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Perception of Categorical Emotions

• Recognizing categorical emotions

• Happiness, sadness or anger

• Typically one-hot classification

problem

• Assumptions

• Each sample -> one class

• Same class samples share similar features

• Expressive behaviors tend to be ambiguous with blended 

emotions

• Design the machine learning framework to captures the intrinsic 

ambiguity of emotional perception
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Emotional Annotation Process

• Spontaneous corpora

• Emotions are not predetermined during recording

• Need to be emotionally annotated

• Emotional labels often come from perceptual evaluations 

from multiple evaluators

• Compensate for outlier and individual variations

• Aggregating annotators’ votes (consensus label)

• Majority vote
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Emotion Annotation Process

• Evaluators disagree on the perceived emotion 

• Noise or information?

• Assigning a single emotion per sentence oversimplifies 

the subjectivity in emotion perception

• Goal: leverage information provided by multiples 

evaluators 

• Training emotion recognition with soft-labels

• Soft-labels i.e., weighted label
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Training with Soft Labels

• Straightforward approach

• Use distribution of emotions assigned by evaluators [Fayek et al., 

2016]

• This approach ignores relationship between emotional 

classes (orthogonal axes)

• Anger  Disgust : low cost mistake

• Anger  Happy: high cost mistake
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Emotional Annotation Process

• Annotator perspective

• Listen to a stimulus

• Perceive the emotional content

• Choose label that is the most relevant to the perceived emotion

• Implication to machine learning

• Intrinsic relationship between emotional classes

• Crucial when many choices present

• Aware of the votes of all annotators

• Propose a method to fulfill these requirements
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Emotion Perception as a Probabilistic Model

• 2-dimensional neutral-happiness space

• Each point: an individual evaluation (unobservable)
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• Stimuli vector (unobservable)

• 𝑥 realization of random vector 𝑋 with distribution

• Probability of annotator selecting each class

• An annotator selecting class 𝑗:

8

Theoretical Framework
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Theoretical Framework

• Find the probability

• Find cumulative density function of 

H
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Theoretical Framework

• Knowing the probabilities 𝑝𝑗, estimate 𝜇 and  

• Adding a constant to all 𝑋 does not change

• Extra constraint:

• Intensity of neutral is reference: 𝜇𝑁𝑒𝑢𝑡𝑟𝑎𝑙 = 1

•  : covariance matrix is universal (i.e., fixed for all speech 

samples) :

• Capture dependencies between emotional categories
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Estimating Covariance Matrix

• Use 𝑝 instead of 𝑥:

• Multiply by a constant to make 𝑝𝑁𝑒𝑢𝑡𝑟𝑎𝑙 = 1

• Make zero mean  𝑝

ANG SAD HAP SUR DIS CON NEU

ANG 0.24 -0.02 -0.11 -0.02 0.04 0.03 -0.15

SAD -0.02 0.13 -0.06 -0.01 -0.01 -0.01 -0.01

HAP -0.11 -0.06 0.68 -0.02 -0.10 -0.11 -0.25

SUR -0.02 -0.01 -0.02 0.16 -0.01 -0.02 -0.09

DIS 0.04 -0.01 -0.10 -0.01 0.18 0.03 -0.12

CON 0.03 -0.01 -0.11 -0.02 0.03 0.20 -0.10

NEU -0.15 -0.00 -0.25 -0.09 -0.12 -0.10 0.79



msp.utdallas.edu 12

Estimating Mean (Intensity of Emotions)

• Problem with 𝑝𝑗 = 0:

• No annotator select a category

• Infeasible equality

• If one more label was available, what is the probability to 

capture a new label

• Depends on number of evaluations

• Leave one annotator out

• Scale probability of seen labels 
accordingly: 1 − 𝜆(𝑛)

Number of evaluations
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Estimating Mean (Intensity of Emotions)

• For each sentence

• Initial expected values (from training set)

Input:

p: Probability of classes

  :   Covariance matrix

k: Number of iterations

λ (n): Probability of unseen labels

𝜇𝐼𝑛𝑖𝑡𝑖𝑎𝑙: initial intensity vector

Output: Estimated emotion intensity  𝜇

 𝑝 ← p/(1 −λ (n))

 𝜇 ← 𝜇𝐼𝑛𝑖𝑡𝑖𝑎𝑙

for i <= k do

for  j where p j > 0 do

find  𝜇𝑗such that 𝐹 0,0, … ,∞,… , 0 =  𝑝𝑗 for Ɲ (x; 𝐻𝑗[  𝜇0, … ,  𝜇𝑗−1,  𝜇𝑗,…,  𝜇𝐷]
𝑇, 𝐻𝑗   𝐻𝑗

𝑇)

 𝜇𝑗 ←  𝜇𝑗

for j = 1 : D do

 𝜇𝑗 ←  𝜇𝑗+  𝜇𝑁𝑒𝑢𝑡𝑟𝑎𝑙 + 1

ANG SAD HAP SUR DIS CON NEU

𝑝 0.08 0.05 0.20 0.07 0.08 0.11 0.33

𝜇𝐼𝑛𝑖𝑡𝑖𝑎𝑙 -0.07 0.30 -0.75 0.26 0.39 0.41 1.00

happiness

happiness

neutral

happiness

𝒑 = [0.75,0.25]

Number of evaluations



msp.utdallas.edu 14

Loss Function

• Measure the disagreement between the ground truth and 

predicted labels 

• Previously, categorical cross-entropy as the loss function for hard 
(one-hot) label and soft-labels

• Mahalanobis distance reflects a more meaningful measure 

for disagreement cost

• Intensity value predicted by the network: 𝜃

• Anger Happy greater penalty    Anger  Disgust
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Experimental Setup

• Database: MSP-PODCAST (University of Texas at Dallas)

• Speech segments from podcast recordings

• One speaker, no background music, no telephone quality

• Duration 2.75s< …  <11s

• Test: 4,283        Train: 7,289         Development: 1,860

• Total 13,432 (21h 15min)

• Evaluated through Amazon Mechanical Turk (at least 5 
evaluations per sentence)

• 88 features: eGeMAPS [Eyben et al., 2016]
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Classifier Configuration

• Seven-class problem: anger, sadness, happiness, 

surprised, disgust, contempt, and neutral (chances is 14%)

• Feed forward DNN with 2 hidden layers 

• Each hidden layer 512 rectified linear unit (ReLU)

• Output softmax with one output per emotion

• Loss functions

• Mahalanobis distance

• Cross-entropy

• Trained 50 epoch
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Experimental Evaluations

• Ground truth labels for test set from majority vote

• Predicted class: dimension with highest expected intensity 

estimation (SL-EIE)

• Classification Performance

• Human performance: Reference of difficulty 

• One annotator compared to the consensus label of the rest

Rec [%] Pre  [%] F1-Score

Majority vote 25.7 24.2 24.9

Soft-label [Fayek, 2016] 27.2 23.7 25.3

SL-EIE [proposed] 28.1 24.5 26.2

Rec [%] Pre  [%] F1-Score

Human Performance 38.2 41.1 39.6
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Experimental Evaluations

• The error between estimated labels and ground-truth based 

on the proposed loss function

• Better measure of performance

• Penalty considers relationship between emotions
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Conclusions

• Framework to address the problem of classifying 

categorical emotions in spontaneous speech

• Soft-labels inspired by the emotion perception

• Non-observable multivariate Gaussian distribution

• Dimensions correspond to the emotional categories

• Evaluations are points drawn from the distribution

• Selected category is the emotions with the highest 

intensity
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Conclusions

• Benefit of using this representation for training 

emotional classifiers

• Future directions

• Estimate covariance matrix for each sample

• Probability of a new label depends on other parameter, not only 
number of evaluations

• Better model considering the bias and reliability of individual 
evaluators
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Thanks for your attention!

http://msp.utdallas.edu/


