
Time-Decaying Aggregates 
in Out-of-order Streams

Graham Cormode

Flip Korn
AT&T Labs - Research 

{graham,flip}@research.att.com

Srikanta Tirthapura
Iowa State

snt@iastate.edu



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura2

Outline

� Aggregate Computation under Time Decay

� Sliding Window Approach

– Approximating Counts on out-of-order streams

– Ranges and application for aggregates

� Value Division Approach

� Experimental Comparison



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura3

Data Stream Computations

� Streams of updates must be processed in single pass

– IP traffic measurements, stock feeds, sensor readings

� Need to mine holistic aggregates 

– Medians (quantiles), frequent items

� Recent updates more important than older data

– Weight updates based on a function of age

– Quality issues: Data may not be seen in timestamp order

� Need to keep small summaries, give accurate answers

– Much work on sketches, summaries without decay



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura4

Decay Functions

� Given age a, g returns decayed weight of the item

– Require g(0) = 1 and 0 ≤ g(a) ≤ 1 for a>0

� Sliding window, size W:

g(a) = 1 for a < W, else g(a)=0

� Polynomial decay, parameter α:
g(a) = (a+1)-α

� Exponential decay, parameter λ: 

g(a) = exp(-λa)

W

age �

age �



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura5

Aggregates of Interest

� Streaming model: Given stream of 〈ti, vi〉 tuples

– vi is an item, ti its timestamp

– E.g. IP flow, start time

– Total weight at time t under g is D(t) = ∑i g(t – ti)

� φ-Heavy Hitters

– Find items v so that ∑vi = v g(t-ti) > φ D(t)

� φ-Quantiles

– Find q so that (φ - ε)D(t) ≤ ∑vi≤ q g(t-ti) ≤ (φ + ε)D(t)

� g(x)=1: same as standard approx heavy hitters/quantiles



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura6

Example

time 1 time 2 time 3

Decay fn. g(a) = 1/(1+a) Heavy hitters with φ = 1/2

Time = 3

1/2
1/4

1/3

1/3

Time = 4

1
1/2



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura7

Prior Work

� Much prior work has focused on aggregate computation 
under sliding window

– Exponential histograms [Datar,Gionis,Indyk,Motwani’02]

– Deterministic waves [Gibbons,Tirthapura’02]

– Quantiles and heavy hitters [Arasu,Manku’04]

– Tighter bounds for heavy hitters [Lee, Ting’06]

� But this work critically assumes in-order arrivals

– Some study of counts and samples for arrivals not ordered 

by timestamp [Busch Tirthapura ’07, Cormode, Tirthapura, Xu ’07]

� Little work on aggregates under other decay functions

– Counts and sums under general decay [Cohen, Strauss’03]



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura8

Our Results

� First results for quantiles and heavy hitters under 
arbitrary decay, out of order arrivals.

� Two approaches yield poly(log N,1/ε,log W) solutions:

1. Solve sliding window problem, then reduce other decay 

functions to multiple instances of sliding window

2. Use decay-function specific division of time domain and 

bound number of mergable summaries kept

� Both methods give deterministic guarantees, 

independent of the amount of disorder in stream

� Better method depends on desired decay function



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura9

Sliding Window Count

� First analyze count under sliding window

– Needed for other computations

– Technique is generalized for more complex aggregates

� Given w at query time t, compute how many items 

arrives between w-t and t with relative error ε

� N = upper bound on # arrivals, W = upper bound on w

� Keep J = log (ε N / log W) summaries Qj

� Qj summarizes the 9 log W 2j/ε most recent arrivals

� Q0 simply buffers the 9 log W/ε most recent items



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura10

Summary Structures

� Qj based on Q-digest [Hershberger, Shrivastava, Suri, Toth ‘04]

� Impose binary tree on top of time domain

� Track counts satisfying

– If node has non-zero 

count, so does its parent 

– Each non-leaf range 

has count ≤ 2j

– Each node, sibling, parent 

triple has count ≥ 2j

� Retain at most α=9log W/ε ranges, discard old ranges



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura11

Summary Maintenance

� Given arrival of new item with timestamp t’ (possibly out 
of order), find smallest range containing it

� Add there, or in child if it 
would violate count constraint

� Simple searching takes 

O(log W), binary search
on path takes O(log log W)

� The data structure
gives additive error 2j on 

window count queries
t’



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura12

Window Count Estimation

� Given window size w at time t

– Find smallest j>0 so that Qj contains t-w

– Estimate by sum of counts of ranges later than t-w

� Error: only ranges that are ancestors of t-w

– By contstraint, these contribute at most 2j log W

– By choice of α, true count ≥ 2j log W/ε

– Error / true count ≤
2j log W/(2j log W /ε) = ε



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura13

Space and Time Cost

� Bound size based on simple counting argument

– Each summary Qj has total count ≈ α 2j

– Each triple (parent and children) has count ≥ 2j

– So size is O(α) = O(log W/ε)

– Over J=log (ε N/log W) summaries

– Total space = O(log W/ε log (ε N/log W))

� Time cost: 

– Periodic pruning of summaries takes linear time

– Amortized O(log (εN / W)) per update



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura14

Sliding Window Range Queries

� Range queries are a stepping stone to other aggregates

� 2D Ranges: updates are a sequence of (t,v) pairs

� Queries: time window w, value window u

– R(w,u) = count of points that fall in this range

w

u

� Require error in count to be ε D(t)

– Chosen to match requirements for 

quantiles and heavy hitters

– Cheaper than guaranteeing ε R(w,u)



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura15

Supporting Range Queries

� Solution: keep Qj structures as before on the time 
dimension (ignoring value dimension)

� Within each node in Qj structure, keep a second 
summary on values of items summarized by that node

� Various choices of exactly how to 
implement, details in paper

� Space: O(1/ε log2 W log εN)

� Time: O(log log U log W log εN)



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura16

Reductions to Range Queries

� Both quantiles and heavy hitters in sliding windows can 
be answered by range queries

� Quantiles: find u so that R(w,u) ≈ φ D(t)

� Heavy hitters: find u so that R(w,u) – R(w,u-1) ≥ φ D(t)

So bounds on previous slide immediately 
apply for these problems



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura17

Arbitrary Decay Functions

� [Cohen-Strauss’03]: sum under arbitrary decay functions 
can be reduced to scaled sums of sliding window queries

� Same observation holds
for quantiles and HHs:

these aggregates are 

composed of counts

� In particular, can approximate count of a range under 

arbitrary decay function specified at query time

� Make efficient by evaluating at specific time windows

� Space and time cost same as for window decay



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura18

� Alternate solution for certain “smooth” decay functions 

� Divide time into regions

where decay function varies

by at most (1+ε) factor

� Keep at most one summary

of items falling between two divisions

� Merge pairs of summaries that fall between two divisions

� Number of summaries is O(log1+ε g(W)) = O(1/ε g(W))

Value Division



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura19

Value Division Analysis

� Requires that a decay function be fixed in advance to 
determine boundaries

– But: can still choose a different decay function at query 

time, provided it is “dominated” by the default function

� Naturally accommodates out-of-order arrivals

� For polynomial decay and quantiles, space cost is 

O(1/ε2 log U log t), depends linearly on poly exponent



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura20

Experimental Set Up

� Implemented these algorithms in C, compared to the 
undecayed case

� Evaluated on data sets of 5M requests to WorldCup’98 
webserver, and on 5M flows from large ISP network

– WorldCup’98: Introduced large disorder by dropping date 

information from timestamps 

– Network data: Contains some moderate disorder by using 
begin_time as timestamp on data sorted by end_time

� Compared no decay to

– sliding window

– polynomial (via value division)



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura21

Space Cost

� Space cost scales linearly with polynomial exponent for 

smooth decay, as predicted

� Space of window-based approach several times larger 

than for smooth decay approach



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura22

Time Cost

� Time scales near linearly with the input size

� Window decay approximately 10x slower than no decay

� Smooth decay can be close to cost of no decay



Time Decaying Aggregates on Out-of-order Streams — Cormode, Korn, Tirthapura23

Conclusions

� Novel algorithmic techniques required to compute 
aggregates with time decay on out-of-order streams

� Results come at a cost compared to no decay, but still 
practical

� Always some limitations (assumptions on time domain, 

or on smoothness of decay function)

� Natural questions: other aggregates, improved bounds


