Open Peer Review on Qeios

Assessment of Urban Health Extension Package Utilization and Healthcare Seeking Behavior Among Model and Nonmodel Households in Addis Ababa, Ethiopia: A Comparative Community Based Study

Shitahun Yenet Akale¹, Genanew Kassie Getahun, Shibabaw Yirsaw Akalu, Fentayehu Ababil Alaminie

1 Addis Ababa City Administration Health Bureau

Funding: No specific funding was received for this work. Potential competing interests: No potential competing interests to declare.

Abstract

Background: Ethiopia has been implementing the Urban Health Extension Program (UHEP) at the community level since 2009. The program was a pro-poor and cost-effective approach that aimed to enhance the utilization of urban health extension program packages and empower community healthcare-seeking behavior. This study was conducted to compare the utilization and healthcare-seeking behaviors of urban health extension program packages and the healthcare-seeking behaviors of model and non-model households.

Methods: A community-based comparative cross-sectional study was conducted among 594 female household heads (297 models and 297 non-models) using a structured face-to-face interview. A bivariate and multivariable logistic regression analysis was employed to identify associated factors. A p-value less than 0.05 and an adjusted odds ratio (AOR) with a 95% confidence interval were carried out to identify significant factors.

Results: Urban health extension program package utilization was 78% among model and 64.2% among non-model female households. A total of 75.5% of model and 65.2% of non-model female household heads had appropriate healthcare-seeking behavior. Moreover, having information about UHEPs (AOR = 2.35, 95% CI = 1.08 - 3.42), the frequency of home visits by UHEWs (AOR = 2.12, 95% CI = 1.01 - 3.13), knowledge about UHEPs (AOR = 3.14, 95% CI = 2.43 - 4.47), and household graduation status (AOR = 3.052, 95% CI = 2.024 to 5.113) were significantly associated with urban health extension program package utilization and healthcare-seeking behaviors.

Conclusion: In terms of utilization, the overall urban health extension package favors model female household heads over the non-model female household heads. As a result, raising awareness, frequent home visits, and focusing more on disease prevention and control packages will boost the adoption of urban health extension packages.

Shitahun Yenet Akale (MPH)¹, Genanew Kassie Getahun (MPH)^{2*}, Shibabaw Yirsaw Akalu (MPH)³, Fentayehu Ababil Alaminie (MPH)⁴

¹ Addis Ababa City Administration Health Bureau, Addis Ababa, Ethiopia. Email:<u>shitahun19@yahoo.com;</u> Phone:

+251910325109

² Menelik II Medical and Health Science College, Addis Ababa, Ethiopia. Email:<u>genanaw21kassaye@gmail.com;</u> Phone: +251-911658149

³ Nutrition Research Officer, Food and Nutrition Office, Ministry of Agriculture. Email:<u>shibabaw2063@gmail.com</u>; Phone: +251-925334474

⁴ Public Health Professional Specialists in the Ministry of Mines and Petroleum (MOMP), Ethiopia. Email: <u>fentayehu1@gmail.com</u>; Phone: +251-953915319

^{*}Corresponding author: Genanew Kassie Getahun, Menelik II Medical and Health Science College, Addis Ababa, Ethiopia. Email: <u>genanaw21kassaye@gmail.com</u>; ORCID ID: 0000-0002-0796-5433

Keywords: urban health extension package utilization, healthcare seeking behavior, model and non-model households, Ethiopia.

1. Introduction

Globally, urban health is underutilized and neglected, and there are health inequalities, particularly in low- and middleincome countries ^[1]. By 2050, nearly 60% of Africa's population is expected to live in cities, which are home to 35-40% of the world's children and adolescents ^[2]. According to UN-Habitat, the proportion of the urban population living in slums in developing countries has decreased from 39.4% in 2000 to 29.7% in 2014 ^[3]. Since 1997, Ethiopia has been implementing successive health sector development plans and has made notable advancements in expanding access to healthcare services and enhancing health outcomes ^[4].

The urban health extension program (UHEP) was implemented in Ethiopia, and the deployment of specially trained urban health extension professionals (UHE-Ps) began in 2009 with the goal of improving community utilization of urban health extension packages and healthcare-seeking behavior ^{[5][6]}. Urban health extension professionals (UHE-Ps) spend more than 75% of their time in the community educating residents about urban health extension program packages as well as identifying and preparing model households ^[7]. Model households (HH) are those that complete at least 75% of the model family training out of 60 training hours and implement and use packages at the household level, implying that households have acquired the necessary knowledge, skills, and behavioral changes to help them have better control over their health. Healthcare-seeking behavior (HSB), on the other hand, is the action of persons visiting any health facility for modern treatment rather than traditional medical care ^[8].

Evidence from Ethiopia revealed that only 59.2% and 72.8% of participants use urban health extension at the household level among model and non-models, respectively ^{[9][10]}. Several factors were reported for the poor utilization of urban health extension packages, including sociodemographic and economic factors, household factors such as occupation,

household income, frequency of home visits, model household training, and graduation from a model household ^{[11][12][13]}. Evidence also showed that literacy, educational status, perceived illness, income, and treatment costs were some of the predictor factors for health-seeking behaviors ^{[14][15]}.

Moreover, health care policies and programs' planning requires knowledge about healthcare seeking behavior for early diagnosis, effective treatment, and appropriate intervention ^[16]. Besides, identifying gaps and having regular and up-to-date data on model and non-model households are critical for evidence-based decision-making and baseline data for any stakeholders to take action. As a result, the aim of this research was to compare the utilization of urban health extension packages among model and non-model female household heads in Addis Ababa, Ethiopia, in 2022.

2. Methods

2.1. Study setting

The study was carried out in Bole sub-city, Addis Ababa, Ethiopia. Addis Ababa is composed of eleven sub-cities with an estimated population of 5,006,000. Among these, 47.5% were males, and the remaining 52.5% were females ^[17].

2.2. Study design and population

A community-based comparative cross-sectional study design was used to assess the urban health extension program package utilization and healthcare-seeking behaviour among model and non-model household heads.

2.3. Eligibility criteria

The study included female model and non-model HH heads over the age of 18, as well as those who had lived in the study area for more than a year. The study did, however, exclude female household heads that were seriously ill and unable to communicate.

2.4. Sample size determination and sampling procedure

n

The sample size was calculated using the two-population proportion formula by applying Epi-Info version 7.2.1 software with the following assumptions: 95% confidence interval, 5% margin of error, 80% power, 1:1 model-to-non-model ratio, design effect of 2, and 10% non-response rate. In the study conducted in Ethiopia, knowledge was 80.7% ^[11] and urban health extension package utilization was 66.6% ^[9]. Since studies were conducted only on model households and there is no literature on non-model households, we assumed 50% of the proportions for non-model households.

$$=\frac{\left(Z_{\alpha/2}+Z_{\beta}\right)^{2}X\left(P_{1}\left(1-P_{1}\right)+P_{2}\left(1-P_{2}\right)\right)}{\left(P_{1}-P_{2}\right)^{2}}$$

Therefore, the final sample size was 594 households (297 model and 297 non-model household heads). The study participant model and non-model female household heads were selected by using a multistage sampling technique. The study area was divided into 15 districts at the initial stage; four districts were randomly selected by lottery methods.

In the second stage, because there was no kebele structure in the Addis Ababa city administration, four ketena (the lowest administrative units in a kebele) were chosen at random, and proportional sample size allocation was done in each ketena. The total number of model and non-model female household heads was then obtained from the woreda health office. A sampling frame was prepared for each model and non-model female household heads, and the first households were chosen at random from a list of registrations listed by the names of household heads in each ketena. Using the first household as an index, a simple random sampling technique was used to obtain the required sample size.

2.5. Study variables and measurement

The dependent variables in this study were the use of urban health extension program packages and healthcare-seeking behavior. Socio-demographic factors, distance to the health facility, medical cost, perceived severity of the disease, disease condition, quality of health service, referral linkages, health facility visit, understanding of packages, source of information, communication skills, training, being a model household, home visits/frequency of visits, traditional healer, and holy water were the independent variables.

The utilization of model and non-model female household heads in urban health extension program packages was measured by the use of different components of the packages at the household and health facility levels. Participants who scored 75% were considered to have high utilization (used at least 12 packages from 15 packages), 60-74% moderate (9-11 from 15 packages), and \leq 60% low (\leq 9 from 15 packages). Furthermore, healthcare-seeking behaviors were classified as appropriate or inappropriate. Participants who seek and visit healthcare consultation in a health facility are classified as appropriate, whereas those who visit holy water, traditional healers, pharmacies or drug stores, self-treatment (treating one's health without medical supervision or intervention), and stay at home during illness are classified as inappropriate healthcare-seeking behaviors.

2.6. Data collection procedures

The minister of health's urban health extension program implementation guidelines, literature, and the Ethiopian demographic health survey questionnaire were used to create a structured questionnaire ^{[9][11][17]}. The data collection questionnaire was written in English first, then translated into Amharic. Before data collection, the data collection tools were pre-tested with 5% of the total sample size in Yeka sub-city, Addis Ababa, and modifications were made accordingly. Four data collectors and two supervisors participated, and one-day training was given.

2.7. Data management and analysis

All questionnaires were reviewed for completeness and errors before being entered into Epi Info version 7.2.1.0 and

SPSS version 26 software for analysis. Bivariate logistic regression analyses were used to identify potential factors related to the use of urban health extension packages. To control confounding factors and determine the relationship between independent and outcome variables, multivariable logistic regression analysis was used. The 95% confidence interval and a p-value less than 0.05 were used to assess the degree of association between dependent and independent variables.

3. Results

3.1. Socio-demographic and economic characteristics of the respondents

A total of 587 participants were successfully interviewed, including 294 model and 293 non-model female household heads, for a response rate of 99%. The average age of the study participants was 36.46 years, with an SD of 8 years. Both model and non-model female household heads had three children on average. The average monthly income of participants' model female household heads was 3671, with a standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads be standard deviation (SD) of 1184, while non-model female household heads

3.2. Knowledge status of households towards urban health extension packages

The majority of study participants, 264 (90%) model and 213 (73%) non-model female HH heads, had heard about the urban health extension program, and UHE-Ps were the source of information for 227 (77%) of model and 82 (28%) of non-model HH heads.

Among the study participants, 247 (84%) model and 159 (54%) non-model female HH heads were aware of the components of the urban health extension program package. The most commonly known and reported packages by model female HH respondents were 257 (87%), 247 (84%) (water supply), latrine and excreta disposal, and 239 (81%) (hygiene and environmental sanitation), solid and liquid waste disposal, while non-model HHs had 221 (75%), 217 (74%) (water supply), solid and liquid waste disposal, and 216 (74%), family planning.

On the other hand, the model female HH participants knew and reported the fewest packages: 83 (28%), first aid and emergency measures, 90 (31%), mental health, and 109 (37%), rodent and insect control, while non-model HH participants knew and reported the fewest packages: 62 (21%), first aid and emergency measures, 66 (24%), malaria prevention, and 74 (25%). In general, participants' knowledge status toward UHEPa was assessed using a mean score of 75-100% classified as good knowledge, 60-75% as moderate knowledge, and less than 60% as poor knowledge. According to this, model female HH heads had good knowledge with a mean score of 221 (75%), whereas non-model female HH heads had moderate knowledge with a mean score of 181 (64%).

3.3. Healthcare seeking behaviors of households

The overall healthcare-seeking behaviors of the study participants were 339 (78%), with 184 (79%) model households and 155 (77%) non-model households. Only 139 (76%) model households and 131 (65%) non-model households had

appropriate healthcare-seeking behaviors among those who sought health care. In terms of health care consultation location, the health center was the most common location where 189 (65%) model and 94 (47%) non-model households sought health care. Other places visited during illness included a pharmacy or drug store (10%), a private clinic (11%), and homemade treatment (15%) for model households, and a pharmacy (23%), a private clinic (18%), homemade treatment (9%), and a visit to traditional healers (holy water) (4%) for non-model households.

Among the participants, 48 (21%) model households and 46 (23%) non-model households did not seek health care anywhere during the sick period (illness). The main reason for not seeking health care was the distance to the health facility for both model and non-model HHs, 72 (37%), and 68 (32%), respectively. Quality of service (33%), lack of money (19%) for model female HH heads, lack of money (30%) for non-model female HH heads, and symptoms not severe (28%) were the other reasons for not seeking health care. Participants in the study, 254 (86%) model and 189 (65%) non-model HHs, reported that UHEP was important in increasing healthcare-seeking behaviors. In general, 161 (88%) model and 151 (75%) non-model HHs practiced appropriate health care-seeking behavior, while the remaining 23 (13%) model and 50 (25%) non-model HHs practiced inappropriate healthcare-seeking behavior (Table 2).

3.4. Family health package utilization of households at the health facility level

Two hundred eight (71%) model HHs participants and 183 (63%) non-model HHs participants visited health facilities. The most common reasons for both model and non-model household participants visiting health institutions were disease diagnosis and treatment, which accounted for 83 (40%) model and 50 (24%) non-model HHs. On the contrary, the main reasons for not visiting health institutions were the long distance to health facilities for 43 (50%) model and 19 (17%) non-model HH participants (Table 3).

In terms of family health package use, 142 (48%) model and 136 (46%) non-model HHs used various types of family planning methods. The overall delivery rate was 156 (88%), with 74 (91%) model and 82 (85%) non-model HHs participants having their deliveries at the health facility level. In addition, 120 (85%) of the infants in the model HHs and 126 (77%) of the non-model HHs were vaccinated. Based on community perception, the majority of model HHs study participants rated the quality of health services as very good (49.3%) and non-model HHs as good (49.5%) (Table 3).

3.5. Environmental health package utilization at household level

Two hundred fifteen (73%) model and 154 (53%) non-model household participants had their homes visited by UHE-Ps. In terms of the frequency of household visits conducted by UHE-Ps, 196 (67%) had at least one visit per month for model households, and 83 (54%) had at least one visit per quarter for non-model households.

Concerning the use of environmental health packages, more than three-fourths of the participants, 254 (86%) model households, and 218 (74%) non-model households, had different types of latrine facilities in their homes. Only 75 (30%) of the model households and 53 (24%) of the non-model households had a handwashing station near the latrine. More than two-thirds of participants, 247 (84%) model households and 212 (72%) non-model households, had a solid waste disposal

site, with the majority of 166 (67%) model households and 132 (62%) non-model households disposing of solid waste into covered containers. A total of 227 (77%) model households and 188 (64%) non-model households' participants had liquid waste disposal drainage systems in their homes (Table 4).

3.6. Disease prevention and control package utilization in households

UHE-Ps' role in this package was to provide health education and make referral connections. Based on this, 229 (78%) model and 161 (55%) non-model HHs participants received tuberculosis health education. During coughing for more than two weeks, the majority of model HHs (217%) and non-model HHs (132%) visited the HF for diagnosis and treatment. According to 194 (66%) model and 157 (54%) non-model HH participants, using an insecticide-treated bed net might help prevent malaria. Among model HH participants, 254 (86%) and 197 (67%) non-model HHs received HIV/AIDS health education, with 155 (53%) model and 85 (29%) non-model HHs receiving HIV testing. Only 56 (19%) model and 45 (15%) non-model HHs had first aid kits in their homes, as did 199 (68%) model and 164 (56%) non-model HHs (Table 5).

In general, the overall urban health extension package utilization was 416 (71%), of which 228 (78%) were model and 188 (64.2%) were non-model HH female HH heads. On the contrary, based on the study participants' responses, the main reasons for not implementing and utilizing UHE-Ps for the model HHs were 33 (50%) that some components are not important and for non-model HHs 45 (43%), which I do not know how to use (Table 5).

3.7. Factors associated with urban health extension program package utilization

The bivariate logistic regression analysis revealed that hearing (having information) about UHEPs, income, occupation, understanding of UHE-Ps, perception of service quality, being model HHs, home visits, and the frequency of home visits by urban health extension workers were all significantly related to the utilization of urban health extension program packages at a p-value of less than 0.25. However, variables like age, educational status, marital status, religion, and family size had no significant association with UHE-Ps utilization.

In the multivariable logistic regression analysis, only having information about UHEPs, frequency of home visits, understanding the UHE-Ps, and being model graduated HHs were predictors of UHE-Ps utilization at a p-value of less than 0.05.

As a result, participants in the study who were regularly contacted by urban health extension workers were more than twice as likely to utilize UHE-Ps (AOR = 2.12, 95% CI = 1.01 - 3.13) than those who were not frequently visited. Model female HH heads who heard about urban health extension programs were more than two times more likely to utilize the UHEPs compared to their counterparts (AOR = 2.35, 95% CI = 1.08 - 3.42). Model female HH heads who understood the urban health extension program packages were more than three times more likely to use the UHEPa (AOR = 3.14, 95% CI = 2.43 to 4.47) than those female HH heads who did not understand the packages. Moreover, model female HHs who graduated were nearly three times more likely to use the UHEPa than non-model HHs (AOR = 3.052, 95% CI = 2.024 to 5.113) (Table 6).

4. Discussion

This study attempted to assess and compare the utilization of urban health extension program packages by model and non-model female household heads. The overall knowledge status on UHEPa was moderate among participants, with model female household heads having a higher knowledge status than non-model female household heads. This disparity could be attributed to the presence of frequent home visits, during which UHE-Ps provided health education among model households.

In the current study, the most frequently mentioned UHE-Ps components by both model and non-model female household heads were immunization, latrine and excreta disposal, and solid waste disposal; on the other hand, the least frequently mentioned packages by both model and non-model female household heads were first aid, mental health, and malaria prevention and control activities. The findings are similar to those of a study conducted in Addis Ababa, Ethiopia ^{[7][11]}, in which solid waste, immunization, and latrine and excreta disposal were the three most mentioned packages, while first aid, malaria prevention and control, and mental health were the least mentioned. Furthermore, this consistency could be due to similarities in the study setting, socio-demographic characteristics, and a lack of attention.

The findings are also consistent with a systematic review conducted in Ethiopia from 2003 to 2018 on the success and challenges of health extension programs, which revealed that family planning, immunization, solid and liquid waste disposal, and latrine utilization were the most frequently mentioned packages ^[14]. The current knowledge status of households on urban health extension packages was higher than study findings from Gondar, and Hosanna town in Southern Ethiopia, where 65.3% and 42% of participants had good knowledge of UHE-Ps ^{[15][16]}. This inconsistency could be explained by differences in study settings and socio-demographic characteristics.

The study's findings were also consistent with a study conducted in the Hadiya Zone, South Ethiopia, where 68.3% of participants had good knowledge of UHE-Ps ^[18], but lower than in Addis Ababa^[11]. The absence of model HH training, a low commitment, and the current COVID-19 situation in AA restrict UHE-Ps' frequency of home visits to given health education activities, which could be reasons for this difference. The overall urban health extension program prioritizes the use of model female HH heads over non-model female HH heads. This finding was consistent with a systematic review conducted in Ethiopia from 2003 to 2018, which found that model HHs used more health extension packages than non-model HHs ^[19]. This disparity could be explained by the presence of frequent home visits, health education, and demonstrations of various packages at the household level during home visits.

The current study found that 29.6%, 59.5%, and 42% of participants in AA, Gondar Amhara region, and Hossana town, Hadiya Zone, South Ethiopia, use UHE-Ps ^{[3][15][16]}. The current study's findings were nearly consistent with a study conducted in Bishoftu, Oromia region, which found that 72.8% of participants used UHE-Ps ^[20], but lower than a study conducted two years ago in AA, where 86% of participants used UHE-Ps ^[11]. The absence of model HH training, the restriction of UHE-P home visits, the low commitment, and the lack of supportive supervision and feedback could all be reasons for this inconsistency. Evidence also indicated that one of the challenges to implementing and using HEP was the presence of limited supportive supervision ^{[19][21]}.

Furthermore, the current study identified that, having information, understanding different package components, frequency of home visits, and model household graduation status were predictors of UHEPa utilization.

The current result is supported by the study conducted in AA^{[7][11]}, west Gojjam zone, Amhara region ^[22], Ambo town, Oromia region ^[23], and the systematic review done in Ethiopia^[14], in which the understanding of the packages, frequency of home visits, being model graduated HHs, and monthly income were significantly associated with UHEPa utilization. The finding is also consistent with the other study carried out in Gondar, Amhara region, and the Sebeta Hawas district, Oromia region, which indicated that the understanding of packages was significantly associated with urban health extension services and maternal and child health package utilization ^{[10][15][24][25]}

In this study, the frequency of home visits was higher in model female HHs than in non-model female HHs. The results in the model female HH heads were consistent with the MOH UHEP implementation guideline ^{[26][27]} but lower than the results in Addis Ababa ^[11] and Hosanna town, Hadiya zone, south Ethiopia^[18]. This disparity could be attributed to COVID-19's restriction of UHE-P home visits and the presence of a large disparity in the proportion of UHE-Ps to HHs; one UHE-P is expected to cover 500 HHs ^[26].

According to the study participants' responses, the main reasons for not using the UHE-Ps were a lack of knowledge about some of the package components, some of the packages being unimportant, and some costing or requiring money. According to a study conducted in the AA and Akaki districts of the Oromia region, the main reasons for not using packages were some components that were not important, were not prepared well, and required money ^{[28][29]}.

Limitations of the study

Because the study used a cross-sectional study design with only one point in time, observation and interview recall bias were possible, and it was difficult to identify a cause-and-effect relationship.

5. Conclusion

Based on the findings of this study, it can be concluded that household status, both model and non-model households, had an effect on UHE-Ps utilization. Understanding packages, frequent home visits, income, and being a model household graduate were significantly associated with UHE-Ps utilization. Therefore, providing model household training, frequent home visits, awareness creation on different components of packages, and giving more attention to disease prevention and control packages are essential to increasing UHE-Ps utilization of HHs.

Tables

Table 1. Socio-demographic characteristics of the study participants

No	Variables	Mode	l HHs	Non-mo	del HHs	Tota	I	
NO	Vallables	No.	(%)	No.	(%)	No.	(%)	
	Age							
	19-29	68	23	68	23	136	23	
1	30-40	129	44	132	45	261	45	
	41-51	63	21	61	21	124	21	
	51-62	34	12	32	11	66	11	
	Marital status							
	Single	37	13	41	14	78	13	
2	Married	208	71	196	67	404	69	
	Divorced	29	10	33	11	62	11	
	Widowed	20	6	23	8	43	7	
	Educational status							
	Illiterate	57	19	65	22	122	21	
3	Read and write	41	14	44	15	85	15	
,	primary school	64	22	69	24	133	23	
	secondary	76	26	70	24	146	25	
	Certificate& above	56	19	45	15	101	17	
	Occupation							
1	Housewife	183	62	173	59	356	61	
	Government employs and others	111	38	120	41	231	39	
	Family size							
5	0-3	183	62	173	59	356	61	
	4-6	111	38	120	41	231	39	
	Monthly Income							
6	1550-1900	43	15	47	16	90	15	
	1901-5200	251	85	246	84	497	85	

Table 2. The healthcare-seeking behaviors of model and non-modelhouseholds

Na	Variables	Model	HHs	Non-mod	Total		
NO.	Variables	No.	%	No.	%	No	%
	Disease Status						
1	Yes	232	79	201	69	433	74
	No	62	21	92	31	154	26
	Seek healthcare consultation						
2	Yes	184	79	55	77	339	78
	No	48	21	46	23	94	22
	Consultation Place						
	Health center	121	66	101	65	222	66
3	Private clinic	40	22	24	16	64	19
3	Self-treatment	18	10	19	12	37	11
	Homemade treatment	5	3	7	5	12	4
	Traditional healers/Holy water	0		4	3	4	1
	Healthcare-seeking practices						
4	appropriate healthcare-seeking behaviors	161	88	125	75	286	81
	Inappropriate healthcare-seeking behaviors	23	13	30	22	53	19
	Estimated walking time to HF (Distance to HF)						
5	<30 minutes	49	21	42	15	91	32
	≥30 minutes	112	49	83	29	195	68
	Time for health care seeking during illness						
~	Immediately	124	53	83	41	207	48
6	No improvements	86	37	90	45	176	41
	Unable to eat or drink	22	10	28	14	50	11
	Reason for not seeking health care						
	Symptoms not severe	23	12	59	2	82	20
7	Lack of money	36	19	65	30	101	25
	Distance to HF	72	37	68	32	140	34
	Quality of service	64	33	22	10	86	21
	Referral linkage						
8	Yes	156	67	72	36	228	53
	No	76	33	129	64	205	47
	Urban health extension program increases healthcare-seeking behaviors						
9	Yes	254	86	189	65	443	76
	No	40	14	104	35	144	25

Table 3. Health service utilization of model and non-model

households

	5

No	Variables	Model HHs		Non-I	model	Total		
110	Vanasioo		%	No.	%	No.	%	
	Visit health Institution							
1	Yes	208	71	183	63	391	67	
	No	86	29	110		196	33	
	Reason for visiting Health	institu	tion					
	Immunization	50	24	45	25	95	24	
2	Family Planning	45	22	36	20	81	21	
	ANC & delivery	30	14	9	5	39	10	
	Diagnosis and treatment	83	40	93	51	176	45	
	Reason for not visiting the	Health	n Institu	tion				
	Transportation	26	30.2	7	6.4	33	17	
3	Lack of knowledge	6	7	66	60	72	37	
	Distance to health facility	43	50	19	17.3	62	32	
	poor quality service	11	12.8	18	16.4	29	15	
	Community perception of	service	;					
4	Very good	145	49.3	102	34.8	247	42	
4	Good	141	48	145	49.5	286	49	
	Poor/Bad	8	2.7	46	15.7	54	9	
	Family planning method u	iser						
5	Yes	142	48	136	46	278	4	
	No	152	52	157	54	309	53	
	Infant Vaccinated							
6	Yes	120	85	126	77	246	81	
	No	21	21	37	23	58	19	
	Delivery attended at health	n Instit	ution					
7	Yes	74	91.4	82	85	156	88	
	No	7	8.6	14	15	21	12	

 Table 4. Utilization of environmental health packages by model and non-model households

No.	Variables	Model HH		Non-moo HH	del	Tota	I
		No.	%	No.	%	No.	%
	Availability of latrine facility						
1	Yes	254	86	218	74	472	80
	No	40	14	75	26	115	20
	Type of latrine facility						
2	Flush latrine	24	9	16	7	40	9
2	Ventilated improved Pit Latrine	68	27	69	32	137	29
	Traditional pit latrine	162	64	133	61	295	63
	Share a latrine facility with other households						
3	Yes	46	18	73	34	119	25
	No	208	82	145	67	353	75
	How often use the latrine						
4	Always	248	98	213	98	461	98
	Sometimes	6	2	5	2	11	2
	Hand-washing facilities near to latrine						
5	Yes	75	30	53	24	128	27
	No	179	70	165	76	344	73
	Time for washing hands						
6	Before eating	0		46	16	46	8
0	Both before and after eating	183	62	210	72	393	67
	Before & after eating and after cleaning compounds	111	38	37	13	148	25
	The solid waste disposal system						
7	Yes	247	84	212	72	459	78
	No	47	16	81	2	128	22
	Types of solid waste disposal system						
	Disposed to covered container	166	67	132	62	298	65
8	Disposed to open container	81	33	57	27	138	30
	Burning	0		8	4	8	2
	Thrown anywhere	0		15	7	15	3
	Liquid waste disposal drainage system						
9	Yes	227	77	188	64	415	71
	No	67	23	105	36	172	29

 Table 5. Disease prevention and control packages in model and non-model households

	Verieblee		Model HHs			Non-model				Total		
No	Variables	No.		%		No.		%		No.		%
	Health education on tuberculosis											
1	Yes	229		7		161		55		390		66
	No	65		22		132		45		197	,	34
	What to do during cough for more than two w	veeks										
	visit HF for diagnosis	217		74		132		45		349		60
2	Visit Pharmacy	77		26		114		39		191		33
	take Home treatment	0				38		13		38		6
	Nothing	0				9		3		9		2
	Preventing malaria using insecticide a bed ne	ət										
3	Yes	194		66		157		54		351		60
	No	100		34		136		46		236		40
	Learn about HIV/ AIDS											
4	Yes	254		86		197		67		451		77
	No	40		14		96		67		136	i	23
	HIV/ADIS Test											
5	Yes	155		53		85		29		240		41
	No	139		47		208 71		71	347		,	59
	know how to use first aid kits											
6	Yes	199		68		164		56		363		62
	No	95		32		129		44		224		38
	First Aid kits in your home											
7	Yes	56		19		45		15		101		17
	No	238		81		248		85		486	i	83
	Utilization of Packages at home											
8	Yes	228	78		188	;	64		416	6	71	
	No	66	22		105	5	36		171		29	
	Reasons for not implement and use the UHE	Ра										
	some packages not important	33	50		28		26		61		36	
9	some package do not know how to use	29	44		45		43		74		43	
	cost/need money	4	6		33		31		37		21	
	Community perception on the relationship with	th UHI	E-Ps									
10	Very good	99	34		80		27		179)	31	
10	Good	160	54	4 14		145 5		50		305		
	Poor/bad	35	12		68	68		3 103		03 17		

Table 6. Factors associated with utilization of urban health extension packages

Variables	s Model HHs					Non-model HHs						
	UHEPa Utilization COR		COR	AOR	UHEPa Utilization		COR	AOR				
	Yes	No	(95% CI)	(95% CI)	Yes No		(95% CI)	(95% CI)				
Heard about urban health extension	on program											
No	7	23	1	1	34	46	1					
Yes	218	46	2.66(1.262,3.964)	2.35(1.075,3.415) **	155	58	0.934(0.516,1.691)	1.1(0.591,1.938)				
Home visits by urban health exten	sion profes	sionals										
No	52	27	1	1	62	77	1	1				
Yes	205	10	3.125(1.018,4.231)	1.35(0.063,2.751)	127	27	1.288(0.759,2.186)	0.776(0.457,1.318)				
Frequency of home visits by urbar	n health exte	ension pi	ofessionals									
Once per Quarter	29	2	1	1	66	17	1	1				
At least once per month	163	53	3.321(1.723,4.168)	2.114(1.002,3.125) *	57	14	0.344(0.030,3.989)	0.624(0.200,1.944)				
Knowledge of Urban health extens	sion packag	es (UHE	Pa) Components									
No	32	15	1		73	61	1	1				
Yes	222	25	2.075(1.039,3.145)	3.135(2.429,4.470) **	129	30	0.107(0.091,0.281)	1.088(0.533,2.224)				
Mothers' occupation												
Government employees and others	97	24	1	1	75	41	1	1				
House wife	128	45	2.84(0.39,20.8)	0.349(0.037,3.249)	114	63	3.62(0.342,40.712)	0.428(0.019,9.081)				
Family (HHs) income												
≤1900	25	15	1	1	29	10		1				
≥1901	226	28	2.343(1.015,3.033)	1.958(0.018,2.582)	217	37	0.692(0.310,1.546)	1.514(0.289,7.102)				
Household Graduation status												
No	41	28	1	1	0	104	1	1				
Yes	209	16	4.11(2.106,6.203)	3.052(2.024,5.113)	0	189	1.82(0.0-0.0)	0				
Community perception on quality	of health se	rvice										
Poor (Bad)	25	8	1	1	26	20	1	1				
Good	200	61	1.003(0.42,2.43)	1.351(0.462,3.949)	163	84	0.172(0.832,3.415)	1.22(0.53,2.8)				

Note: Reference Category * P-value <0.001, **P-value ≤0.05 cut off points for AOR

Statements and Declaration

Data availability

The raw data used for this study can be made available with a reasonable request from the corresponding authors.

Competing interests

The authors declare that there is no competing interest.

Funding

The authors declare that they did not receive funding for this research from any organization.

Acknowledgements

We would like to acknowledge the study participants and data collectors for this study.

References

- 1. [^]World Health Organization. Why urban health matters. World Health Organization; 2010.
- Shawar YR, Crane LG. Generating global political priority for urban health: the role of the urban health epistemic community. Health policy and planning. 2017;32(8):1161-73.
- 3. ^{a, b}Sandoval V, Hoberman G, Jerath M. Urban informality: Global and regional trends. digitalcommons.fiu.edu- 2019.
- 4. ^FMOH E. Health Sector Transformation Plan (HSTP): 2015/16-- 2019/20. Addis Ababa. 2015 Aug.
- Yemane Berhane, Abera Kumie, Worku A. Situation Analysis of Urban Sanitation and Waste Management, Strengthening Ethiopia's Urban Health Program (SEUHP), USAID, . 2015.
- 6. [^]Wang H, Tesfaye R, Ramana GN, Chekagn CT. Ethiopia health extension program: an institutionalized community approach for universal health coverage. World Bank Publications; 2016 Apr 25.
- 7. ^{a, b, c} Tafesse N, Gesessew A, Kidane E. Urban health extension program model housing and household visits improved the utilization of health Services in Urban Ethiopia: a community-based cross-sectional study. BMC health services research. 2019;19(1):31.
- [^]Adane M, Mengistie B, Mulat W, Kloos H, Medhin G. Utilization of health facilities and predictors of health-seeking behavior for under-five children with acute diarrhea in slums of Addis Ababa, Ethiopia: a community-based crosssectional study. Journal of Health, Population and Nutrition. 2017;36(1):9.
- 9. ^{a, b, c}Begashaw B, Tesfaye T. Healthcare utilization among urban and rural households in Esera district: Comparative cross-sectional study. American Journal of Public Health Research. 2016;4(2):56-61.
- 10. ^{a, b}Kebede Y, Etana G, Girma E. Model and Non-Model Mothers Are Similar Over Significant Aspects of Maternal-Child Health Behaviors in Rural Contexts of Central Ethiopia: Diffusing Healthy Behaviors. Science. 2019;7(1):10-24.
- 11. ^{a, b, c, d, e, f, g, h}Girmay AM, Evans MR, Gari SR, Gebremariam AG, Reta MT. Urban health extension service utilization and associated factors in the community of Gullele sub-city administration, Addis Ababa, Ethiopia. Int J Community Med Public Health. 2019;6(3):976-85.
- Yoseph M, Abebe SM, Mekonnen FA, Sisay M, Gonete KA. Institutional delivery services utilization and its determinant factors among women who gave birth in the past 24 months in Southwest Ethiopia. BMC Health Services Research. 2020;20:1-10.
- 13. Negash B, Dessie Y, Gobena T. Community Based Health Insurance Utilization and Associated Factors among

Informal Workers in Gida Ayana District, Oromia Region, West Ethiopia. East African Journal of Health and Biomedical Sciences. 2019;3(2):13-22.

- ^{a, b, c} Assefa Y, Gelaw YA, Hill PS, Taye BW, Van Damme W. Community health extension program of Ethiopia, 2003– 2018: successes and challenges toward universal coverage for primary healthcare services. Globalization and health. 2019;15(1):24.
- 15. ^{a, b, c, d}Molla S, Tsehay CT, Gebremedhin T. Urban Health Extension Program and Health Services Utilization in Northwest Ethiopia: A Community-Based Study. Risk Management and Healthcare Policy. 2020;13:2095-102.
- ^{a, b, c} Jikamo B, Woelamo T, Samuel M. Utilization of Urban Health Extension Program Services and Associated Factors among Hosanna Dwellers, Hadiya Zone, southern Ethiopia: A Community Based Cross-Sectional Study. 2019.
- 17. ^{a, b}EPHI I. Ethiopian Public Health Institute (EPHI)[Ethiopia] and ICF. Ethiopia Mini Demographic and Health Survey 2019: Key Indicators. 2019.
- 18. ^{a, b}Sibamo EL. Community satisfaction with the urban health extension service in South Ethiopia and associated factors. BMC health services research. 2015;15(1):160.
- ^{a, b}Assefa D, Nega A, Tassew B, Addisie M, Siraw D, Tebekaw Y, et al. Preparedness of the Urban Health Extension Program to provide priority health services identified in its packages. The Ethiopian Journal of Health Development (EJHD). 2020;34(2).
- [^]Gebreegziabher EA, Astawesegn FH, Anjulo AA, Kerie MW. Urban health extension services utilization in Bishoftu town, Oromia regional state, Central Ethiopia. BMC health services research. 2017;17(1):1-10.
- 21. [^]Østebø MT, Cogburn MD, Mandani AS. The silencing of political context in health research in Ethiopia: why it should be a concern. Health Policy and Planning. 2018;33(2):258-70.
- Yitayal M, Berhane Y, Worku A, Kebede Y. Health extension program factors, frequency of household visits and being model households, improved utilization of basic health services in Ethiopia. BMC health services research. 2014;14(1):156.
- 23. [^]Berri KM, Adaba YK, Tarefasa TG, Bededa ND, Fekene DB. Maternal health service utilization from urban health extension professionals and associated factors among women who gave birth in the last one year in Ambo town, Oromia regional state, Ethiopia, 2018. BMC Public Health. 2020;20:1-10.
- 24. ^Mergia M, Shegaze M, Ayele G, Andarge E, Yeshitila YG, Wassihun B, et al. Mothers' satisfaction with health extension services and the associated factors in Gamo Goffa zone, Southern Ethiopia. PloS one. 2020;15(5):e0232908.
- 25. ^Gebrezgiabher1* THA, Desalegn Tetemke3, Gebreamlak Gidey4,. Diarrheal disease in under-five children among model and non-model families in northern Ethiopia, 2017: a comparative cross-sectional study. BMC Research Notes. 2019 01/18/.
- 26. ^{a, b}Gebreegziabher EA, Astawesegn FH, Anjulo AA, Kerie MW. Urban health extension services utilization in Bishoftu town, Oromia regional state, Central Ethiopia. BMC health services research. 2017 Dec;17(1):1-0.
- 27. ^Ramana NWWaGN. The Health Extension Program in Ethiopia. World Bank. 2013. PubMed PMID: 31565372. eng.
- 28. [^]Bultume MD. Utilization of the health extension program services in Akaki district Ethiopia. 2012.
- 29. Seyoum F. The utilization or urban health extension program services: The case of kirkos sub-city in Addis Ababa,

Ethiopia: ACIPH; 2019.