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Set Reconciliation With Nearly Optimal Communication
Complexity

Yaron Minsky, Ari Trachtenberg, Member, IEEE, and Richard Zippel

Abstract—We consider the problem of efficiently reconciling two sim-
ilar sets held by different hosts while minimizing the communication com-
plexity, which we call the set reconciliationproblem. We describe an ap-
proach to set reconciliation based on a polynomial encoding of sets. The re-
sulting protocols exhibit tractable computational complexity and nearly op-
timal communication complexity when the sets being reconciled are sparse.
Also, these protocols can be adapted to work over a broadcast channel, al-
lowing many clients to reconcile with one host based on a single broadcast,
even if each client is missing a different subset.

Index Terms—Data consistency, gossip/epidemic protocols, interactive
computation, reconciliation.

I. INTRODUCTION

We consider the problem of reconciling two physically separated
sets with a minimum of communication. Set reconciliation is partic-
ularly useful in systems that make progress in the face of poor and/or
unpredictable network connectivity by temporarily sacrificing consis-
tency. Such systems typically require some mechanism for repairing
whatever inconsistencies are introduced, and set reconciliation can be
a useful tool for doing those repairs. Examples of this kind of system
arise in a variety of contexts, including distributed databases and file
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systems [1], [2], mobile database synchronization [3], [4], gossip pro-
tocols [5]–[7], and resource location systems [8], [9]. More generally,
set reconciliation can be useful in any system that needs to maintain
the consistency of unordered, distributed data.

The problem of reconciling two hosts’ data sets can be formalized
as follows: given a pair of hostsA andB, each with a set of lengthb
bitstrings, how can both hosts determine the union of the two sets with a
minimal amount of communication—both with respect to the number
of exchanges between the two hosts and with respect to the number
of bits of information exchanged. We call this theset reconciliation
problem.

This correspondence presents a surprisingly simple and efficient
class of set reconciliation protocols based on a representation of sets as
polynomials. The advantage of this approach is that some operations
on sets, in particular set difference, can be computed more efficiently
from the polynomial encoding. The communication complexity of
these set reconciliation protocols is close to the size of the symmetric
difference of the two sets. Moreover, under certain conditions, these
protocols are one-way [10], meaning that no interaction between hosts
is needed. Thus, a hostA could broadcast anmb-bit message, and
every hostBi whose set differs fromA’s set by at mostm bitstrings
(each of lengthb) could recover the bitstrings it is missing. This works
even if each hostBi is missing a different set of bitstrings, so that the
total number of distinct bitstrings that can be recovered is much larger
thanm.

We begin in Section II with a brief survey of the relevant literature.
Section III presents our set reconciliation algorithms and describes their
performance. Section IV presents information-theoretic bounds on set
reconciliation, and shows that the communication complexity of our
algorithms is near optimal when the sets to be reconciled are sparse.
Section V discusses some of the connections between our work and
Reed–Solomon decoding, and Section VI presents our conclusions and
directions for future research. The appendix describes some of the com-
putational intricacies of our protocols.

II. RELATED WORK

The general problem of efficiently reconciling similar data is one
that has been studied extensively in a number of different settings. An
overview of that research is given below.

A. Error-Correcting Codes

Set reconciliation is closely related to the problem of error correction
over a noisy channel, where noise corresponds to differences between
sets. Thus, one can represent a setS � U by a lengthjU j bitstring that
has a1 in locationi iff the ith element ofU , according to some arbitrary
ordering, is present inS. Differences between sets thus correspond to
Hamming differences between their bitstring representations, and can
be determined using techniques described in Orlitsky’s Ph.D. disserta-
tion [11] for linear codes, in [12] for Reed–Solomon codes in partic-
ular, and in [13] for nonlinear codes. Unfortunately, the computational
complexity of the standard encoding and decoding algorithms for tra-
ditional error-correcting codes generally depends linearly on code size,
which is exponential in the representation size of an element ofS.

B. Communication Complexity Theory

There is a large body of work in what is typically called “commu-
nication complexity theory” in which problems similar to set reconcil-
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iation have been studied. The typical scenario for these works is that
two discrete random variables with a known joint distribution are given
to two independent hosts; each host desires to determine the other’s
random variable with as little communication as possible. Various re-
sults [10], [11], [14], [15] provide information-theoretic bounds on
the amount of communication needed for such random variable syn-
chronization depending on the amount of interaction (i.e., number of
rounds of communication) permitted. These results show that interac-
tion can sometimes substantially reduce the amount of communication
needed for synchronization. Extensions of these results show that syn-
chronizing with minimal communication is related to minimal coloring
of a correspondingcharacteristic graph[13], [16], [17]. The enormous
size of this graph makes direct exploitation of this correspondence un-
wieldy in practice.

C. Set Representation

Central to our approach to set reconciliation in this correspondence
is the representation of sets by their characteristic polynomials. This
representation is not novel and was first proposed in [18] and later by
Blum and Kannan [19] as part of a probabilistic set equality test. That
test is based on a probabilistic equality test for polynomials proposed in
[20], and we use essentially the same approach to test rational function
equality in Section III-C. Another aspect of our approach is that poly-
nomials are manipulated by their values rather than their coefficients.
A similar approach was proposed by Kaltofen and Trager [21] as a
way of efficiently computing with sparse polynomials. They present
algorithms for computing the greatest common devisor (GCD), factor-
ization, and separation of numerators and denominators of black-box
rational functions.

Other data structures have been proposed for representing sets in
a way that makes various operations more efficient. One relevant ex-
ample is that of a Bloom filter [22], which is a terse representation of
sets that allows for membership queries with a bounded probability of
false positives. Unfortunately, Bloom filters do not provide an effective
solution to the set reconciliation problem, since the size of a Bloom
filter is linear in the size of the set being represented and the proba-
bility of false positives can be fairly high.

Another way of encoding a set is to write down the set as a string
consisting of the set’s elements in sorted order. Insertions and deletions
from a set then correspond to insertions and deletions from the corre-
sponding string. Correction of insertion and deletion errors in strings
has been studied in the context of spurious error correction [23], [24]
and the�-edits problem [15], and a number of algorithms for recon-
ciling such errors have been proposed [12], [25]–[28]. A great deal of
work has also been done on the problem of efficiently computing the
smallest possible set of edits separating two documents when both doc-
uments are available in their entirety (see [29] for an overview). Cor-
recting insertions and deletion errors in a string appears to be inherently
more difficult than correction of insertion and deletion errors in a set
because of the ordered nature and unlimited length of the data. In partic-
ular, correcting such errors in strings involves determining not only the
content of missing/added data, but also its location within a sequence.
As a result, set reconciliation algorithms based on this approach incur
a logarithmic dependency on the size of the sets being reconciled. Such
a dependency does not occur in our algorithms.

III. SET RECONCILIATION

Consider a pair of hostsA andB that each have a set of lengthb
bitstrings, denotedSA andSB , respectively. Let the difference sets

�A = SA n SB and�B = SB n SA have sizesmA andmB , re-
spectively. We denote the overall number of differences between the
two hosts bym = mA +mB .

There is one case of the set reconciliation problem that has a straight-
forward solution—wheremA = 1 andmB = 0. In this case, Protocol
1 reconciles the two sets with a singleb-bit message. The key to Pro-
tocol 1 is that the elements in bothSA andSB cancel each other out,
leaving only the parity sum of the difference set. Sincej�Aj = 1, this
parity sum is in fact the missing bitstring.

Protocol 1 Subset Reconciliation whenmA = 1

1) Host A computes A, the parity sum of its bitstrings, and
sends it toB.

2) HostB computes B , the parity sum of its bitstrings.
3) HostB computes the parity sum of A and B .

A. Characteristic Polynomials

Protocol 1 is limited to the case wheremA = 1 andmB = 0 by
the fact that the parity sum is only sufficient to recover the contents
of a singleton set. To generalize the approach of Protocol 1, we need a
generalization of the parity sum to the case of multiple differences. The
generalization we will use is based on thecharacteristic polynomial
�S(Z) of a setS = fx1; x2; . . . ; xng, which we define to be the
following univariate polynomial:

�S(Z) = (Z � x1)(Z � x2)(Z � x3) � � � (Z � xn): (1)

In order to use characteristic polynomials for set reconciliation, we
need to map lengthb bitstrings onto elements of some fieldq where
q � 2b. Note that the zeros of�S(Z) are precisely the elements ofS.
Thus, the elements ofS can be recovered by factoring�S(Z). Also,
note that�S(Z) is necessarily monic, i.e., its leading coefficient is1.

The characteristic polynomial of a set is not a summary of a set in
the same way that the parity sum is, since a set’s characteristic polyno-
mial contains all of the information contained in that set. Thus, a host
cannot transmit the characteristic polynomial of a set any more cheaply
than it could transmit the set itself. The characteristic polynomial does,
however, allow for the kind of canceling that was central to Protocol 1.
In particular, consider the ratio between the characteristic polynomials
of SA andSB

�S (Z)

�S (Z)
=

�S \S (Z) � �� (Z)

�S \S (Z) � �� (Z)
=

�� (Z)

�� (Z)
: (2)

All terms corresponding to elements that are in bothSA andSB cancel
out, leaving only the characteristic polynomials of�A and�B , respec-
tively, from which the difference sets themselves can be recovered.

The problem that remains is, how canA andB efficiently compute
the ratio of their characteristic polynomials? The key idea is to divide
out the values of the polynomials at a collection of evaluation points,
rather than dividing the polynomials directly. The results of these divi-
sions can then be used to interpolate the desired rational function. This
approach takes advantage of the fact that if�A and�B are small, then
the rational function to be interpolated will have low degree. As a re-
sult, the number of evaluation points required will be small as well.

B. Reconciliation With a Known Bound onm

We first consider how the above ideas can be applied to a context
where an upper boundm onm is known to all parties. Recall thatm =
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mA +mB is the number of elements that differ betweenSA andSB .
The case where no bound onm is known is discussed in Section III-C.

Protocol 2 Set Reconciliation

1) HostsA andB evaluate�S (Z) and�S (Z), respectively, at
the samem evaluation points, wherem is greater than or equal
to m.

2) The evaluations of�S (Z) and�S (Z) are combined to com-
pute the value of�S (Z)=�S (Z) at each of the evaluation
points. These values are interpolated to recover the coefficients
of the reduced rational function�� (Z)=�� (Z).

3) By factoring�� (Z) and�� (Z), the elements of�A and�B

are recovered.

Protocol 2 outlines our approach to set reconciliation for the case
that a close boundm onm is known. A more in-depth discussion of
the workings of the algorithm is given in the following.

1) Evaluating the Characteristic Polynomial:Most of the calcu-
lations required for set reconciliation, including the interpolation and
factoring, depend only on the size of the symmetric difference between
the sets to be reconciled. Evaluating each host’s characteristic polyno-
mial at a given evaluation point, on the other hand, requires a linear
scan over each host’s data set, which may be quite large. If the evalua-
tion points are chosen in advance, however, the cost of the evaluations
can be amortized over updates to those data sets. Specifically, adding or
deleting an elementx involves multiplying or dividing the value of the
corresponding characteristic polynomial by(Z�x) for each evaluation
pointZ. Thus, the cost per insertion or deletion is2m field operations.

If an evaluation pointk is chosen that is an element ofSA and/orSB ,
then the corresponding characteristic polynomial will vanish, compli-
cating the calculation of the ratio ofA andB’s characteristic polyno-
mials. These anomalous evaluation points can be avoided by increasing
the field sizeq to at least2b+m. This ensures there are at leastm eval-
uation points that are guaranteed not to coincide with data elements. At
worst, this approach require one extra bit per element.

2) Rational Function Interpolation:The problem of determining a
rational function that takes on prescribed values is called therational
interpolation problem. In general, given boundsd1 andd2 on the de-
grees of the numeratorP (Z) =

i
piZ

i and denominatorQ(Z) =

i
qiZ

i of the rational function to be recovered, and asupport setV
consisting ofd1 + d2 + 1 pairs(ki; fi) 2 2, there is a unique ra-
tional functionf (up to equivalence) such thatf(ki) = fi for each
(ki; fi) 2 V . Each pair(ki; fi) in V implies a linear constraint on the
coefficients of the numerator and denominator of the rational function
to be recovered

kdi + pd �1k
d �1
i + � � �+ p0

= fi � kdi + qd �1k
d �1
i + � � �+ q0 : (3)

Interpolation is achieved by solving thed1+d2+1 simultaneous linear
equations implied by the elements ofV [30].

Our problem in step 2) of Protocol 2 differs from the standard ra-
tional interpolation problem in that we have a boundm on the total
degreem = mA + mB of the function rather than individual nu-
merator and denominator bounds. Note, however, thatmA � mB =
jSAj � jSB j, and so can be computed easily. Given� = mA � mB

and an upper boundm onm, we can compute bounds onmA andmB

as follows:

mA �b(m+ �)=2c
def
= mA

mB �b(m� �)=2c
def
= mB:

We can assume without loss of generality (w.l.o.g.) that� andm have
the same parity1 so thatmA +mB = m.

The following theorem, adapted from a standard theorem on rational
interpolation (see [31, Proposition 2.2.1.4]), shows that a support set of
sizem is sufficient to ensure uniqueness.

Theorem 1: Let V be a support set withm elements over a field .
Assume there exist two monic rational functionsf andg that satisfy
V , and that the numerator and denominator off (resp.,g) have degrees
summing to at mostm. If the difference in degrees between the numer-
ator and the denominator off is the same as forg, thenf andg are
equivalent.

In our case, we know that a rational functionf satisfying the degree
bounds of Theorem 1 exists because the support setV is taken from the
rational function�� (Z)=�� (Z), which is assumed to satisfy those
degree bounds. Thus, existence and uniqueness (up to equivalence) are
guaranteed.

3) Example: Consider the sets

SA = f1; 2; 9; 12; 33g

and

SB = f1; 2; 9; 10; 12; 28g

stored at hostsA andB, respectively, as 6-bit integers represented by
elements of 97. Each host assumes a boundm = 5 and agreesa priori
to the evaluation pointsE = f�1; �2; �3; �4; �5g.

The characteristic polynomials forA andB are

�S (Z) = (Z � 1) � (Z � 2) � (Z � 9) � (Z � 12) � (Z � 33)

�S (Z) = (Z � 1) � (Z � 2) � (Z � 9) � (Z � 10)

� (Z � 12) � (Z � 28):

The polynomials are evaluated at the locations inE over 97 to give
the following values:

Z =

�S (Z)

�S (Z)

�S (Z)=�S (Z)

�1 �2 �3 �4 �5

58 19 89 77 4

15 54 68 77 50

75 74 17 1 35

The rational function�� (Z)=�� (Z) is recovered by solving the
system of equations described in Section III-B2. Since the actual sym-
metric difference is less then5, the system of linear equations is sin-
gular and we arbitrarily choose the solution

Z2 + 46Z + 12

Z3 + 41Z2 + 91Z + 4
=

Z � 33

Z2 + 59Z + 86
:

The zeros of the numerator and denominator aref33g andf10; 28g,
respectively, which are exactly equal to�A and�B .

4) Analysis: In order to compute sets�A and�B , Protocol 2 re-
quiresm evaluations of�S (Z) and�S (Z), along with the sizes of
SA andSB . This leads to a communication complexity of

(b+ 1)m+ b = (m+ 1)(b+ 1)� 1 bits. (4)

If m is chosen nearm = mA +mB , then (4) is close tomb, the cost
of simply sending the missing bitstrings. IfA recovers the symmetric
difference, then an extramAb � mb bits are required forA to send

1If � andm do not have the same parity, thenm � 1 is also a bound onm
and trivially has the same parity as�.
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to B the elements required forB to computeSA [ SB . Section IV
compares these results to the information-theoretic bounds.

The computational complexity of Protocol 2 has two dominating
components: the cost of evaluating the characteristic polynomials
�S (Z) and�S (Z) at the evaluation points, and the cost of interpo-
lating and factoring. The former component requiresO(jSjm) time,
but can be amortized asO(m) per insertion as noted in Section III-B1.
The cost of interpolation using Gaussian elimination to solve the
system of linear equations isO(m 3) operations over q, as is the
expected cost of simple root finding (see the Appendix). Asymptoti-
cally faster algorithms are available, but their practical benefit in this
context are unclear.

C. Reconciliation Without a Bound onm

Protocol 2 requires a boundm on the sizem of the symmetric dif-
ference. In the absence of such a bound, a pair of hosts could reconcile
their sets by executing Protocol 2 using progressively larger values for
m. Once a sufficiently largem is reached, the reconciliation can be
completed successfully. Such an approach, however, requires a means
for determining whether the value ofm chosen is large enough.

How can one efficiently test whether the chosenm is large enough?
One approach would be for hostsA andB to execute Protocol 2 as
usual, and check for success at the end. If the interpolation and fac-
torization steps conclude successfully, then the reconciling hosts can
test whether the recovered sets are actually equal by, for example, ex-
changing hashes of those sets. Any such test must be probabilistic in
nature in order to be efficient, as we note in Section IV.

It is not necessary to do the complete reconstruction of the sets in
order to test whetherm is large enough. Instead, we can do the neces-
sary test after the interpolation step of the protocol is completed. Let
g(Z) be the rational function returned by the interpolation step, and
let f(Z) be�� (Z)=�� (Z). If g(Z) = f(Z), thenm must be an
upper bound onm. We thus require an efficient means for testing the
equality of rational functions.

Rational function equality can be tested probabilistically by evalu-
ating the rational functions in question at a random point and checking
whether those values agree. As follows from Theorem 1, the probability
of two different monic rational functions agreeing on a randomly se-
lected point is no more than� = (D�1)=jEj, whereE is the subset of
Fq from which the evaluation points were chosen andD is a bound on
the degrees of the rational functions. In our context,D = jSAj+ jSB j
serves as a trivial upper bound on the degree of the rational functions.
Assuming setsSA andSB are sparse andjEj is a significant fraction
of q, the typical value of� will be small and�k will converge to zero
quickly in k.

The approach described above requires evaluation points to be
chosen at random, and so the evaluation points would need to be sent
in addition to the values of the characteristic polynomial at those
points. In practice, a pseudorandom number generator can be used
to generate evaluation points, thus reducing the amount of data that
needs to be sent.

1) Minimizing bit complexity: If minimizing the number of trans-
mitted bits is a priority, then evaluations could be sent individually.B
would simply recompute the interpolated rational functiong(Z) every
time it receives an evaluation that does not confirm the previous value
of g(Z). WhenB receivesk evaluations in a row that confirm the pre-
vious value ofg(Z), thenB acceptsg(Z) as equal tof(Z).

The probability that the above protocol terminates withg(Z) 6=
f(Z) is bounded above bym�k . To achieve a probability of failure
less than�, one, therefore, needs no more than

k = dlog�(�=m)e > dlog�(�=(jSAj + jSB j))e (5)

extra evaluation points. As an example, to achieve a confidence level
of 10�11 when reconciling sets of 64-bit strings whose combined size
is less than 10 000 would requirek = 1 extra evaluation.

Using a value ofk chosen according to (5) and a pseudorandom
number generator for choosing evaluation points would result in the
transmission of at most

(b+ 2)(m+ k) + b

bits, which is close to the communication complexity of Protocol 2
and the information-theoretic minimum given in Section IV. The com-
munication complexity is close to that given in (4) whenm is chosen
exactly equal tom. The computational complexity of this method is
O(m4) operations, since the interpolation can be repeated as many as
m times.

2) Minimizing Round Complexity:Sending a single evaluation at a
time has the advantage of requiring the computation and transmission
of the minimum number of polynomial evaluations. It has the disadvan-
tage, however, of requiring(m+k) rounds of communication. We can
reduce the number of rounds todlogc(m+ k)e by increasing the total
number of evaluations by a factor ofc each round. Then, in the worst
case scenario, the number of extra evaluations sent is(c� 1)(m+ k).
Equation (5) can be used for selectingk in this case as well.

The communications complexity for this approach is bounded above
by

(b+ 1)c(m+ k) + b+ dlogc(m+ k)e

which is approximatelyc times the communications complexity of
sending one evaluation at a time. Moreover, for fixedc, the computa-
tional complexity isO((m+ k)3) operations, which is cubic inm, as
opposed to quartic for the one-by-one approach.

IV. I NFORMATION-THEORETICBOUNDS

The set reconciliation algorithms described in Section III have com-
munications complexity within a small constant ofmb. In this section,
we will show that, for sparse sets,mb is close to the best achievable
communication complexity for any set reconciliation protocol.

LetN = jSA \SB j. Set reconciliation demands that hostA discern
mB integers from the2b�N �mA that it might be missing, and sym-
metrically forB. This gives the following information-theoretic lower
bound onĈ1, the number of bits that need to be transmitted between
A andB assuming no bound on the number of rounds of communica-
tion:

Ĉ1 � lg
2b �N �mA

mB

�
2b �N �mB

mA

: (6)

If m = mA + mB is held constant then this expression is mini-
mized whenmA or mB is zero, as appropriate. This is because, for
all n; j; k � 0 andj + k � n

n

j

n� j

k
�

n

j + k
: (7)

Thus,

Ĉ1 � lg
2b �N �m

m
: (8)
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When2b is at least twice as large as either host set, then the lower
bound in inequality (8) becomes(b� 1� lgm) �m � mb�m lgm.
Thus,

Ĉ1

mb
� 1�

lgm

b
:

Assuming the sets are sparse,lgm must be significantly smaller than
b, and soĈ1 is at best within a small fraction ofmb.

The bound in (8) presumes thatm is knowna priori. Without such
knowledge, there is no deterministic algorithm for set reconciliation
that has better than linear communication complexity in the size of the
sets. To see why, note that set reconciliation is strictly more difficult
than testing set equality. As follows from a theorem of Yao [32, The-
orem 1], the communication complexity of set equality is linear in the
size of the sets being tested. It is for this reason that the protocol pro-
posed in Section III-C (for the case where no bound onm is known) is
probabilistic.

V. REED–SOLOMON CODES

Set reconciliation can also be accomplished by the use of error-cor-
recting codes, as described in Section II-A. In fact, the information sent
by our algorithm can be understood in terms of the redundancy of a
transformed Reed–Solomon code.

Recall that in Protocol 2 we convert a setS =
fx1; x2; x3; . . . ; xng into a characteristic polynomial

�S(Z) = (Z � x1)(Z � x2)(Z � x3) � � � (Z � xn):

We then evaluate the polynomial at evaluation pointspi to get values

f�S(p1); �S(p2); �S(p3); . . .�S(pm)g (9)

for an upper boundm on the number of tolerated differences with other
sets. These evaluations are transmitted to a reconciling host.

On the other hand, the redundant residue code formulation of
Reed–Solomon codes involves converting a message

u = (u1; u2; u3; . . . ; uk) 2
k
q

into a polynomial

u(Z) =

k

i=1

uiZ
i�1

:

In this formulation, the codeword corresponding to the messageu is
given by

c = (u(�0); u(�1); u(�2); . . . ; u(�q�2))

where� is a primitive root of unity in q . The Chinese Remainder The-
orem dictates thatu(�0) � � �u(�k) uniquely determine the messageu.
Thus, the redundant part of the codeword is given by

fu(�k); u(�k+1); u(�k+2); . . .u(�q�2)g: (10)

If the messageu is set to the coefficients of the characteristic polyno-
mial�S(Z), the evaluation pointspi are set to the appropriate powers
of �, andk is set toq � 1 �m, then (9) and (10) are identical. Thus,
Protocol 2 transmits the redundancy of a Reed–Solomon encoding of
the coefficients of a set’s characteristic polynomial.

VI. CONCLUSION

We have examined the problem of reconciling two related sets, stored
at separate hosts, with low communication complexity. We have pre-

sented and analyzed two protocols for set reconciliation, one determin-
istic for the case where a bound on the size of the difference is known,
and one probabilistic for the case where no such bound is known.

The deterministic protocol requires a tight bound on the number of
differences between reconciling hosts, but it does not require interac-
tion and can thus be used in broadcast-style applications. The prob-
abilistic protocol does not require anya priori bound on the number
of differences between reconciling hosts, but is interactive. The com-
munication complexity of both protocols is within a small constant of
the information-theoretic lower bound for set reconciliation with sparse
sets.

We have implemented all these protocols in a variety of settings [3],
[4], [33], [34] and believe that these protocols can serve as a foundation
for a new breed of scalable synchronization protocols for distributed
applications.

APPENDIX

ROOT FINDING OF POLYNOMIALS

Assume we are given a polynomialf(Z) of degreem over a finite
field q. This appendix briefly shows how to determine if all the zeros
of f(Z) are distinct and lie in q and, if so, how to find them using clas-
sical algorithms that require the expectedO(m3 lg q) field operations.
More sophisticated algorithms improve the asymptotic complexity to
as low asO(m1:82 lg q) [35], although their basic structure is similar
to that presented here and their practical benefits are not clear. The
techniques described here are based on well-known results (see, for in-
stance, [30], [36]) and are included here for completeness.

The particular type of root finding needed by the set reconciliation
protocols involves three steps. First, determine iff(Z) is square-free.
Second, verify that all irreducible factors off(Z) are linear. And fi-
nally, find the linear factors off(Z).

We can determine iff(Z) is square-free by computing the GCD
of f(Z) and its derivativef 0(Z) using the Euclidean algorithm in
O(m2) field operations. To verify thatf(Z) is the product ofm linear
factors, we simply verify thatf(Z) = GCD(f(Z); Zq � Z), the
latter term being the product of all monic linear polynomials over
q . This verification can be completed inO(m2 log q) time by using

repeated squaring(modf(Z)), giving an overall verification time of
O(m2 log q).

Finally, we find the linear factors off(Z) using probabilistic tech-
niques. We consider two different cases for the fieldq (corresponding
to the possible choices for use in our set-reconciliation protocols): one
whereq is a prime and the other whereq = 2b. Whenq is a prime, note
that the elements of q are zeros of

Z
q � Z = Z + 1 � Z � Z � 1 :

So, almost half of the elements ofq are zeros ofR(Z) = Z � 1.
A polynomial with similar properties can also be constructed for the

field 2

R(Z) = Z
2 + Z

2 + � � �+ Z
4 + Z

2 + Z:

We then have that

R(Z) � (R(Z) + 1) =R(Z)2 +R(Z)

=Z
2 + Z

2 + � � �+ Z
2 +R(Z)

=Z
2 + Z:

So, all the elements of2 are zeros ofR(Z) � (R(Z) + 1), and each
element is either a zero ofR(Z) or ofR(Z) + 1.
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To determine the zeros off(Z), we chose a random element of
a 2 q and compute GCD(f(Z); R(Z � a)), which will have al-
most half the degree off(Z). Applying this technique recursively on
the two factors off(Z) with different values fora will further split the
polynomial, ultimately into linear factors. In total, the expected number
of GCDs required will beO(d).
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