Time-Decaying Aggregates
in Out-of-order Streams

Graham Cormode

Flip Korn
AT&T Labs - Research
{graham.flip}@research.att.com

Srikanta Tirthapura
lowa State
snt@iastate.edu

L]
Outline

m Aggregate Computation under Time Decay

m Sliding Window Approach
— Approximating Counts on out-of-order streams
— Ranges and application for aggregates

m Value Division Approach
m Experimental Comparison

2 Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

]
Data Stream Computations

m Streams of updates must be processed in single pass
— |P traffic measurements, stock feeds, sensor readings
m Need to mine holistic aggregates
- Medians (quantiles), frequent items
m Recent updates more important than older data
— Weight updates based on a function of age
— Quality issues: Data may not be seen in timestamp order
m Need to keep small summaries, give accurate answers
— Much work on sketches, summaries without decay

3 Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

[
Decay Functions

m Given age a, g returns decayed weight of the item
— Require g(0) =1 and 0 < g(a) <1 for a>0

m Sliding window, size W:
g(a)=1fora<W, else g(a)=0

age 2> W
m Polynomial decay, parameter «:
g(a) = (a+1)™ \
age -2

m Exponential decay, parameter A.:
g(a) = exp(-ra)

4 Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

]
Aggregates of Interest

m Streaming model: Given stream of (t; v;) tuples
— Vv, Is an item, t; its timestamp
- E.g. IP flow, start time
— Total weight at time t under g is D(t) = >, g(t — t)

m (¢-Heavy Hitters |
— Find items v so that >, _, g(t-t) > ¢ D(t)

= ¢=-Quantiles =

~ Find q so that (¢ - £)D(t) < X o 9(t-t) < (0 + €)D(1)

m g(x)=1:same as standard approx heavy hitters/quantiles

5 Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

Example

time 1 time 2 time 3

Decay fn. g(a) = 1/(1+a) Heavy hitters with ¢ = 1/2

Time =3 Time =4

Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

L]
Prior Work

m Much prior work has focused on aggregate computation
under sliding window

— Exponential histograms [Datar,Gionis,|Indyk,Motwani’02]
— Deterministic waves [Gibbons, Tirthapura’02]
— Quantiles and heavy hitters [Arasu,Manku’04]
— Tighter bounds for heavy hitters [Lee, Ting'06]
m But this work critically assumes in-order arrivals

- Some study of counts and samples for arrivals not ordered
by timestamp [Busch Tirthapura '07, Cormode, Tirthapura, Xu '07]

m Little work on aggregates under other decay functions
— Counts and sums under general decay [Cohen, Strauss’03]

7 Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

Our Results

First results for quantiles and heavy hitters under
arbitrary decay, out of order arrivals.
Two approaches yield poly(log N,1/e,log W) solutions:

1. Solve sliding window problem, then reduce other decay
functions to multiple instances of sliding window

2. Use decay-function specific division of time domain and
bound number of mergable summaries kept

Both methods give deterministic guarantees,
independent of the amount of disorder in stream

Better method depends on desired decay function

Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

]
Sliding Window Count

m First analyze count under sliding window
— Needed for other computations
— Technique is generalized for more complex aggregates

m Given w at query time t, compute how many items
arrives between w-t and t with relative error ¢

N = upper bound on # arrivals, W = upper bound on w
Keep J = log (e N/ log W) summaries Q,

Q, summarizes the 9 log W 2//e most recent arrivals
Q, simply buffers the 9 log W/e most recent items

9 Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

]
Summary Structures

= Q based on Q-digest [Hershberger, Shrivastava, Suri, Toth ‘04]
m Impose binary tree on top of time domain

m [rack counts satisfying

— If node has non-zero
count, so does its parent

— Each non-leaf range
has count < 2

— Each node, sibling, parent
triple has count > 2!

m Retain at most a=9log W/e ranges, discard old ranges

10 Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

]
Summary Maintenance

m Given arrival of new item with timestamp t’ (possibly out
of order), find smallest range containing it

m Add there, or in child if it
would violate count constraint

m Simple searching takes
O(log W), binary search
on path takes O(log log W)

m [he data structure

gives additive error 2/ on
window count queries

11 Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

L]
Window Count Estimation

m Given window size w at time t

— Find smallest >0 so that Q, contains t-w

— Estimate by sum of counts of ranges later than t-w
m Error: only ranges that are ancestors of t-w

— By contstraint, these contribute at most 2! log W

— By choice of «, true count > 2/ log W/e

— Error / true count <
2 log W/(2) log W /e) = ¢

12 Time Decaying Aggregates on Out-of-order Streams — Cormode, K&, Tirthapura

]
Space and Time Cost

m Bound size based on simple counting argument
- Each summary Q, has total count = o 2
— Each triple (parent and children) has count > 2
- So size is O(a) = O(log W/e)
— QOver J=log (¢ N/log W) summaries
— Total space = O(log W/e log (¢ N/log W))
m [ime cost:
— Periodic pruning of summaries takes linear time
— Amortized O(log (eN / W)) per update

13 Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

]
Sliding Window Range Queries

m Range queries are a stepping stone to other aggregates
m 2D Ranges: updates are a sequence of (t,v) pairs
m Queries: time window w, value window u

- R(w,u) = count of points that fall in this range

. « . m Require error in count to be ¢ D(t)
r=3-""7"1u — Chosen to match requirements for
‘ :. N | quantiles and heavy hitters
L e — Cheaper than guaranteeing € R(w,u)
"IL . *%e
W <«

14 Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

]
Supporting Range Queries

m Solution: keep Q, structures as before on the time
dimension (ignoring value dimension)

= Within each node in Q; structure, keep a second
summary on values of items summarized by that node

. e |° L m Various choices of exactly how to
. Implement, detalils in paper
* * m Space: O(1/e log® W log eN)
o ‘.f m Time: O(log log U log W log €N)

15 Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

]
Reductions to Range Queries

m Both quantiles and heavy hitters in sliding windows can
be answered by range queries

m Quantiles: find u so that R(w,u) = ¢ D(t)
m Heavy hitters: find u so that R(w,u) — R(w,u-1) > ¢ D(t)

"« ____ Sobounds on previous slide immediately
apply for these problems

16 Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

Arbitrary Decay Functions

17

[Cohen-Strauss’03]: sum under arbitrary decay functions
can be reduced to scaled sums of sliding window queries

Same observation holds

for quantiles and HHSs: 5@\

these aggregates are .

composed of counts = =

N
In particular, can approximate count of a range under
arbitrary decay function specified at query time

Make efficient by evaluating at specific time windows
Space and time cost same as for window decay

Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

Value Division

18

Alternate solution for certain “smooth” decay functions
Divide time into regions

where decay function varies
by at most (1+€) factor \/\
Keep at most one summary \

of items falling between two divisions
Merge pairs of summaries that fall between two divisions
Number of summaries is O(log,,. g(W)) = O(1/e g(W))

Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

]
Value Division Analysis

m Requires that a decay function be fixed in advance to
determine boundaries

— But: can still choose a different decay function at query
time, provided it is “dominated” by the default function

m Naturally accommodates out-of-order arrivals

m For polynomial decay and quantiles, space cost is
O(1/¢? log U log t), depends linearly on poly exponent

19 Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

]
Experimental Set Up

m Implemented these algorithms in C, compared to the
undecayed case

m Evaluated on data sets of 5M requests to WorldCup’98
webserver, and on 5M flows from large ISP network

— WorldCup’98: Introduced large disorder by dropping date
information from timestamps

— Network data: Contains some moderate disorder by using
begin_time as timestamp on data sorted by end_time

m Compared no decay to
— sliding window
— polynomial (via value division)

20 Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

]
Space Cost

Space Usage vs Alpha for worldcup5M Data 7e+06 i:mlydecay'
240000 . . fo106 windowdecay —s— |
polydecay —— 4
220000 r 1 50406
E’ 200000 r
S 180000 | § 4e406
=
160000 | : 2 30406
@
Ej_ 140000 . 26406
@ 120000 t 1
100000 L] 1a+06 | \\
80000 : : - 0 ' ! -
1 1.5 2 25 3 0 0.05 0.1 0.15 0.2
alpha £

® Space cost scales linearly with polynomial exponent for
smooth decay, as predicted

" Space of window-based approach several times larger
than for smooth decay approach

21 Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

L]
Time Cost

; . .] B0 . .
a5 hodecay — : no decay —+—
polydecay T I poly decay —-%-- |
30 r windowdecay —8— . 50 E\E%
& 25] = 40 | &
w I E EJ
g e E 30}
o 15 Lt =
= = |
o i = 20 r
10 | el
e
e | e] 10 b %
- T # i
1 1 1 {] 1 1 1
0 M M 3M 4M 0 0.05 0.1 0.15 0.2
time step

" Time scales near linearly with the input size
" Window decay approximately 10x slower than no decay

® Smooth decay can be close to cost of no decay

22 Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

Conclusions

23

Novel algorithmic techniques required to compute
aggregates with time decay on out-of-order streams

Results come at a cost compared to no decay, but still
practical

Always some limitations (assumptions on time domain,
or on smoothness of decay function)

Natural questions: other aggregates, improved bounds

Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura

