict low-dose
effects inappropriate [5]. Moreover, it is important to consider that environmental exposure
usually involves EDC mixtures, whose constituents can act through a common mode or
by several mechanisms of action which might crosstalk [4,6]. This combined effect may
have an additive, synergistic or attenuative potential [4,6]. EDC exposure during foetal
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development infancy, childhood and puberty can have long-lasting health effects since
at these moments, hormones strongly regulate the formation and maturation of organs.
Early-life exposures have also been associated with developmental abnormalities and may
increase the risk of several diseases later-in-life [4]. In adulthood, increasing incidences
of several human reproductive disorders, such as testicular cancers and reduced sperm
counts, may be partially attributed to an increased exposure to environmental EDCs that
have estrogenic activity [7–11].

Bisphenol A (BPA) represents one of those environmental chemical pollutants that
mimic the natural oestrogen 17-β-oestradiol (E2). Epidemiological data from US revealed
that 90% of general population have detectable levels of BPA in urine [12,13]. Its widespread
presence in several daily used products and its detection in several human tissues and
body fluids (urine, blood, serum, amniotic fluid, and semen) [14–16] raised many con-
cerns about its potential association with human disorders such as cancer, cardiovas-
cular diseases, obesity, diabetes, and reproductive disorders [7,13,17]. Although BPA
may be toxic for other organs, attention has been paid to its reproductive and endocrine
disrupting effects [18–20]. The toxicity of BPA, especially at the reproductive level, results
from its interaction with androgen and oestrogen receptors [21–24]. Although BPA is not an
oxidizer itself, it leads to cellular changes usually manifested by lipid peroxidation (LPO)
and free radicals production causing oxidative stress (OS) [21–24]. In the past decade, the
use of antioxidants such as melatonin [25,26], vitamin C [27], N-acetylcysteine [28], coen-
zyme Q10 [29], and several plant extracts [30–32], to prevent and/or revert BPA-induced
testicular toxicity started to be investigated. In this review, we briefly describe the effects of
BPA on male reproductive health and discuss the use of antioxidants to prevent or revert
the BPA-induced toxicity and infertility in men.

2. BPA: What Is This?

Bisphenol A (4,40-isopropylidenodi-phenol compound 2,2-bis (4-hydroxylphenyl)-
propane) is a crystalline chemical compound widely used as a monomer in industry
to produce plastic materials (polycarbonate, phenol, and epoxy resins), polyesters, and
polyacrylate. During the past 50 years, this compound has often been used as an additive
and/or antioxidant in polyvinyl chloride (PVC) production and processing, cosmetics and
as a plastic softener [33]. Among many applications, this compound is present in several
daily use products, such as containers to line food and beverage, plastic dishes, kitchen
utensils, dental sealants and fillers, electronics (fridges, hair dryers, cell phones, computers)
and thermal paper [34]. Due to its resiliency, flexibility, and durability, BPA has also been
used in the manufacture of arms, safety equipment (helmets), and medical devices [34]. As
a component of epoxy resins, BPA is also present on the internal coating of cans used in
canned food [35]. The main route of exposure of BPA is dietary ingestion, since the exposure
to temperatures higher than 70 ◦C and the reutilization of containers results in BPA leakage
to food and beverage [36,37]. However, the risk of exposure through inhalation [38–40]
and skin contact, especially through thermal paper [41–43], is also considerable.

After entering the organism, arround12% of BPA is metabolized in the liver by
glucuronidation—BPA quickly binds to glucuronic acid by the liver enzyme uridine diphos-
phonate glucuronosyl transferase (UGT) producing BPA glucuronide (BPA-G) [16,44]. This
process increases BPA water solubility with a consequent faster excretion in urine (half-
life of elimination of 5.4–6.4 h), which means that humans exposed to oral doses of BPA
ranging from 50 to 100 µg/kg body weight have less than 1% free BPA after 24 h [44]. The
possible BPA bioaccumulation in the liver associated with its ingestion remains a topic of
debate. However, contrary to dietary exposure, almost all BPA resulting from transdermal
exposure avoids the liver metabolism, resulting in significantly higher concentrations of
the unconjugated form (free BPA) in the bloodstream [45,46]. Considering that only free
BPA has a biologically active role, the effects of transdermal exposure on human’s health
represents a major concern. Currently, total urinary BPA (conjugated and unconjugated
forms) is generally used as a biomarker of exposure to this chemical [47].
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Considered an EDC, BPA disturbs the normal hormonal signalling resulting in ad-
verse effects for the whole organism. In 1998, Gould [48] and Kuiper [49] showed that
free BPA interacts with oestrogen receptor α (ERα), activating it in a manner distinct
from the classical pattern observed in weak oestrogens, partial agonists and antagonists.
Recently, it was reported that free BPA binds several nuclear receptors by (i) mimicking
the action of endogenous steroids, (ii) maintaining the target molecule in active confor-
mations and (iii) blocking the access of endogenous E2 to the receptor’s binding site by
competition [18,50]. However, based on the available evidence, BPA has a very weak
binding affinity to oestrogen receptor, being almost 10,000 times weaker than that of nat-
ural E2 [51]. Additionally, it may also bind to other receptors such as G protein-coupled
oestrogen receptor 30 (GPR30/GPER1) [52,53], orphan nuclear oestrogen-related receptor
gamma (ERR-γ) [54,55], androgen receptor (AR), peroxisome proliferator-activated receptor
gamma (PPAR-γ), and thyroid hormone receptor (TR) [56]. The binding to these receptors
may lead to other alterations in cells and tissues rather than endocrine disturbance.

Considering that several studies showed deleterious effects of BPA exposure, several
BPA Product Regulations have been created. Regulation (EU) 10/2011 and its amend-
ment Regulation (EU) 2018/213 banned in European Union the use of BPA in feeding
bottles, plastic cups and packaging containing food intended to be used by infants and
children younger than 3 years old; and introduced stricter limits on BPA in food contact
materials [57,58]. Since 2020, REACH directives (Regulation (EC) No 1907/2006) mandates
that thermal paper cannot contain a BPA concentration equal to or greater than 0.02% by
weight. Moreover, several European countries adopted their own measures regarding BPA.
For instance, Sweden (Regulation SFS 2012:991), Belgium (Act of 4 September 2012), and
Denmark (Statutory Order No. 822) prohibited BPA in food contact materials for infants
and children under the age of 3 years old; France (Law No. 2012-1442) forbidden BPA in all
food packaging intended to be in direct contact with food. However, the recent results of
the CLARITY (Consortium Linking Academic and Regulatory Insights on BPA Toxicity)-
BPA study intensified the controversy around this topic. This study was conducted by a
consortium of US government scientists and several academic research groups having two
components—the core study [59] and 14 grantee studies [60]. The core study consisted
in three groups of pregnant rats (control group, BPA-exposed and oestrogen exposed), in
which the female rats and the offspring were exposed to different concentrations of BPA
throughout their whole lifespan (continuous dose), or by “stop-dose“ [59,61,62]. Several
tissues were examined (brain, heart, mammary gland, ovaries, prostate, testis, etc.) to de-
termine if (a) the continuous exposure was directly relevant for human exposure and safety
assessment, (b) the “stop-dose” exposure can be effectively used to investigate whether
developmental exposure shows adverse effects later in life, and (c) the effects at low doses
and/or non-monotonic dose–responses could be seen [61,63]. Overall, the results indicated
that there was no evidence of non-monotonic dose–response, or relevant adverse effects
of developmental exposure later in life [61]. The authors concluded that BPA is safe for
consumers at typical consumer exposure levels. As the European Food Safety Authority
(EFSA) started a re-evaluation of the safety of BPA for food contact applications in 2017
that will include the CLARITY-BPA study, it is possible that some policies may be updated.

3. BPA-Induced Alterations in Testicular Structure, Function, and Semen Parameters

In the past century, increasing attention has been paid to BPA effects on human’s
health [64,65]. Since then, the associations between BPA levels and testicular toxicity,
semen parameters, and overall male fertility have been extensively studied. Impor-
tantly, the severity of BPA impact on the male reproductive system depends on age,
dose, mode, and duration of exposure [19,66]. In fact, methodological differences and
distinct study populations can explain some of the contradictory results. In in vivo
studies, BPA is typically administered in rodents orally. The doses usually range from
0.05–1 mg/kg/day for 30 days to 10 mg/kg/day during two weeks in mice. Rats were
generally exposed to higher concentrations of BPA, ranging from 25 mg/kg/day during
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60 days to 200 mg/kg/day for 10–30 days. Moreover, BPA and its metabolites have been
measured in the plasma (<LLOQ (0.0435 µg/L)–7.23 µg/L; median 0.093 µg/L [67]), blood
(0.19 ± 0.16 µg/L [68]), urine (1.66 ± 1.31 µg/L [68]), and seminal fluid
(<LLOQ (0.0289 µg/L)–10.9 µg/L; median 0.085 µg/L [67]) in men. Based on new toxi-
cological data and methodologies, the European Authorities adjusted the tolerable daily
intake from 50 to 4 µg/kg/day, which may be revised soon according to the results of the
CLARITY-BPA study [59].

The most significant risks associated with BPA exposure are attributed to its action
as an EDC. It was shown that BPA has estrogenic activity deregulating the hypothalamic–
pituitary–gonadal (HPG) axis even at low concentrations (Figure 1). Studies performed
in animal models showed that BPA directly acts on Leydig cells, reducing their prolifer-
ation [32] and impairing the normal steroidogenesis by promoting (i) the production of
17- hydroxy-pregnenolone and testosterone from cholesterol, (ii) the expression of CYP19A1
that converts testosterone into E2, resulting in higher levels of the latter [69], and by re-
ducing the expression of the steroidogenic enzyme 17α-hydroxylase/17–20 lyase [70].
Consistent with this finding, several in vitro and in vivo studies reported that BPA nega-
tively affects testosterone production in both mice [71,72] and rat models [24,70,73,74], as
well as in humans [14,73]. Moreover, BPA indirectly suppresses the synthesis and release
of luteinizing hormone (LH) from the pituitary [70,71] through aromatase upregulation in
testes, activating the mechanisms of negative hormonal feedback [71]. Additionally, hu-
man epidemiological studies showed that BPA modulates the levels of follicle stimulating
hormone (FSH) [75,76], inhibin B [76,77], and E2 [76,77] in men. Interestingly, prenatal
exposure to BPA resulted in abnormal foetal development and testicular endocrine function,
associated with reduced Leydig cell proliferation and foetal testosterone production [72–74].
All these alterations result in impaired testosterone production, with consequent effects on
spermatogenesis [78,79] (Figure 1).

Spermatogenesis is a highly complex process mainly regulated by testosterone and
inhibin B, hormones released by Leydig and Sertoli cells, respectively [80]. Any disturbance
in hormonal levels may compromise the spermatogenic process, resulting in abnormal
semen parameters and reduced fertility. BPA disrupts spermatogenesis by inhibiting an-
drogen production and reducing Sertoli cell number and function [30,81–84]. Furthermore,
BPA exposure decreased the seminiferous tubule diameters and increased tubule atrophy
and damage [26,27,85–87], induced germinal cell debris and congestion [27,86,88], as well
as induced the reduction and/or degeneration of spermatocytes [25,27,32,89,90] and other
spermatogenic cells [22,26,30,86,87,89,90]. A recent study in mice showed that chronic
exposure to BPA impairs the proliferation of spermatogonia and spermatocytes, resulting
in poor sperm quality, especially reduced sperm counts and motility [91]. In addition, these
male mice exposed to BPA through drinking water for two months presented reduced
serum testosterone levels, diminished pregnancy rates, and reduced fertilization efficacy
compared with the non-exposed [91]. Interestingly, data from in vivo studies suggested
that foetal BPA-associated endocrine disruption negatively impacts male fertility in adult
life. Salian et al. reported that maternal exposure to BPA was associated with reduced
sperm count and motility in F1 male offspring and their subsequent generations [92].
Moreover, a significant increase in post-implantation loss in BPA treated females and a
decreased litter size in all generations was observed [92]. In mice, males exposed to BPA by
oral ingestion presented reduced testes and seminal vesicles weight, with a consequent
reduction in sperm count [93]. The diminished sperm count after BPA exposure was
confirmed by several other studies in rodents [83,91,94–99] and humans [76,100]. Lower
levels of exposure were also associated with reduced sperm motility [83,94,95,97,101,102]
and acrosomal integrity [94], impaired markers of OS [83,94,95,97], and increased DNA
fragmentation indexes [21,25,95,97,101–104] in animal models. In humans, several epidemi-
ologic studies also reported a negative association between urinary BPA levels and sperm
concentration, total sperm count [76], motility, and viability [31,76,79,105–107], but not
with morphology [100]. The correlation between BPA exposure and alterations of sperm
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DNA was also observed in humans by evaluating the sperm DNA damage in a cohort
of 190 subfertile male patients [108]. Surprisingly, the presence of this EDC in seminal
fluid and how it correlates with semen quality were only reported in 2015 [14], requiring
additional studies since the distribution and metabolism in this fluid are distinct from other
biofluids [67]. Moreover, how BPA reaches the seminal fluid and how it impacts sperm
maturation, for instance, during epididymal transit, is still unknown and deserves further
investigation. Overall, it is now accepted that BPA affects the male reproductive system
at several levels, disturbing steroidogenesis and spermatogenesis and resulting in poor
fertility outcomes and reduced fertility in the progeny.

4. Impact of BPA Exposure on Oxidative Stress in Testis and Sperm

The imbalance between the excessive production of reactive oxygen species (ROS)
and their neutralization and removal by the antioxidant system results in an increase in
OS [109]. Cells present a complex system of antioxidant defences that contains antiox-
idant enzymes, molecular antioxidants, and metallic chemical agents, converting ROS
into non-toxic forms [51]. Enzymatic antioxidants include superoxide dismutase (SOD),
glutathione peroxidase (GPx), and catalase (CAT), which protect the living system from
the harmful effects of ROS and reduce their oxidative damage to cell membranes [51,110]
(Figure 2). SOD constitutes the first line of defence against superoxide radicals (O2

−) by
catalysing their dismutation to form hydrogen peroxide (H2O2) and oxygen (O2) [111].
H2O2 causes rapid and severe oxidative damage to lipids, proteins, and DNA [110]. Re-
duced SOD activity results in the accumulation of O2

−, which in turn inhibits CAT activity,
decreasing the cells ability to eliminate H2O2 [51]. On the other hand, GPx may act di-
rectly as an antioxidant enzyme, catalysing the reduction of phospholipid hydroperoxides
within membranes and lipoproteins [112]. Since high ROS levels promote oxidation of
biomolecules such as nucleic acids, lipids, and proteins, these enzymes constitute important
intracellular antioxidants to protect against ROS-mediated damage [111,113]. Molecular
antioxidants are typically scavenging/non-enzymatic antioxidants (NADPH, glutathione,
vitamins, flavonoids, carotenoids, melatonin) that bind to active free radicals and disrupt
chain propagation reactions [51]. These antioxidants donate an electron to free radicals to
neutralize them, becoming free radicals with reduced toxicity that are easily neutralized
by other antioxidants in the same class. Finally, some metals, such as zinc (Zn) have
important antioxidant and anti-inflammatory properties [114,115]. Zinc, copper (Cu), and
iron (Fe) are essential components of the antioxidant enzymes Cu-SOD, Zn-SOD, and CAT,
respectively [116]. Indeed, it was reported that Zn deficiency aggravates the toxicity of
BPA in rat testis, increasing cellular and DNA damage, apoptosis, and modifying protein
expression [117].
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Figure 1. Schematic representation of BPA-induced alterations in hypothalamic–pituitary–testicular (HPT) axis, testicular 
function and structure, and in seminal parameters. (A). In normal conditions, gonadotrophin releasing hormone (GnRH) 
is released by the hypothalamus stimulating the secretion of follicle-stimulating hormone (FSH) and luteinizing hormone 
(LH) by the pituitary. LH acts on Leydig cells and FSH on Sertoli cells, stimulating the biosynthesis of testosterone and 
inhibin B, respectively. Both hormones are crucial for normal spermatogenesis and, thus, to produce normal sperm. When 
testosterone and inhibin are released in the bloodstream, they inhibit GnRH/LH and FSH secretion, respectively (negative 
feedback). (B). Even at low concentrations, BPA reduced the levels of testosterone by directly targeting Leydig cells, re-
ducing their proliferation, and impairing normal steroidogenesis. Moreover, BPA indirectly suppresses the release of LH 
through aromatase upregulation in testis, blocking testosterone synthesis. The reduction of inhibin B observed following 
BPA exposure is also associated to a reduction in the number of Sertoli cells, directly affecting spermatogenesis. The lower 
levels of testosterone and inhibin B block the mechanism of negative feedback, in an attempt to increase the release of LH 
and FSH and their action in testis (dashed arrows). BPA exposure also results in an increase in free radicals, which associ-
ated with altered hormonal levels lead to histological alterations in testis and germ cells’ reduction and degenerations. 
These alterations explain the abnormal seminal parameters observed in situations of BPA exposure, such as decreased 
concentration and total sperm count, reduced motility and viability and increased DNA fragmentation. 

Spermatogenesis is a highly complex process mainly regulated by testosterone and 
inhibin B, hormones released by Leydig and Sertoli cells, respectively [80]. Any disturb-
ance in hormonal levels may compromise the spermatogenic process, resulting in abnor-
mal semen parameters and reduced fertility. BPA disrupts spermatogenesis by inhibiting 
androgen production and reducing Sertoli cell number and function [30,81–84]. Further-
more, BPA exposure decreased the seminiferous tubule diameters and increased tubule 
atrophy and damage [26,27,85–87], induced germinal cell debris and congestion [27,86,88], 
as well as induced the reduction and/or degeneration of spermatocytes [25,27,32,89,90] 
and other spermatogenic cells [22,26,30,86,87,89,90]. A recent study in mice showed that 
chronic exposure to BPA impairs the proliferation of spermatogonia and spermatocytes, 

Figure 1. Schematic representation of BPA-induced alterations in hypothalamic–pituitary–testicular (HPT) axis, testicular
function and structure, and in seminal parameters. (A). In normal conditions, gonadotrophin releasing hormone (GnRH) is
released by the hypothalamus stimulating the secretion of follicle-stimulating hormone (FSH) and luteinizing hormone
(LH) by the pituitary. LH acts on Leydig cells and FSH on Sertoli cells, stimulating the biosynthesis of testosterone and
inhibin B, respectively. Both hormones are crucial for normal spermatogenesis and, thus, to produce normal sperm. When
testosterone and inhibin are released in the bloodstream, they inhibit GnRH/LH and FSH secretion, respectively (negative
feedback). (B). Even at low concentrations, BPA reduced the levels of testosterone by directly targeting Leydig cells, reducing
their proliferation, and impairing normal steroidogenesis. Moreover, BPA indirectly suppresses the release of LH through
aromatase upregulation in testis, blocking testosterone synthesis. The reduction of inhibin B observed following BPA
exposure is also associated to a reduction in the number of Sertoli cells, directly affecting spermatogenesis. The lower
levels of testosterone and inhibin B block the mechanism of negative feedback, in an attempt to increase the release of
LH and FSH and their action in testis (dashed arrows). BPA exposure also results in an increase in free radicals, which
associated with altered hormonal levels lead to histological alterations in testis and germ cells’ reduction and degenerations.
These alterations explain the abnormal seminal parameters observed in situations of BPA exposure, such as decreased
concentration and total sperm count, reduced motility and viability and increased DNA fragmentation.
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nal and internal factors leads to an excessive production of ROS intracellularly, including the free 
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gen peroxide (H2O2), converting them into less reactive species. SOD catalyses the dismutation of 
superoxide radical to H2O2. H2O2 is rapidly converted into OH- radical, which is very reactive and 
causes lipid peroxidation and DNA damage. GPx neutralizes H2O2 by taking hydrogens from two 
GSH molecules resulting in two H2O and one GSSG. GR then regenerates GSH from GSSG. Fi-
nally, CAT neutralizes H2O2 into H2O and O2. Two other antioxidant systems involve peroxiredox-
ins (Prx) (yellow) and the thioredoxin (TRX) system (blue). Prx are ubiquitous antioxidant en-
zymes that catalyse the reduction of H2O2, peroxynitrite (ONOO−), and organic hydroperoxides to 
water, nitrite, or hydroxyl derivatives (ROH), respectively [118]. The TRX system composed by 
TRX, TRX reductase (TRXR), and NADPH is a ubiquitous thiol oxidoreductase system that also 
regulates cellular redox status [119]. Briefly, an initial oxidation of the active site of Prx forms an 
interchain disulphide (Prx-S2). The hyper-oxidation of Prx decreases localized peroxidase activity, 
leading to the oxidation of less sensitive proteins [118]. Reduced TRX (TRX-(SH)2) catalyses the 
reduction of disulphides (S-S) within oxidized proteins, including Prx - Prx-(SH)2. In this process, 
Trx becomes oxidized (TRX-S2), being further reduced by thioredoxin reductase (TRXR) at the 
expense of NADPH. 
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Figure 2. Endogenous antioxidant mechanisms. The oxidative stress (OS) caused by several external and internal factors
leads to an excessive production of ROS intracellularly, including the free radicals hydroxyl (OH−), peroxyl (HO2), and
superoxide (O2

−). Cellular redox homeostasis is maintained by an endogenous antioxidant defence system that includes
the endogenous antioxidant enzymes SOD, CAT, GPx, and GSH (green). These antioxidants directly scavenge O2

− and
hydrogen peroxide (H2O2), converting them into less reactive species. SOD catalyses the dismutation of superoxide radical
to H2O2. H2O2 is rapidly converted into OH- radical, which is very reactive and causes lipid peroxidation and DNA
damage. GPx neutralizes H2O2 by taking hydrogens from two GSH molecules resulting in two H2O and one GSSG. GR
then regenerates GSH from GSSG. Finally, CAT neutralizes H2O2 into H2O and O2. Two other antioxidant systems involve
peroxiredoxins (Prx) (yellow) and the thioredoxin (TRX) system (blue). Prx are ubiquitous antioxidant enzymes that catalyse
the reduction of H2O2, peroxynitrite (ONOO−), and organic hydroperoxides to water, nitrite, or hydroxyl derivatives
(ROH), respectively [118]. The TRX system composed by TRX, TRX reductase (TRXR), and NADPH is a ubiquitous thiol
oxidoreductase system that also regulates cellular redox status [119]. Briefly, an initial oxidation of the active site of Prx
forms an interchain disulphide (Prx-S2). The hyper-oxidation of Prx decreases localized peroxidase activity, leading to the
oxidation of less sensitive proteins [118]. Reduced TRX (TRX-(SH)2) catalyses the reduction of disulphides (S-S) within
oxidized proteins, including Prx - Prx-(SH)2. In this process, Trx becomes oxidized (TRX-S2), being further reduced by
thioredoxin reductase (TRXR) at the expense of NADPH.

Testicular structural damage and dysfunction are often associated with increased
oxidative stress; however, in spermatozoa, small amounts of ROS are required for specific
and essential functions, such as capacitation [120], acrosome reaction [121], and motility
hyperactivation [122]. Moreover, spermatozoa produce small amounts of ROS as a by-
product of the electron transfer chain in mitochondria [109,120]. However, increased ROS
levels can induce errors during DNA replication, transcription or post-transcriptional
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events, resulting in sperm DNA fragmentation, chromatin condensation abnormalities,
and protamine expression defects [123]. In fact, OS is considered the principal cause of
DNA damage in spermatozoa [124–126].

Several conditions may increase ROS production in testis and sperm, like varic-
ocele or infections, as well as environmental factors or lifestyle (smoking, alcoholism,
medication, radiation). Numerous in vitro and in vivo studies reported that BPA, like
most environmental contaminants, can induce testicular damage and consequently im-
paired semen parameters by inducing OS [105,106,127,128]. The in vitro exposure of
Acipenser ruthenus spermatozoa to concentrations of BPA possibly occurring in nature
(0.5–10 µg/kg) resulted in a significant reduction in sperm motility and velocity and an
increase in DNA fragmentation, together with higher levels of protein and lipid oxidation
and increased SOD activity [23]. Indeed, it was estimated that at least for humans, the
range of exposure to BPA is between 0.4 and 5 ug/kg/day. More recently, using an in vitro
experimental model, Rahman and colleagues showed that mice spermatozoa exposed to
100 µM BPA for 6 h have a significant decrease in the percentage of motile spermatozoa and
intracellular ATP levels, increased activity of protein kinase-A (PKA), tyrosine phosphory-
lation and ROS levels [129]. These results are supported by the study of Rezaee-Tazangi
et al. that reported that isolated mice testicular mitochondria treated with 800 µM BPA
have significantly higher levels of ROS, malondialdehyde (MDA), and mitochondrial mem-
brane potential (MMP) than the control, as well as reduced SOD and glutathione (GSH)
levels [130]. Moreover, BPA considerably impaired epididymal sperm motility and viability,
possibly due to the triggering of OS [130]. Indeed, in vitro exposure of human spermatozoa
to BPA resulted in mitochondrial dysfunction (decreased MMP and increased mitochon-
drial generation of O2

−) with a consequent reduction in sperm motility and increased DNA
oxidative damage [106]. Following 4 h of exposure, the levels of caspase-3 and caspase-9
activation also increased, explaining the reduced sperm vitality observed [106]. In addition,
the increased testicular ROS production may result in mitochondria dysfunction in Sertoli
cells, leading to apoptosis [82]. Primary Sertoli cell cultures exposed to intermediate doses
of BPA (10 and 50 µM) showed increased GSH content due to increased GSH synthesis
and recycling enzyme expression without affecting cell viability [81]. However, 100 µM
of BPA are deleterious for Sertoli cells, indicating a dose-response of Sertoli cells to BPA.
However, most of the described in vitro experiments used BPA concentrations several
times higher than what naturally occurs. For instance, the concentrations used in in vitro
experiments using spermatozoa range from 10 to 800 µM, a much higher concentration
than the maximum found in the seminal fluid (10.9 µg/L = 0.048 µM) [67], and thus, that
reach spermatozoa in vivo. This type of studies may be interesting to study the immediate
effects of an acute exposure to high levels of BPA; however, whether the concentration and
the exposure time used demonstrate what happens at the physiological level and have
biological relevance remains questionable.

Studies from mice revealed that in vivo exposure to BPA decreased testicular activities
of the mitochondrial enzymes succinate dehydrogenase (SDH), malate dehydrogenase
(MDH), isocitrate dehydrogenase (IDH), monoamine oxidase (MAO), and NADH dehydro-
genase (NDH) [21]. It also affects the activity of antioxidant enzymes, reducing the activity
of SOD [21,25,131], glutathione reductase (GR) [21], CAT [131], and GPx [21,22]. Addition-
ally, results showed that BPA caused LPO [21,22] and decrease GSH content in mitochon-
dria [21,131]. In rats, it was also found that BPA deregulate not only testosterone levels and
semen quality but also induced OS in testis and epididymal sperm, by increasing the levels
of MDA [26,27,30,32,86,88], H2O2 [26,86,102,105,132], and LPO [105,132] and decreasing
the GSH content [26,27,30,86,88] and CAT [26,88,105,132], SOD [25,26,30,86,88,105,132],
GR [105], and GPx activity [26,30,86,88,105,132]. Increased MDA and decreased GSH con-
centrations are usually associated to higher concentrations of free oxygen radicals, inducing
LPO in tissues.

In an attempt to elucidate the signalling mechanisms underlying BPA-associated OS
damage in testis, Yin and colleagues expose mouse spermatocytes GC-2 cells and adult



Antioxidants 2021, 10, 289 9 of 21

mice to BPA [133]. The authors reported that in both models, BPA exposure induced not
only mitochondrial damage but also endoplasmic reticulum (ER) injury, upregulating
ER stress-related proteins (GRP78, p-PERK, p-EIF2α, chop and ATF6) in mice testis and
GC-2 cells [133]. By inhibiting the PERK/EIF2α/CHOP branch of the ER unfolded protein
response (UPRER), the BPA-induced apoptosis observed both in vitro and in vivo was
attenuated [133], suggesting that the BPA-induced male reproductive toxicity results, at
least in part, from the activation of PERK/EIF2α/chop pathway in response to the elevation
of ROS levels. Altogether, these findings support that BPA-induced testicular damage, and
abnormal semen parameters are in part associated with an increase in OS caused by the
elevated production of ROS and a deficient antioxidant system. Moreover, BPA exposure
induced testicular mitochondrial damage and LPO, as well as ER stress, activating stress
response-related signalling pathways. Despite the valuable data obtained by studying
animal models, evidence in humans is still scarce and weak, and efforts to understand how
these results can be transposed to the clinic should be implemented.

5. Ameliorative Effects of Antioxidants in BPA-Induced Reproductive Toxicity

In the past years, several research groups have focused their investigation on possible
approaches to treat or prevent BPA-induced testicular toxicity and male infertility. Since the
effect of BPA on testicular cells and mature spermatozoa are particularly due to OS, most
of the pharmacological approaches are based on the use of compounds with antioxidant
properties (Table 1). Antioxidants are reducing agents capable of scavenge and neutralize
free radicals, inhibiting oxidation and preventing OS in cells and tissues.

Table 1. Antioxidants used to treat or prevent BPA-induced male fertility and their effects. The animal model used in each
study, the experimental design, and the effects of the coadministration of BPA and antioxidant compared with the effects of
BPA exposure alone were also presented.

Reference Animal Antioxidant Experimental Groups (G) Effects of BPA + Antioxidant
Administration

[21] Swiss albino mice
(in vivo)

Melatonin
(hormone)

G1: 0.2 mL olive oil (control); G2: 10
mg/kg BPA suspended in olive oil;
G3: 10 mg/kg melatonin; G4: BPA

10 mg/kg + 10 mg/kg of
melatonin—dose/day for 14 days

↑Mitochondrial marker enzymes
SDH, MDH, IDH, NDH, MAO, GSH,
antioxidant enzymes GPx, SOD, GR

↓ LPO

[25]
Sprague Dawley

rats
(in vivo)

Melatonin
(hormone)

G1: 0.5% ethanol in normal saline
(control); G2: 200 mg/kg BPA
suspended in olive oil; G3: 10

mg/kg melatonin intraperitoneally
30 min before BPA administration;

G4: 10 mg/kg melatonin
intraperitoneally + 200 mg/kg BPA
suspended in olive oil—dose/day

for 10 days

↔ body weight, reproductive
organs weight, testes/body and
epididymis/body weight ratios,

sperm counts and apoptosis
↑ SOD activity and 4C-cells number
↓ TBARS accumulation and DNA
damage in spermatocytes, number

of γH2AX-positive foci

[26]
Sprague Dawley

rats
(in vivo)

Melatonin
(hormone)

G1: no treatment (normal control);
G2: 0.2 mL corn oil (experimental

control); G3: normal saline
(experimental control); G4: 50

mg/kg BPA suspended in corn oil;
G5: 10 mg/kg melatonin in normal
saline; G6: 10 mg/kg melatonin + 50

mg/kg BPA—3 days/week for 6
weeks

↑ sperm count and motility,
testosterone levels, GSH, viable cells
↓mortality and abnormal sperm, %
diploid sperm and spermatid; levels

of H2O2 and MDA, necrotic and
apoptotic cells

Other alterations: seminiferous
tubules showed increase in the

germinal cell population with active
spermatogenesis and normal

arrangement of spermatogenic cell,
Leydig cells population normal
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Table 1. Cont.

Reference Animal Antioxidant Experimental Groups (G) Effects of BPA + Antioxidant
Administration

[85]
Sprague Dawley

rats
(in vivo)

Melatonin
(hormone)

G1: 25 mg/kg sesame oil + 25
mg/kg 0.1% ethanol (control); G2:

25 mg/kg BPA; G3: 25 mg/kg BPA +
20 mg/kg melatonin—dose/day for

60 days

↔ total sperm counts
↑ Cldn-1, Occ and ZO-1

immunostaining, sperm motility
Other alterations: Fewer

vacuolations, irregular tubules and
degenerative cells containing a

heterochromatic nucleus in
epididymis

[86] Wistar albino rats
(in vivo)

Melatonin
(hormone)

G1: 0.2 mL 1% dimethyl sulfoxide
(DMSO)/99% canola oil (control);

G2: 0.025 mg/kg BPA; G3: 0.25
mg/kg BPA; G4: 0.025 mg/kg BPA +
melatonin 1 mg/kg; G5: 0.25 mg/kg

BPA + melatonin 1
mg/kg—dose/day; exposure in
utero from gestational day 10–21

↑ body weight; gonosomatic index;
sperm motility; viability and count;
serum T levels and LH; activity of
SOD, GSH, GPx, and GST; tubular

and luminal diameter
↓ FSH and E2; testicular MDA and

H2O2 levels, interstitial necrosis,
and germinal cell degeneration

[134] Wistar albino rats
(in vivo)

Folic acid
(vitamin B9)

G1: 0.5 mL 0.9% NaCl (control); G2:
50 mg/kg BPA in 0.5 mL corn oil;

G3: 20 mg/kg/day folic acid in 0.5
mL 0.9% NaCl; G4: 20 mg/kg folic

acid in 0.5 mL 0.9% NaCl + 50
mg/kg BPA in 0.5 mL corn
oil—dose/day for 14 days

↔ body weight, testes/body weight
ratios, number of UTF-1 positive
cells/tubule and UTF-1 positive

tubules
↑ serum testosterone levels, viable

sperm
↓ TUNEL positive cells and tubules,

head, midpiece and total sperm
abnormalities

[27] Wistar albino rats
(in vivo) Vitamin C

G1: olive oil (control); G2: 25
mg/kg/day BPA; G3: 25

mg/kg/day BPA + 60 mg/kg/day
of vitamin C three times a

week—50 days

↑ right epididymal weight,
congestion areas, atrophy, germinal

cell debris
↓ GSH

[129] CD-1 (ICR) mice
(in vitro)

Vitamin C,
Vitamin E and

GSH

Condition I: DMSO (control); Cond
II: 100 µM BPA; Cond III: 100 µM

BPA + 5 mM GSH; Cond IV: 100 µM
BPA + 100 µM Vitamin C; Cond III:

100 µM BPA + 2 mM of Vitamin
E—for 6 h

↑ sperm motility, ATP levels
↓ acrosome-reacted spermatozoa,

PKA activity, protein tyrosine
phosphorylation and nitration,

ROS levels

[135] SHN mice
(in vivo) Vitamin A

G1: 16 mL of sesame oil and 4 mL of
dimethyl sulfoxide (control); G2: 0.5
mg BPA; G3: 50 mg BPA; G4: 50 mg
BPA + 100 IU Retinoic Acid—for 5

days from the date of birth

↑ sperm motility
↓ abnormal sperm

[31] Human
(in vitro)

Eruca Sativa
aqueous extract

Condition I: untreated (control);
Cond II: 10 µM BPA; Cond III: 10

µM BPA + 15.5 µg/mL ESAE; Cond
IV: 10 µM BPA + 62.55 µg/mL ESAE;

Cond V: 10 µM BPA + 250 µg/mL
ESAE; Cond VI: 10 µM BPA + 1000
µg/mL ESAE—ESAE incubation for
1 h followed by BPA incubation for

4 h

↑ sperm progressive motility and
viability, mitochondrial function

↓ immotile sperm
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Table 1. Cont.

Reference Animal Antioxidant Experimental Groups (G) Effects of BPA + Antioxidant
Administration

[32] Wistar albino rats
(in vivo)

Eruca Sativa
aqueous extract

G1: 0.4 mL/kg/day of
tocopherol-stripped corn oil

(control); G2: 100 mg/kg BPA; G3:
200 mg/kg ESAE; G4: 100 mg/kg
BPA + 50 mg/kg ESAE; G5: 100

mg/kg BPA + 100 mg/kg ESAE; G6:
100 mg/kg BPA + 200 mg/kg
ESAE—dose/day for 30 days

↑ body weight, reproductive organs
weight, testosterone, and LH levels,
sperm counts, motility, viability, SH

group content
↓morphologically abnormal sperm;

MDA levels; SOD, CAT and GPx
activities

[30]
Sprague Dawley

rats
(in vivo)

Cordyceps
militaris

G1: no intervention (normal control);
G2: 200 mg/kg BPA; G3: 800 mg/kg

C.militaris; G4: 200 mg/kg BPA +
200 mg/kg C. militaris; G5: 200

mg/kg BPA + 400 mg/kg C. militaris;
G6: 200 mg/kg BPA + 800 mg/kg C.
militaris; G7: 200 mg/kg BPA + 300

mg/kg Vitamin E—28 days

↑ body weight; SOD, GPx, GSH,
testosterone, and LH serum levels;
sperm counts and motility; mRNA
levels of Star; CYP11A1; 3β-HSD;

and CYP17A1
↓MDA levels

[87]
Sprague Dawley

rats
(in vivo)

Cistanche
tubulosa and
Echinacoside

(ECH)

G1: corn oil 10 mL/kg (normal
control); G2: 200 mg/kg BPA; G3:

200 mg/kg BPA + 300 mg/kg
Vitamin E; G4: 200 mg/kg BPA + 6
mg/kg ECH; G5: 200 mg/kg BPA +
200 mg/kg CT; G6: 6 mg/kg EC; G7:

200 mg/kg CT—6 weeks

↑ sperm motility; LDH-x activity;
FSH, LH, and testosterone serum

levels; mRNA levels of StAR,
CYP17A1, 3β-HSD, and 17β-HSD;

protein levels of CYP11A1 and
CYP17A1

↓ abnormal sperm
Other alterations: normal

histological pattern, normal
spermatogenic series

[88] Wistar albino rats
(in vivo)

Naringin
(flavonoid)

G1: Control; G2: 50 mg/kg BPA; G3:
50 mg/kg BPA + 40 mg/kg naringin;

G4: 50 mg/kg BPA + 80 mg/kg
naringin; G5: 50 mg/kg BPA + 160
mg/kg naringin; G6: 160 mg/kg

Naringin—for 30 days

↔ body weight
↑ testicular weight and volume; total
testicular protein; epididymal sperm

count; testicular enzymes (ALP,
LDH); serum FSH; LH; testosterone
and E2; activities of GPx, SOD, and

CAT; GSH
↓MDA, ROS

Other: less testicular tissue damage

[89]
Sprague Dawley

rats
(in vivo)

Quercetin
(flavonoid)

G1: normal saline (control); G2: 50
mg/kg BPA; G3: 50 mg/kg

quercetin; G4: 50 mg/kg BPA + 50
mg/kg quercetin—for 52 days

↔ body weight, reproductive organ
weight

↑ plasma testosterone, LDL and
HDL levels, tunica albuginea

thickness, seminiferous tubule area,
number of spermatogonia, primary

spermatocytes, secondary
spermatocytes, and spermatids
↓ oestrogen levels, blood urea

nitrogen levels, creatinine,
cholesterol, triglyceride levels

[90] Balb/c mice
(in vivo)

Trigonella
foenum-graecum

G1: normal pellet diet (control); G2:
200 mg/kg fenugreek seeds aqueous

extract; G3: 1 mg/kg BPA; G4: 1
mg/kg BPA + 200 mg/kg fenugreek

seeds aqueous extract—2 months

↑ testis weight, sperm concentration,
sperm motility, GSH, GPx activity,

Bcl-2 mRNA levels
↓ ROS and LPO, Caspase-9 and -3

mRNA level
Other alterations: improved
histoarchitecture, basement

membrane preservation with less
vacuolization and increased number

of elongated, round spermatids
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Table 1. Cont.

Reference Animal Antioxidant Experimental Groups (G) Effects of BPA + Antioxidant
Administration

[131] CD-1 (ICR) mice
(in vivo)

Lespedeza
cuneata ethanol
extract (LCE)

G1: normal saline (solvent control);
G2:10 mg/kg BPA; G3: 10 mg/kg

BPA + 100mg/kg Saw Palmetto
extract (SPE); G4: 10 mg/kg BPA +

25 mg/kg LCE; G5: 10 mg/kg BPA +
50 mg/kg LCE; G6: 10 mg/kg BPA +

100 mg/kg LCE—for 12 weeks

↑ testis weight; sperm counts and
motility; testosterone levels; GSH,

CAT, and SOD1 levels;
HDL-cholesterol

↓ sperm abnormalities; TBARS
levels; glucose; TC, TG, and LDL-

cholesterol

[132]
Sprague Dawley

rats
(in vivo)

Lycopene
(carotenoid)

G1: saline following treatment with
0.5 mL corn oi (control); G2: 200

mg/kg BPA; G3: 200 mg/kg BPA +
10 mg/kg lycopene; G4: 10 mg/kg

lycopene—for 30 days

↑ body and organ weight, sperm
count, sperm motility, antioxidants
enzymes level (SOD, CAT, GPx, GR)

↓ LPO and H2O2

[130] NMRI mice
(in vitro)

Taurine
(amino acid)

Condition I: untreated (control);
Cond II: 0.8 mmol/L BPA for 2 h;
Cond III: 50 µmol/ L TAU for 4 h;

Cond IV: pre-treated with 5 µmol/L
of TAU for 2 h before BPA treatment

(2 h); Cond V: pre-treated with 10
µmol/L of TAU for 2 h before BPA

treatment (2 h); Cond VI: pre-treated
with 30 µmol/L of TAU for 2 h

before BPA treatment (2 h); Cond
VII: pre-treated with 50 µmol/L of
TAU for 2 h before BPA treatment

(2 h)

↑ Sperm and testicular mitochondria
viability, MMP, GSH, SOD, sperm

motility
↓ testicular mitochondrial

ROS, MDA

[22] BALB/c mice
(in vivo) Selenium

G1: diet adequate in selenium (0.2
ppm/kg diet) as sodium selenite for

12 weeks (control); G2: 0.5 ppm
sodium selenite/kg for 12 weeks;

G3: 0.2 ppm sodium selenite/kg for
8 weeks followed by 1 mg/kg BPA
for 4 weeks; G4: 0.5 ppm sodium

selenite/kg for 8 weeks followed by
1 mg/kg BPA for 4 weeks

↑ sperm concentration and motility,
GPx activity

↓ ROS and LPO levels, number of
TUNEL- positive germ cells
Other alterations: preserved

basement membrane with less
vacuolization, increased germ

cell count

[28] Gobiocypris rarus
(in vivo) NAC

G1: 0.001%DMSO (control); G2: 10
mg/kg NAC; G3: 100 mg/kg NAC;
G4: 225 µg/L BPA; G5: 10 mg/kg

NAC + 225 µg/L BPA; G6: 100
mg/kg NAC + 225 µg/L BPA — for

7 days

↑ GPx activity
↓ levels of 5-methylcytosine (5mC),

GSH, γ-glutamyl cysteine
synthetase (GCS), DNA

methyltransferase proteins
(DNMTs), H2O2 concentration,

S-adenosylhomocysteine (SAH),
homocysteine (HCY), nicotinamide

adenine dinucleotide phosphate
(NADPH) levels, SOD, CAT

activities

[101] Wistar albino rats
(in vivo) NAC

0, 1.0 or 10 mg/L BPA for 8 weeks
and BPA + 0.45% NAC for 2 days
prior to the administration of BPA

↑ sperm motility
↓ HNE-modified protein at 30 kDa,

ROS levels

Legend: ↔ no change; ↑ increase; ↓ decrease.

5.1. Melatonin

The neurohormone melatonin (N-acetyl-5-methoxytryptamine), a free radical scav-
enger with a significant antioxidant activity [136], increases the levels and activity of
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the antioxidant enzymes SOD [137], GPx and GR [138]. It also reduces mitochondrial
LPO [138], a feature often observed in testis after BPA exposure [21].

Several studies investigated the role of melatonin in ameliorating BPA-induced testic-
ular toxicity [21,25,26,85]. Anjum et al. showed that the oral administration of melatonin
in mice exposed to BPA reduced testicular mitochondrial LPO; restored the activity of
mitochondrial enzymes (SDH, MDH, IDH, MAO, and NDH); and improved the mito-
chondrial antioxidants GPx, SOD, and GR [21]. In rat testes and epididymal sperm,
similar results were reported—the administration of melatonin with BPA [26] and BPA
exposure in utero [86] decreased OS by restoring GSH, GPx, SOD, CAT, and Glutathione-
S-transferase (GST) activity and MDA and H2O2 levels. This potent antioxidant also
normalizes testosterone levels, improves histopathological alterations and allows the occur-
rence of normal spermatogenesis, leading to normal sperm count, motility, viability, and
morphology [26,86]. By studying the genotoxic effects of BPA in male Sprague Dawley rats’
germ cells and the potential protective action of melatonin, Wu and colleagues showed
that animals exposed to 200 mg/kg BPA per day for ten days presented higher levels
of thiobarbituric acid reactive substances (TBARS) and decreased activity of SOD than
controls [25]. Additionally, they reported increased DNA damage at pachytene sperma-
tocytes stage in rats exposed to BPA, accompanied by an increased frequency of γH2AX
foci, a marker of double strand breaks [25]. The authors also observed that the detected
effects were significantly alleviated by melatonin pre-treatment [25]. Altogether, these
data suggest that BPA induce DNA damage accumulation in the germ cells of rats via OS,
which can be effectively prevented by melatonin. Moreover, melatonin supplementation
has the potential to protect male fertility and assist normal fertilization, by preventing the
transference of defective paternal DNA to the offspring.

Recently, it was reported that melatonin not only protects rat testis and sperm
against BPA damage, but also the epididymis [85]. The histological alterations in rat
epididymis resultant from the exposure to BPA diminished, and the seminal quality
improved with melatonin administration [85]. Additionally, BPA reduced the levels of
claudin-1 (Cldn-1), occluding (Occ) and zonula occludens (ZO-1), components of the
blood–epididymis barrier (BEB) that are critical for the integrity of tight junctions, which is
ameliorated by melatonin administration [85]. These data support the vision that melatonin
prevents the BPA-induced disruption of BEB that leads to changes in sperm maturation
and thus to altered sperm motility and viability.

5.2. Vitamins

In rats, supplementation with folic acid (Vitamin B9), well known for its antioxidant
properties, also seems to minimize testicular toxicity induced by BPA [134]. According
to Gules’ results, the group exposed to folic acid followed by BPA have improved serum
testosterone levels, sperm viability and morphology, and reduced apoptosis, compared
with the BPA treated group, and similar phenotype than the control group [134]. On the
other hand, the co-administration of the dietary antioxidant vitamin C with BPA did not
seem to result in any benefit on testicular BPA-induced oxidative damage in rats [27].
Indeed, the increase in MDA and morphologically abnormal sperm, and the decrease
in GSH levels observed in BPA treated group were also observed in the vitamin C co-
administrated group [27]. Besides, in the vitamin C + BPA group, aggravated histological
alterations were observed compared with BPA treated group (increased atrophy and germ
cells debris), which may be associated with the pro-oxidant properties of vitamin C [27].
In sperm, in vitro experiments using a mice model showed that the administration of
vitamin C, vitamin E and GSH effectively prevent BPA-induced OS [129]. The authors
reported that these antioxidants inhibit the excessive production of ROS and increase
intracellular ATP, avoiding motility loss caused by exposure to BPA [129]. Additionally,
vitamin E and GSH reduced tyrosine phosphorylation in sperm, preventing premature
abnormal acrosome reaction [129]. Interestingly, the preventive effects of vitamin E and
GSH are more evident than those from vitamin C since the administration of vitamin C
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resulted in an incomplete recovery of the damages [129]. Additionally, vitamin A also
seems to restore sperm motility and normal morphology in mice exposed neonatally to
BPA [135]. Aikawa et al. reported that mice exposed to 50 µg of BPA during the first 5 days
after birth presented diminished sperm motility and increased morphologically abnormal
spermatozoa, which are ameliorated by retinol acetate administration, a naturally occurring
metabolite of vitamin A [135]. However, the limited number of studies available question
the reliability of these evidence, requiring more investigation to clearly elucidate the role
of vitamins in fertility protection against BPA.

5.3. Natural Extracts

Recently, several phytochemicals [88,89] and plant extracts [30–32,90] showed an
ameliorative effect on testicular function and semen quality in human and animal models
exposed to BPA. Cordyceps militaris, a medicinal fungus widely used in traditional Chinese
medicine, contains many active components, such as cordycepin, polysaccharides, and
cordycepin acid, with anti-bacterial, anti-tumour and anti-oxidative properties [139]. Ex-
perimental evidences showed that this fungus’ extract restored the histological architecture
of seminiferous tubules and epididymis and improved sperm count and motility in male
rats exposed to BPA through OS reduction [30]. In particular, the administration of C.
militaris significantly increased testicular SOD, GPx, and GSH, as well as reduced serum
MDA, inhibiting LPO [30]. Additionally, it restored the serum concentration of LH and
testosterone, reduced by BPA administration, increasing the expression of key players in
steroidogenesis (StAR, CYP11A1, 3β-HSD, and CYP17A1) [30]. Two other compounds
used in Chinese medicine—Cistanche tubulosa and echinacoside—were also shown to have
the potential to protect testis and sperm against BPA injury. Echinacoside, the major active
ingredient of Cistanche tubulosa, has several health benefits including anti-inflammatory,
antioxidant, and neuroprotective characteristics [140]. Similar to C. militaris, the use of
these compounds reversed BPA-induced abnormalities in rat sperm, testicular structure,
and serum testosterone levels by enhancing StAR, CYP11A1, 3β-HSD, 17β-HSD, and
CYP17A1 levels [87], making them a promising natural resource to develop therapeutic
agents. Additionally, the herbal medicines Trigonella foenum-graecum (Fenugreek) and Les-
pedeza cuneata also have potent antioxidant properties, improving sperm parameters, testis
weight and histoarchitecture, testosterone levels, and the levels of antioxidant enzymes
in BPA-treated mice [90,131]. In vitro co-treatment of TM4 Sertoli cells with BPA and 50,
100, or 200 µg/mL Lespedeza cuneata ethanol extract for 24h also recovered cell viability
by attenuating Bax expression and inactivating caspase 3 and PARP [131]. This extract,
extremely enriched in bioactive substances such as β-sitosterol, quercetin, kaempferol,
pinitol, avicularin, juglanin, trifolin, vitamins, and flavonoids, has the potential to protect
male reproductive health against BPA injury.

By studying the protective effect of Eruca sativa aqueous extract (ESAE) in distur-
bances induced by BPA in vitro, Grami et al. showed that human sperm exposed to BPA
presented reduced motility and viability and diminished MMP [31]. Even at low doses,
this medicinal plant extremely rich in natural antioxidants, such as polyphenols (gallic
acid) and flavonoids (quercetin, kaempferol, cirsilineol, and acacetin), protects against
BPA toxicity both in vitro and in vivo [31,32]. In vivo experiments showed that Eruca sativa
aqueous extract supplementation significantly restores the activity of antioxidant enzymes
such as SOD, CAT, and GPx in rat testis and epididymis subjected to BPA treatment [32].
However, the treatment with higher concentrations was associated with a severe mito-
chondrial dysfunction and cell membrane redox balance, decreasing sperm motility [31,32].
Thus, studies should be performed to establish the appropriate dose, avoiding cumulative
toxic effects.

The therapeutic effects of several phytochemicals (flavonoids, lycopene) against BPA-
induced reproductive toxicity have also been investigated. Naringin is a flavone found
in citrus, tomatoes, cherries, grapefruit, and cocoa that presents several functions, such
anti-oxidative, anti-cancer, and anti-inflammatory activities [141]. Wistar rats exposed
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to BPA were treated with naringin, presenting normal levels of serum hormones (LH,
FSH, testosterone, and E2), improved sperm counts and testicular histology, and a better
antioxidant system [88]. Furthermore, the co-administration of BPA and quercetin (3, 5,
7, 3′,4′-pentahydroxyflavone) reversed the toxic effects of BPA on testis and epididymis
of Sprague Dawley rats, restoring spermatogenesis, histopathological damages, and lipid
profile [89]. Moreover, the powerful antioxidant lycopene, a natural carotenoid present
in tomato and tomato products, showed a positive effect in vivo, by protecting rat testis
from germ cells’ loss, preventing testis and epididymis loss of weight and restoring the
impairment of sperm motility by normalizing the activity on anti-oxidant enzymes [132].
Thus, the protective effects of lycopene against BPA- induced abnormal sperm rates, and
OS may be attributed to its anti-lipid peroxidative and free radical scavenging properties.
Despite promising the use of exogenous antioxidants may be carefully used due to possible
adverse effects.

5.4. Other Antioxidants

Recently, Rezaee-Tazangi and colleagues investigated the in vitro effects of taurine
(TAU) on BPA-induced OS in testicular mitochondria and on sperm viability and motil-
ity [130]. TAU (2-aminoethanesulfonic acid) is a free amino acid present in several tissues
that may act as an antioxidant in sperm. It was shown that pre-treatment with TAU sup-
pressed BPA-induced mitochondrial OS, enhanced MMP and improved sperm viability
and motility in a dose-dependent manner [130]. Interestingly, studies performed in other
tissues, such heart, showed that the decrease in GPx, SOD, GST, and CAT activities in
BPA exposed groups were not reverted by the administration of TAU or curcumin [142],
which suggest a tissue/cell-dependent response. The protective effect of Selenium (Se)
against BPA-induced reproductive toxicity in male mice and rats was also reported [22,143].
This vital micronutrient seems to prevent testicular damage by decreasing LPO and OS in
testes, resulting in lower apoptotic index of germ cells and improved semen parameters,
compared to BPA-treated animals [22,143]. Several studies also demonstrated that BPA-
induced OS can lead to changes in DNA methylation levels in testis, and supplementation
with antioxidants, including N-acetylcysteine (NAC), was able to restore these changes
by improving the antioxidant system [28,101]. Minamiyama et al. (2010) reported that
decreased sperm motility and increased ROS levels associated with BPA exposure were
reversed by the administration of NAC prior to the exposure to BPA in male rats [101].
However, NAC did not always exhibit a protective effect, since higher concentrations
exacerbate OS [28].

6. Conclusions

BPA is now recognized as a potent endocrine disruptor that compromises the HPG
axis during foetal and adult life and disturbs the cellular redox balance in testis and sperm,
resulting in altered testis development, architecture and function, impaired endocrine
function, and abnormal semen parameters. Overall, available data support an adverse
effect of BPA on sperm characteristics, such as reduced motility and concentration, and
increased genetic abnormalities; however, these alterations were not accompanied by clear
data on fertility outcomes. At the molecular level, increased ROS production, mitochon-
drial dysfunction, and redox imbalance seem to be important factors for BPA-induced
testicular damage.

The recognition of effective markers of exposure able to determine and predict the
health and reproductive consequences and the identification of therapeutic moieties capable
of rescue the BPA-induced toxicity on the male reproductive system represent the major
challenges in this field. Antioxidants that reduce OS, lipid peroxidation, and DNA damage,
restoring the global antioxidant defence system, can be used to treat male infertility and
poor semen quality associated with BPA exposure. Many antioxidants such as Vitamin E,
melatonin, and N-acetylcysteine seem to have potential benefits to ameliorate BPA-induced
toxicity, in vitro and in vivo. However, this supplementation for prevention/treatment of
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altered states associated with environmental exposure in humans should be considered
with caution, considering that the available studies are limited and were performed in
animal models, and further studies are required to establish the appropriate dosage and
treatment scheme. Additional research should also be conducted to confirm the safety and
efficacy of these antioxidants for its clinical application.
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