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[10] —, “On the generalized Hamming weights of hyperelliptic codes,8ystems [1], [2], mobile database synchronization [3], [4], gossip pro-
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many: Springer-Verlag, 1993. o N __bitstrings, how can both hosts determine the union of the two sets with a
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1994. of exchanges between the two hosts and with respect to the number
[14] V. K. Wei, “Generalized Hamming weights for linear codetfEE  of bits of information exchanged. We call this tket reconciliation

Trans. Inform. Theoryvol. 37, pp. 1412-1418, Sept. 1991. problem.

This correspondence presents a surprisingly simple and efficient
class of set reconciliation protocols based on a representation of sets as
polynomials. The advantage of this approach is that some operations
on sets, in particular set difference, can be computed more efficiently
from the polynomial encoding. The communication complexity of

Set Reconciliation With Nearly Optimal Communication  these set reconciliation protocols is close to the size of the symmetric
Complexity difference of the two sets. Moreover, under certain conditions, these
protocols are one-way [10], meaning that no interaction between hosts
is needed. Thus, a host could broadcast amb-bit message, and
every hostB; whose set differs fromi’s set by at mostn bitstrings
Abstract—We consider the problem of efficiently reconciling two sim- (€&ch of lengttb) could recover the bitstrings it is missing. This works
ilar sets held by different hosts while minimizing the communication com- even if each hosB; is missing a different set of bitstrings, so that the

plexity, which we call the set reconciliationproblem. We describe an ap- total number of distinct bitstrings that can be recovered is much larger
proach to set reconciliation based on a polynomial encoding of sets. The re- thgnm..

sulting protocols exhibit tractable computational complexity and nearly op- - . . . .
timal communication complexity when the sets being reconciled are sparse. We begin in Section Il with a brief survey of the relevant literature.

Also, these protocols can be adapted to work over a broadcast channel, al- Section |1l presents our set reconciliation algorithms and describes their
lowing many clients to reconcile with one host based on a single broadcast, performance. Section IV presents information-theoretic bounds on set

Yaron Minsky, Ari TrachtenbergMember, IEEEand Richard Zippel

even if each client is missing a different subset. reconciliation, and shows that the communication complexity of our
Index Terms—Data consistency, gossip/epidemic protocols, interactive algorithms is near optimal when the sets to be reconciled are sparse.
computation, reconciliation. Section V discusses some of the connections between our work and

Reed-Solomon decoding, and Section VI presents our conclusions and
directions for future research. The appendix describes some of the com-
putational intricacies of our protocols.

We consider the problem of reconciling two physically separated
sets with a minimum of communication. Set reconciliation is partic-
ularly useful in systems that make progress in the face of poor and/or
unpredictable network connectivity by temporarily sacrificing consis-
tency. Such systems typically require some mechanism for repairingf e general problem of efficiently reconciling similar data is one
whatever inconsistencies are introduced, and set reconciliation carifi®l has been studied extensively in a number of different settings. An
a useful tool for doing those repairs. Examples of this kind of syste@yerview of that research is given below.
arise in a variety of contexts, including distributed databases and file
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iation have been studied. The typical scenario for these works is that = S4 \ S andAp = Sg \ S4 have sizesn4 andmp, re-

two discrete random variables with a known joint distribution are givespectively. We denote the overall number of differences between the
to two independent hosts; each host desires to determine the othews hosts bym = ma + ms.

random variable with as litle communication as possible. Various re-There is one case of the set reconciliation problem that has a straight-
sults [10], [11], [14], [15] provide information-theoretic bounds orforward solution—wheren 4 = 1 andm g = 0. In this case, Protocol

the amount of communication needed for such random variable synreconciles the two sets with a singlbit message. The key to Pro-
chronization depending on the amount of interaction (i.e., numbertoicol 1 is that the elements in boffy andSg cancel each other out,
rounds of communication) permitted. These results show that interégaving only the parity sum of the difference set. Sihte | = 1, this

tion can sometimes substantially reduce the amount of communicatjmarity sum is in fact the missing bitstring.

needed for synchronization. Extensions of these results show that syn-

chronizing with minimal communication is related to minimal coloringiDr
of a correspondingharacteristic grapf{13], [16], [17]. The enormous

size of this graph makes direct exploitation of this correspondence an- - . o
wieldy in practice. 1) Host A computeparity 4, the parity sum of its bitstrings, and

sends it taB.
2) HostB computearity, the parity sum of its bitstrings.
3) HostB computes the parity sum phrity , andparity .

otocol 1 Subset Reconciliation when 4 = 1

C. Set Representation

Central to our approach to set reconciliation in this correspondence
is the representation of sets by their characteristic polynomials. Tiis Characteristic Polynomials
representation is not novel and was first p_r(_)p_osed in [18]_ and later byProtocoI 1is limited to the case whenes = 1 andmy = 0 by
Blum and Kannan [19] as part of a probabilistic set equality test. Th%t - . L
. o . . at e fact that the parity sum is only sufficient to recover the contents
testis based on a probabilistic equality test for polynomials proposed|

[20], and we use essentially the same approach to test rational funct(lac]?rff1 singleton set. To generalize the approach of Protocol 1, we need a

L . . eneralization of the parity sum to the case of multiple differences. The
equality in Section IlI-C. Another aspect of our approach is that poly- S . . i .
nomials are manipulated by their values rather than their coeﬁicien%sgnerahzat'on we will use is based on td:h_aracterlstlc_: polynomial
A similar approach was proposed by Kaltofen and Trager [21] a ' ‘(Z). of a .Set‘_g = {a1, 2, . = xr }, which we define to be the
way of efficiently computing with sparse polynomials. They preserfl? lowing univariate polynomial:
algorithms for computing the greatest common devisor (GCD), factor-
ization, and separation of numerators and denominators of black-box ~ Xs(Z) = (Z =21 )(Z = w2 )(Z = 3) -+ (£ = 2n). @
rational functions.
Other data structures have been proposed for representing sets i order to use characteristic polynomials for set reconciliation, we
a way that makes various operations more efficient. One relevant &ed to map length bitstrings onto elements of some fieftd where
ample is that of a Bloom filter [22], which is a terse representation af> 2°. Note that the zeros of s(Z) are precisely the elements 6f
sets that allows for membership queries with a bounded probability Bus, the elements df can be recovered by factorings(Z). Also,
false positives. Unfortunately, Bloom filters do not provide an effectivote thatys(Z) is necessarily monic, i.e., its leading coefficient is
solution to the set reconciliation problem, since the size of a Bloom The characteristic polynomial of a set is not a summary of a set in
filter is linear in the size of the set being represented and the proliae same way that the parity sum is, since a set's characteristic polyno-
bility of false positives can be fairly high. mial contains all of the information contained in that set. Thus, a host
Another way of encoding a set is to write down the set as a stri§g@nnot transmit the characteristic polynomial of a set any more cheaply
consisting of the set’s elements in sorted order. Insertions and deletigt@n it could transmit the set itself. The characteristic polynomial does,
from a set then correspond to insertions and deletions from the cor@wever, allow for the kind of canceling that was central to Protocol 1.
sponding string. Correction of insertion and deletion errors in strindd particular, consider the ratio between the characteristic polynomials
has been studied in the context of spurious error correction [23], [2] S4 and.Sz
and thex-edits problem [15], and a number of algorithms for recon-
ciling such errors have been proposed [12], [25]-[28]. A great deal of Xs4(Z2) _ Xsansp(Z) - xa4(Z) — /\/AA(Z). @)
work has also been done on the problem of efficiently computing the Xsp(Z)  Xsansp(Z)-xap(Z)  xap(2)
smallest possible set of edits separating two documents when both doc- ) )
uments are available in their entirety (see [29] for an overview). Cofll terms corresponding to elements that are in bthandS cancel
recting insertions and deletion errors in a string appears to be inhere@i§ leaving only the characteristic polynomials¥of andA 1, respec-
more difficult than correction of insertion and deletion errors in a s&¥ely, from which the difference sets themselves can be recovered.
because ofthe ordered nature and unlimited length of the data. In particI € problem that remains is, how canand B efficiently compute
ular, correcting such errors in strings involves determining not only /e ratio of their characteristic polynomials? The key idea is to divide
content of missing/added data, but also its location within a sequen@#! the values of the polynomials at a collection of evaluation points,
As a result, set reconciliation algorithms based on this approach inégher than dividing the polynomials directly. The results of these divi-

a logarithmic dependency on the size of the sets being reconciled. S8iGs can then be used to interpolate the Qesired rational function. This
a dependency does not occur in our algorithms. approach takes advantage of the fact that if andA g are small, then

the rational function to be interpolated will have low degree. As a re-
sult, the number of evaluation points required will be small as well.

lll. SET RECONCILIATION B. Reconciliation With a Known Bound an

Consider a pair of hostd and B that each have a set of length ~ We first consider how the above ideas can be applied to a context
bitstrings, denoteds and S, respectively. Let the difference setswhere an upper bound onm is known to all parties. Recall that =
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ma + mp is the number of elements that differ betweenandSgs. We can assume without loss of generality (w.l.0.g.) thahdm have
The case where no bound onis known is discussed in Section IlI-C. the same parityso thatm 4 + mp = .

The following theorem, adapted from a standard theorem on rational
interpolation (see [31, Proposition 2.2.1.4]), shows that a support set of
sizem is sufficient to ensure uniqueness.

Protocol 2 Set Reconciliation

1) HostsA andB evaluatey s, (Z) andxs, (Z), respectively, at Theorem 1: Let V' be a support set withe elements over a fiel&.
the sameén evaluation points, wherg is greater than or equal Assume there exist two monic rational functiohsndg that satisfy
tom. V', and that the numerator and denominatof @fesp.,¢) have degrees

2) The evaluations of s, (Z) andx s, (Z) are combined to com- summing to at most. If the difference in degrees between the numer-
pute the value ok s, (Z)/xs,(Z) at each of the evaluation  ator and the denominator ¢fis the same as foy, then f andg are
points. These values are interpolated to recover the coefficienggjuivalent.
of the reduced rational functioga , (Z)/xa 5 (Z).

3) Byfactoringya ,(Z) andxa ,(Z),the elementsoh 4 andAp
are recovered.

In our case, we know that a rational functiprsatisfying the degree
bounds of Theorem 1 exists because the suppoVt setaken from the
rational functionya , (Z)/xa ,(Z), which is assumed to satisfy those
degree bounds. Thus, existence and uniqueness (up to equivalence) are

. I yaranteed.
Protocol 2 outlines our approach to set reconciliation for the cade

that a close boun@z onm is known. A more in-depth discussion of 3) Example: Consider the sets
the workings of the algorithm is given in the following.

1) Evaluating the Characteristic PolynomialMost of the calcu- Sa={1,2,9,12, 33}
lations required for set reconciliation, including the interpolation anghg
factoring, depend only on the size of the symmetric difference between
the sets to be reconciled. Evaluating each host’s characteristic polyno-

mial at a given evaluation point, on the other hand, requires a linegpeq at hostsl and B, respectively, as 6-bit integers represented by
scan over each host's data set, which may be quite large. If the evalyas, ants of .- . Each host assumes a bodfic= 5 and agreea priori
tion points are chosen in advance, however, the cost of the evaluatigh®e evaluation point& = {—1, —2, —3, —4, —5}

can be amortized over updates to those data sets. Specifically, adding &, characteristic polynomials for and B are
deleting an element involves multiplying or dividing the value of the
corresponding characteristic polynomial(#/— ) for each evaluation Xs,(Z2)=(Z-1)-(Z—=2)-(Z—-9)-(Z—-12)-(Z - 33)
point Z. Thus, the cost per insertion or deletior2is field operations. ) .

If an evaluation poink is chosen thatis an element$f and/orSs, Xsp(2) =(Z=1)(Z=2)-(Z2-9)-(Z-10)
then the corresponding characteristic polynomial will vanish, compli- (Z —12)-(Z - 28).
cating the calculation of the ratio of and B’s characteristic polyno- ) ) ) )
mials. These anomalous evaluation points can be avoided by increagiR§ POlynomials are evaluated at the locationgioverFs- to give
the field sizey to at least? + 7. This ensures there are at leaseval- € following values:

Sp={1,2,9, 10, 12, 28}

uation points that are guaranteed not to coincide with data elements. At b -

worst, this approach require one extra bit per element. Z= -1 —2 -3 —4 —
2) Ranona] Function Interpolatlon:The problem of determllnlng a xs.(Z) | 58 19 89 77 4

rational function that takes on prescribed values is calledatienal ) - . - -

. . . Xsp(Z) | 15 54 68 77 50

interpolation problemin general, given boundé andd: on the de- s (Z)/xs, (Z) | 75 4 17 1 35

grees of the numeratdr(Z) = ), p;Z' and denominatof)(Z) = XS4 XSp / :

> ¢: Z' of the rational function to be recovered, andupport set”
consisting ofd;, + d» + 1 pairs(k;, f;) € F?, there is a unique ra-
tional functionf (up to equivalence) such th#tk;) = f; for each
(k;, fi) € V.Each paifk;, f;) inV implies a linear constraint on the
coefficients of the numerator and denominator of the rational functi
to be recovered

The rational functionya ,(Z)/xa 5(Z) is recovered by solving the
system of equations described in Section 111-B2. Since the actual sym-
metric difference is less then the system of linear equations is sin-
(%llar and we arbitrarily choose the solution

ZP+46Z7+12  Z-33
E 4 pa, kBT Z3+ 41224 91Z +4  Z2+459Z + 86

= fi- (Lf’-’ + Gdy—1 kfr‘ +- 4 qo) . (3) The zeros of the numerator and denominator{&®} and {10, 28},

o ) ) ) ) respectively, which are exactly equal4o, andA .
Interpolation is achieved by solving tHg+d> + 1 simultaneous linear

equations implied by the elements16f[30]. 4) Analysis: In order to compute seta 4 andA g, Protocol 2 re-
Our problem in step 2) of Protocol 2 differs from the standard rduiresm evaluations ofys, (Z) andxs, (Z), along with the sizes of
tional interpolation problem in that we have a boumdon the total -S4 andSs. This leads to a communication complexity of
degreem = ma + mp of the function rather than individual nu- )
merator and denominator bounds. Note, however,ithat— mp = (0+1Lm+b=(m+1)(b+1)—1 bits. 4
|Sa] — |Sg|, and so can be computed easily. Givee= ma4 — mg
and an upper bound on ., we can compute bounds ens andim g
as follows:

If 77 is chosen neat = m 4 + mp, then (4) is close tanb, the cost
of simply sending the missing bitstrings. Af recovers the symmetric

des difference, then an extra 45 < mb bits are required for to send

ma < |[(m4+6)/2] = ma ] ]
def 1if 6 andmm do not have the same parity, then— 1 is also a bound om
mp < |(m—6)/2] = mp. and trivially has the same parity &s
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to B the elements required fd8 to computeS4 U Sg. Section IV extra evaluation points. As an example, to achieve a confidence level

compares these results to the information-theoretic bounds. of 10" when reconciling sets of 64-bit strings whose combined size
The computational complexity of Protocol 2 has two dominating less than 10 000 would requike= 1 extra evaluation.

components: the cost of evaluating the characteristic polynomialsUsing a value oft chosen according to (5) and a pseudorandom

xs,(Z)andys,(Z) at the evaluation points, and the cost of interporumber generator for choosing evaluation points would result in the

lating and factoring. The former component requiég.S|m) time, transmission of at most

but can be amortized &%(7) per insertion as noted in Section I11-B1.

The cost of interpolation using Gaussian elimination to solve the

system of linear equations i8(7 %) operations ovefr,, as is the

expected cost of simple root finding (see the Appendix). Asymptoti-

cally faster algorithms are available, but their practical benefit in thits, which is close to the communication complexity of Protocol 2
context are unclear. and the information-theoretic minimum given in Section IV. The com-

munication complexity is close to that given in (4) whenis chosen
exactly equal ton. The computational complexity of this method is
O(m*) operations, since the interpolation can be repeated as many as
Protocol 2 requires a bound on the sizen of the symmetric dif- m times.
ference. In the absence of such a bound, a pair of hosts could reconcil2) Minimizing Round ComplexitySending a single evaluation at a
their sets by executing Protocol 2 using progressively larger values fone has the advantage of requiring the computation and transmission
m. Once a sufficiently largen is reached, the reconciliation can beof the minimum number of polynomial evaluations. It has the disadvan-
completed successfully. Such an approach, however, requires a meags, however, of requiringn + &) rounds of communication. We can
for determining whether the value of chosen is large enough. reduce the number of rounds fttwg (m + k)] by increasing the total
How can one efficiently test whether the chogeris large enough? number of evaluations by a factor each round. Then, in the worst
One approach would be for hostsand B to execute Protocol 2 as case scenario, the number of extra evaluations séntisl)(m + k).
usual, and check for success at the end. If the interpolation and f&ctuation (5) can be used for selectifgn this case as well.
torization steps conclude successfully, then the reconciling hosts cafhe communications complexity for this approach is bounded above
test whether the recovered sets are actually equal by, for example, l&x-
changing hashes of those sets. Any such test must be probabilistic in
nature in order to be efficient, as we note in Section IV. (b+ Dye(m + k) + b+ [log (m + k)]
It is not necessary to do the complete reconstruction of the sets in
order to test whethe is large enough. Instead, we can do the necegich is approximately: times the communications complexity of
sary test after the interpolation step of the protocol is completed. L&dnding one evaluation at a time. Moreover, for fixethe computa-
9(Z) be the rational function returned by the interpolation step, anghnal complexity isO((m + k)*) operations, which is cubic im, as

let f(Z) bexa,(Z)/xa,(2). i g(Z) = f(Z), thenm must be an opposed to quartic for the one-by-one approach.
upper bound omn. We thus require an efficient means for testing the

equality of rational functions.
Rational function equality can be tested probabilistically by evalu- IV. INFORMATION-THEORETIC BOUNDS
ating the rational functions in question at a random point and checkingrhg set reconciliation algorithms described in Section 11l have com-
whether those values agree. As follows from Theorem 1, the probabiliyications complexity within a small constanteb. In this section,
of two different monic rational functions agreeing on a randomly Sgge will show that, for sparse setsb is close to the best achievable

lected pointis no more than= (D —1)/|E|, whereE is the subset of ¢ommunication complexity for any set reconciliation protocol.
Fy from which the evaluation points were chosen dnds aboundon | ot v = |5, N S5|. Set reconciliation demands that hastliscern

the degrees of the rational functions. In our contéxt= |S4| + |SB| m g integers from the® — N — m 4 that it might be missing, and sym-

b+2)(m+k)+0b

C. Reconciliation Without a Bound on

serves as a trivial upper bound on the degree of the rational functiopgrically for B. This gives the following information-theoretic lower
Assuming setsy and S are sparse and| is a significant fraction  qng onc.., the number of bits that need to be transmitted between
of ¢, the typical value of will be small andy" will converge to zero 4 apdp assuming no bound on the number of rounds of communica-
quickly in k. tion:

The approach described above requires evaluation points to be
chosen at random, and so the evaluation points would need to be sent o N N
in addition to the values of the characteristic polynomial at those Co >lg ( T m"‘) . < - mB)] . (6)
points. In practice, a pseudorandom number generator can be used ms ma
to generate evaluation points, thus reducing the amount of data that
needs to be sent. If m = ma 4+ mg is held constant then this expression is mini-

1) Minimizing bit complexity: If minimizing the number of trans- mized whenm 4 or m 5 is zero, as appropriate. This is because, for
mitted bits is a priority, then evaluations could be sentindividudly. all n, j, &k > 0andj + k < n
would simply recompute the interpolated rational functjo® ) every
time it receives an evaluation that does not confirm the previous value .
of g(Z). WhenB receives: evaluations in a row that confirm the pre- <"> (" - ]> < " ) @)
vious value ofy(Z), thenB acceptsy(Z) as equal tgf (7). J k Jt+k

The probability that the above protocol terminates wijtl¥) #
f(Z) is bounded above bmp’“. To achieve a probability of failure Thus,
less tharx, one, therefore, needs no more than

b AT
Co > g 2°—N—m . )
k= [log,(e/m)] > [log,(¢/(|Sal + |SBI))] () m

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on January 19, 2010 at 08:00 from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 9, SEPTEMBER 2003 2217

When2? is at least twice as large as either host set, then the lows=nted and analyzed two protocols for set reconciliation, one determin-
bound in inequality (8) becomés — 1 —lgm) - m = mb — mlgm. istic for the case where a bound on the size of the difference is known,
Thus, and one probabilistic for the case where no such bound is known.

The deterministic protocol requires a tight bound on the number of
differences between reconciling hosts, but it does not require interac-

Cx -1 lgm

mb — b tion and can thus be used in broadcast-style applications. The prob-
Assuming the sets are sparkgn must be significantly smaller than abilistic protocol does not require amypriori bound on the number
b, and saC', is at best within a small fraction ofib. of differences between reconciling hosts, but is interactive. The com-

The bound in (8) presumes that is knowna priori. Without such munication complexity of both protocols is within a small constant of
knowledge, there is no deterministic algorithm for set reconciliatiothe information-theoretic lower bound for set reconciliation with sparse
that has better than linear communication complexity in the size of thets.
sets. To see why, note that set reconciliation is strictly more difficult We have implemented all these protocols in a variety of settings [3],
than testing set equality. As follows from a theorem of Yao [32, The¢4], [33], [34] and believe that these protocols can serve as a foundation
orem 1], the communication complexity of set equality is linear in thi®r a new breed of scalable synchronization protocols for distributed
size of the sets being tested. It is for this reason that the protocol papplications.
posed in Section IlI-C (for the case where no boundois known) is
probabilistic. APPENDIX

ROOT FINDING OF POLYNOMIALS

V. REED-SOLOMON CODES Assume we are given a polynomig{Z) of degreemn over a finite

Set reconciliation can also be accomplished by the use of error-cfield . This appendix briefly shows how to determine if all the zeros
recting codes, as described in Section II-A. In fact, the information sewftf (Z) are distinct and lie ifr, and, if so, how to find them using clas-
by our algorithm can be understood in terms of the redundancy osiaal algorithms that require the expecteétn? 1g ) field operations.

transformed Reed—-Solomon code. More sophisticated algorithms improve the asymptotic complexity to
Recall that in Protocol 2 we convert a sef = aslowasO(m'*¥lgq) [35], although their basic structure is similar
{1, %2, x3, ..., 2, } into a characteristic polynomial to that presented here and their practical benefits are not clear. The
techniques described here are based on well-known results (see, for in-
Xs(Z) =(Z —aa)(Z — w2)(Z — w3) (2 — an). stance, [30], [36]) and are included here for completeness.

The particular type of root finding needed by the set reconciliation
protocols involves three steps. First, determing(if) is square-free.
Second, verify that all irreducible factors ¢fZ) are linear. And fi-
nally, find the linear factors of (Z).

for an upper boundz on the number of tolerated differences with other We can determin(_e if_(Z),is sque}re-free by cpmputing the GCFD
sets. These evaluations are transmitted to a reconciling host. of f(Z) and its derivativef’(Z) using the Euclidean algorithm in

On the other hand, the redundant residue code formulation @f’""") field operations. To verify that(Z) is the product ofn linear
; . i .
Reed-Solomon codes involves converting a message factors, we simply verify thaff(Z) = GCD(f(2), 2" — Z), the
latter term being the product of all monic linear polynomials over

We then evaluate the polynomial at evaluation pojnts get values

{xs(p1), x5(p2), Xx5(P3), - .. Xs(Pm)} 9)

w=(ur, uz, us, ..., up) € F’; Fq. This verificqtion can be completed o(m? log q). j[img by ysing
repeated squaringnod f(Z)), giving an overall verification time of
into a polynomial O(m? log q).
. Finally, we find the linear factors of (Z) using probabilistic tech-
w(Z) = Z w2 nigues. We consider two different cases for the fiejdcorresponding

to the possible choices for use in our set-reconciliation protocols): one
whereg is a prime and the other wheye= 2% Wheng is a prime, note
In this formulation, the codeword corresponding to the messaige that the elements d@f,, are zeros of

given by

=1

i _ g (g5 z.(z5 - )
e = (u(a®), u(a'), u(a®), ..., u(a?"?)) 7 =Z= (Z cr 1) d (Z 1)
wherew is a primitive root of unity irf=,. The Chinese Remainder The-Sqg, almost half of the elements B} are zeros ofR(Z) = 7% — 1.
orem dictates that(a®) - - - u(«*) uniquely determine the message A polynomial with similar properties can also be constructed for the

Thus, the redundant part of the codeword is given by field F»

—1

{u(a®), u(a""), u(@™?), . u(@?™?)}. (10)

RZ)y=2""+72"" v 17 1 22y 2z

If the message is set to the coefficients of the characteristic polyno-
mial vs(Z), the evaluation points; are set to the appropriate powers/Vé then have that

of o, andk is settog — 1 — 71z, then (9) and (10) are identical. Thus, )

Protocol 2 transmits the redundancy of a Reed—Solomon encoding of R(Z)-(R(Z) + 1) = R(Z)" + R(Z)

the coefficients of a set’s characteristic polynomial. R T4 R(Z)
=712

VI. CONCLUSION

We have examined the problem of reconciling two related sets, stoi®d, all the elements df,, are zeros of?(Z) - (R(Z) + 1), and each
at separate hosts, with low communication complexity. We have pelement is either a zero @(7) or of R(Z) + 1.
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To determine the zeros gf(Z), we chose a random element of [22] B. H. Bloom, “Space/time trade-offs in hash coding with allowable er-
a € F, and compute GCDf(Z), R(Z — a)), which will have al-

most half the degree of(Z). Applying this technique recursively on

(23]

the two factors off (Z) with different values for. will further split the
polynomial, ultimately into linear factors. In total, the expected number24]
of GCDs required will be)(d).

The authors are grateful to Ramin Takloo-Bighash, Edward Rein*
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