Rationale for the Use of the Terms
J-Wave Syndromes and Early Repolarization

Charles Antzelevitch, PhD,* Gan-Xin Yan, MD, PhD,† Sami Viskin, MD‡

Utica, New York; Wynnewood, Pennsylvania; and Tel Aviv, Israel

The J-wave is a deflection immediately following the QRS complex of the surface electrocardiogram (ECG) that has been linked to the development of a pronounced dispersion of repolarization within the ventricular myocardium leading to the development of cardiac arrhythmias. When partially buried in the R-wave, the J-wave appears as a J-point elevation and may be accompanied by an ST-segment elevation, an electrocardiographic feature that is often referred to as an early repolarization (ER) pattern. Several lines of evidence have been advanced pointing to the association of ER pattern with life-threatening arrhythmias, designated as early repolarization syndrome (ERS) or Brugada syndrome (BrS) based on the region of the heart responsible for the arrhythmogenic substrate. Although BrS and ERS differ with respect to the magnitude and lead location of abnormal J-wave manifestations, they are thought to represent a continuous spectrum of phenotypic expression termed J-wave syndromes (1).

Early repolarization, consisting of a distinct J-wave or J-point elevation, a notch or slur of the terminal part of the QRS and an ST-segment elevation, is predominantly found in healthy young males and has traditionally been viewed as totally benign (2,3). The observation in 2000 that an ER pattern in the coronary-perfused wedge preparation can easily convert to one in which phase 2 re-entry gives rise to polymorphic ventricular tachycardia/ventricular fibrillation (VT/VF) prompted the suggestion that ER may in some cases predispose to malignant arrhythmias in the clinic (1,4,5). Sporadic case reports and experimental studies have long suggested a critical role for the J-wave in the pathogenesis of idiopathic ventricular fibrillation (IVF) (6–14). A definitive association between ER and IVF has been presented in more recent reports (15–19).

We recently suggested a classification scheme based on the available data (1). An ER pattern manifest predominantly in the lateral precordial leads was designated as Type 1; this form is very prevalent among healthy male athletes and is thought to be associated with a relatively low level of risk for arrhythmic events. ER pattern in the inferior or inferolateral leads was designated as Type 2; this form is associated with a moderate level of risk. Finally, an ER pattern appearing globally in the inferior, lateral, and right precordial leads was labeled Type 3 and is associated with the highest level of risk and, in some cases, is associated with electrical storms (1). BrS represents a fourth variant in which ER is limited to the right precordial leads.

In both BrS and ERS, the manifestation of ER is dynamic (14,20,21), with the most prominent ECG changes appearing just before the onset of VT/VF (7–14, 20–22). The J-wave syndromes share other similarities as well, including a strong male predominance, clinical outcomes, risk factors, and a common arrhythmic platform related to amplification of the J-wave.

In this issue of the Journal, Surawicz and Macfarlane (23) question the appropriateness of the terms J-wave syndromes and early repolarization. The authors first question whether the low-frequency deflection at the end of the QRS that we refer to as a J-wave represents ventricular depolarization or early repolarization. Experimental data generated using the coronary-perfused wedge preparation have provided insights into the cellular basis for the J-wave (7,24,25). As illustrated in Figure 1, the presence of a transient outward current (Ito)-mediated action potential notch in ventricular epicardium, but not endocardium, produces a transmural voltage gradient during early ventricular repolarization that registers as a J-wave or J-point elevation on the ECG. Direct evidence in support of this hypothesis derives from the demonstration that factors that accentuate or diminish the action potential notch produce a corresponding change in the magnitude of the J-wave (7). Ito is largely responsible for phase 1 of the epicardial action potential; because it is slow to recover from inactivation, the current is reduced following an acceleration of heart rate or the introduction of a premature beat, resulting in a decrease in the magnitude of the J-wave (Fig. 2) (26,27). This feature is helpful in discriminating between a J-wave and a delayed depolarization interrupting the QRS, because the latter will become more accentuated with prematurity or acceleration of rate.

Surawicz and Macfarlane (23) highlight the importance of lead, sex, age, and race in evaluating the significance of
J-point elevation and early repolarization. Many of these distinctions are attributable to differences in the intensity of I_{to}, which have been shown to underlie the predisposition to the development of both BrS and ERS (28). Figure 3 illustrates the predominance of the BrS phenotype in coronary-perfused canine right ventricular (RV) wedge preparations isolated from males versus females. Myocytes isolated from the RV epicardium of males was shown in the same study to possess a higher density of I_{to} when compared with myocytes isolated from female hearts.

The authors express curiosity as to why “the letter J in cardiac electrophysiology defines 2 unrelated and totally different events,” the J-point elevation seen in the normal ECG and the “long, slow deflection of uncertain origin at the end of the QRS, originally identified in hypothermia.” In previous studies designed to delineate the cellular basis for the J-wave, we demonstrated that the cellular basis for these 2 phenomenon is indeed similar (7,29). Figure 4 shows a marked accentuation of the J-wave in response to hypothermia in a canine left ventricular wedge preparation. Under normothermic conditions, much of the J-wave is buried inside the QRS. With hypothermia, the epicardial action potential notch is markedly accentuated and transmural conduction is slowed, giving rise to a distinct J-wave, reflecting the transmural voltage gradient created by accentuation of the notch in epicardium, but not endocardium. The 2 electrocardiographic morphologies represent 2 extremes of a continuous spectrum.

The authors assert that “the letter J in cardiac electrophysiology defines 2 unrelated and totally different events” is tantamount to arguing that the normal T-wave of healthy
its action to inhibit I_{to}, normalizes the ER pattern and the repolarization hypothesis. It is also noteworthy that quinidine, via normalization at rapid heart rates, consistent with the repolarization dependence of ER have shown that this ECG manifestation is noteworthy that a multitude of studies examining the rate dependence of the ER response to prematurity and acceleration. It is justified, as in Figure 1.

The question is once again posed as to whether ER patterns may in some cases represent delayed activation. As previously discussed, this can be discerned on the basis of the ER response to prematurity and acceleration. It is noteworthy that a multitude of studies examining the rate dependence of ER have shown that this ECG manifestation normalizes at rapid heart rates, consistent with the repolarization hypothesis. It is also noteworthy that quinidine, via its action to inhibit I_{to}, normalizes the ER pattern and exerts an antiarrhythmic effect in this setting (29). If it was due to delayed activation, both acceleration and quinidine via its inhibition of the sodium channel current would be expected to accentuate the ER pattern.

We are truly indebted to Surawicz and Macfarlane (23) for their many valuable contributions to electrocardiography. Over a period of many decades, they have critically shaped our thinking with regard to diagnosis and treatment of cardiac arrhythmia and sudden death syndromes. On this particular issue, we respectfully disagree and make a plea for investigators to focus on diagnostic criteria and provocative measures that can be used to identify individuals at risk rather than on terminology. It is clear that the vast majority of individuals with ER are at no or minimal risk for arrhythmic events and sudden cardiac arrest. Our challenge moving forward is to develop better risk stratification strategies and more effective treatments for the J-wave syndromes (30).

REFERENCES

Reprint requests and correspondence: Dr. Charles Antzelevitch, Masonic Medical Research Laboratory, 2150 Bleecker Street, Utica, New York 13501. E-mail: ca@mmrl.edu.

Key Words: Brugada syndrome • cardiac arrhythmias • early repolarization syndrome • electrocardiogram • hypothermia • sudden cardiac death.