Approximation by Piecewise Constants on Convex Partitions

Oleg Davydov∗

November 4, 2011

Abstract

We show that the saturation order of piecewise constant approximation in L_p norm on convex partitions with N cells is $N^{-2/(d+1)}$, where d is the number of variables. This order is achieved for any $f \in W^2_p(\Omega)$ on a partition obtained by a simple algorithm involving an anisotropic subdivision of a uniform partition. This improves considerably the approximation order $N^{-1/d}$ achievable on isotropic partitions. In addition we show that the saturation order of piecewise linear approximation on convex partitions is $N^{-2/d}$, the same as on isotropic partitions.

1 Introduction

Let Ω be a bounded domain in \mathbb{R}^d, $d \geq 2$. Suppose that Δ is a partition of Ω into a finite number of subdomains $\omega \subset \Omega$ called cells, such that $\omega \cap \omega' = \emptyset$ if $\omega \neq \omega'$, and $\sum_{\omega \in \Delta} |\omega| = |\Omega|$, where $|\omega|$ denotes the Lebesgue measure (d-dimensional volume) of ω. A partition is said to be convex if each cell ω is a convex domain. We assume throughout the paper that Ω admits a convex partition. With a slight abuse of notation, we denote by $|D|$ the cardinality of a finite set D, so that $|\Delta|$ stands for the number of cells ω in Δ.

Given a function $f : \Omega \to \mathbb{R}$, we are interested in the error bounds for its approximation by piecewise polynomials in the space

$$S_n(\Delta) = \left\{ \sum_{\omega \in \Delta} q_\omega \chi_\omega : q_\omega \in \Pi_n^d \right\}, \quad \chi_\omega(x) := \begin{cases} 1, & \text{if } x \in \omega, \\ 0, & \text{otherwise,} \end{cases}$$

∗Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, Scotland, UK, oleg.davydov@strath.ac.uk
where Π_n^d, $n \geq 1$, is the space of polynomials of total degree $< n$ in d variables. The best approximation error is measured in the L_p-norm $\| \cdot \|_p := \| \cdot \|_{L_p(\Omega)}$:

$$E_n(f, \Delta)_p := \inf_{s \in S_n(\Delta)} \| f - s \|_p, \quad 1 \leq p \leq \infty.$$

Clearly,

$$E_n(f, \Delta)_p = \begin{cases} \left(\sum_{\omega \in \Delta} E_n(f)_{L_p(\omega)}^p \right)^{1/p} & \text{if } p < \infty, \\ \max_{\omega \in \Delta} E_n(f)_{L_\infty(\omega)} & \text{if } p = \infty, \end{cases}$$

where

$$E_n(f)_{L_p(\omega)} := \inf_{q \in \Pi_n^d} \| f - q \|_{L_p(\omega)}$$

is the error of the best polynomial approximation of f on ω.

If ω is a bounded convex domain and $f|\omega$ belongs to the Sobolev space $W_n^p(\omega)$, then the error $E_n(f)_{L_p(\omega)}$ is estimated as

$$E_n(f)_{L_p(\omega)} \leq C_{d,n} \operatorname{diam}(\omega) \| f \|_{W_n^p(\omega)},$$

where $C_{d,n}$ denotes a positive constant depending only on d and n [3], and

$$\| f \|_{W_n^p(\omega)} := \sum_{|\alpha| = n} \left\| \frac{\partial^n f}{\partial x^n} \right\|_{L_p(\omega)}, \quad |\alpha| := \alpha_1 + \cdots + \alpha_d \quad \text{for } \alpha \in \mathbb{Z}_+^d.$$

Note that

$$\| f - f_\omega \|_{L_p(\omega)} \leq 2 E_1(f)_{L_p(\omega)}, \quad f_\omega := |\omega|^{-1} \int_\omega f(x) \, dx,$$

see for example [2], and hence (2) implies that the Poincaré inequality

$$\| f - f_\omega \|_{L_p(\omega)} \leq \rho_d \operatorname{diam}(\omega) \| \nabla f \|_{L_p(\omega)}, \quad f \in W_1^1(\omega),$$

holds with a constant ρ_d depending only on d when ω is bounded and convex, where

$$\| \nabla f \|_{L_p(\omega)} := \left\| \left(\sum_{k=1}^d \left| \frac{\partial f}{\partial x_k} \right|^2 \right)^{1/2} \right\|_{L_p(\omega)}.$$

Indeed, it is easy to check that $\| \nabla f \|_{L_p(\omega)}$ is equivalent to the Sobolev seminorm $|f|_{W_1^1(\omega)}$, as

$$\| \nabla f \|_{L_p(\omega)} \leq |f|_{W_1^1(\omega)} \leq d^{\max\{\frac{1}{p}, \frac{1}{p'}\}} \| \nabla f \|_{L_p(\omega)}, \quad 1 \leq p \leq \infty.$$

We prefer to use $\| \nabla f \|_{L_p(\omega)}$ in (3) because this seminorm is invariant under orthogonal transformations of the coordinate system, which simplifies some
calculations below. It is important for the proof of Theorem 1 that \(\rho_d \) does not depend on the geometry of the domain.

It follows from (2) that for any convex partition \(\Delta \),

\[
E_n(f, \Delta)_p \leq C_{d,n} \text{diam}^n(\Delta) |f|_{W^p_p(\Omega)}, \quad \text{diam} (\Delta) := \max_{\omega \in \Delta} \text{diam}(\omega).
\]

Obviously, \(\text{diam}(\Delta) \geq C|\Delta|^{-1/d} \), where \(C \) depends only on \(|\Omega| \) and \(d \). Hence, in terms of \(|\Delta| \), the approximation order that can be obtained from the last estimate is not better than

\[
E_n(f, \Delta)_p = \mathcal{O}(|\Delta|^{-n/d}).
\]

(4)

This order is achieved for example for \(\Omega = (0,1)^d \) on convex partitions \(\Delta_m \), \(m = 1, 2, \ldots \), defined by splitting the cube \((0,1)^d \) uniformly into \(|\Delta_m| = m^d \) equal subcubes of edge length \(1/m \).

Asymptotically optimal bounds for the \(L_p \)-error \(e_n(f, \Delta)_p \) of the interpolation by piecewise polynomials of degree \(< n \) on anisotropic triangulations of a polygonal domain in \(\mathbb{R}^2 \) have been studied in [1, 5]. There, for \(n \geq 2, \) an exact constant \(C_n \) is found such that \(\liminf_{|\Delta_N| \to \infty} |\Delta_N|^{n/2} e_n(f, \Delta_N)_p \geq C_n \) as soon as the sequence of triangulations \(\{\Delta_N\} \) satisfies \(\text{diam}(\Delta_N) = \mathcal{O}(|\Delta_N|^{-1/2}) \). Moreover, a sequence \(\{\Delta_N^*\} \) with this property exists such that \(\limsup_{|\Delta_N| \to \infty} |\Delta_N^*|^{n/2} e_n(f, \Delta_N^*)_p \leq C_n \).

In [2, Theorem 2] we have shown that assuming higher smoothness of \(f \) does not help to improve the order \(E_1(f, \Delta_N)_{\infty} = \mathcal{O}(|\Delta_N|^{-1/d}) \) if the sequence of partitions \(\{\Delta_N\} \) is isotropic, that is there is a constant \(c > 0 \) such that \(\text{diam}(\omega) \leq c \rho(\omega) \) for all \(\omega \in \bigcup_N \Delta_N \), where \(\rho(\omega) \) is the maximum diameter of \(d \)-dimensional balls contained in \(\omega \). More precisely, if \(E_1(f, \Delta_N)_{\infty} = o(|\Delta_N|^{-1/d}), N \to \infty \), for a function \(f \in C^1(\Omega) \) and some isotropic sequence of partitions \(\{\Delta_N\} \) with \(\lim \text{diam}(\Delta_N) = 0 \), then \(f \) is a constant. Thus, \(|\Delta|^{-1/d} \) is the saturation order of the piecewise constant approximation on isotropic partitions.

In this paper we show that the order of approximation by piecewise constants can be improved to \(E_1(f, \Delta)_p = \mathcal{O}(|\Delta|^{-2/(d+1)}) \) on suitable anisotropic convex partitions obtained by a simple algorithm if \(f \in W^2_p(\Omega), \Omega = (0,1)^d \) (Algorithm 1 and Theorem 1). Moreover, according to Theorem 2, \(|\Delta|^{-2/(d+1)} \) is the saturation order of piecewise constant approximation in \(L_\infty \)-norm on convex partitions as it cannot be further improved for any \(f \in C^2(\Omega) \) whose Hessian is positive definite at some point. Finally, Theorem 3 shows that the saturation order of piecewise linear approximations on convex partitions is \(|\Delta|^{-2/d} \), that is the same as on isotropic partitions.

In the bivariate case the saturation order \(N^{-2/3} \) has been shown by a different method in [4] for suitable sequences of partitions \(\Delta_N \) of \((0,1)^2 \) into
polygons with cell boundaries consisting of totally $O(N)$ straight line segments.

2 Optimal piecewise constant approximation on convex partitions

In this section we provide a simple algorithm that generates piecewise constant approximations with the approximation order $|\Delta|^{-2/(d+1)}$ on convex polyhedral partitions with totally $O(|\Delta|)$ facets. For the sake of simplicity we only consider $\Omega = (0, 1)^d$.

Algorithm 1

Assume $f \in W_1^1(\Omega)$, $\Omega = (0, 1)^d$. Split Ω into $N_1 = m^d$ cubes $\omega_1, \ldots, \omega_{N_1}$ of edge length $h = 1/m$. Then split each ω_i into N_2 slices $\omega_{ij}, j = 1, \ldots, N_2$, by equidistant hyperplanes orthogonal to the average gradient $g_i := |\omega_i|^{-1} \int_{\omega_i} \nabla f(x) \, dx$ on ω_i. Set $\Delta = \{ \omega_{ij} : i = 1, \ldots, N_1, \ j = 1, \ldots, N_2 \}$, and define the piecewise constant approximation $s_\Delta(f)$ by

$$s_\Delta(f) := \sum_{\omega \in \Delta} f_\omega \chi_{\omega}, \quad f_\omega := |\omega|^{-1} \int_{\omega} f(x) \, dx.$$ \hfill (5)

Clearly, $|\Delta| = N_1 N_2$ and each ω_{ij} is a convex polyhedron with at most $2(d+1)$ facets.

This algorithm is illustrated in Fig. 1.

Theorem 1

Assume that $f \in W_2^p(\Omega)$, $\Omega = (0, 1)^d$, for some $1 \leq p \leq \infty$. For any $m = 1, 2, \ldots$, generate the partition Δ_m by using Algorithm 1 with $N_1 = m^d$ and $N_2 = m$. Then

$$\| f - s_{\Delta_m}(f) \|_p \leq C_d |\Delta_m|^{-2/(d+1)} (|f|_{W_1^1(\Omega)} + |f|_{W_2^p(\Omega)}),$$ \hfill (6)

where C_d is a constant depending only on d.

Proof. We only consider the case $p < \infty$ as $p = \infty$ can be derived by obvious modifications of the arguments given here. Note that a different proof in the case $p = \infty$ can be found in [2]. By construction,

$$\| f - s_{\Delta_m}(f) \|_p^p = \sum_{i=1}^{N_1} \sum_{j=1}^{N_2} \| f - f_{\omega_{ij}} \|_{L_p(\omega_{ij})}^p.$$

For a fixed i, let $\{\sigma_1, \ldots, \sigma_d\}$ be an orthonormal basis of \mathbb{R}^d such that $\sigma_d = \|g_i\|^{-1} g_i$ if $g_i \neq 0$, and let $\varphi : \mathbb{R}^d \to \mathbb{R}^d$ be the linear mapping defined by
the matrix $\text{diag}(1, \ldots, 1, N_2)$ with respect to the basis $\{\sigma_1, \ldots, \sigma_d\}$. We set $\tilde{\omega}_{ij} = \varphi(\omega_{ij})$, $\tilde{f} = f \circ \varphi^{-1}$. Then $|\tilde{\omega}_{ij}| = N_2|\omega_{ij}|$, $\text{diam}(\tilde{\omega}_{ij}) \leq d/m$, and

$$\|f - f_{\omega_{ij}}\|_{L^p(\omega_{ij})}^p = N_2^{-1}\|\tilde{f} - f_{\omega_{ij}}\|_{L^p(\tilde{\omega}_{ij})}^p.$$

Since $f_{\omega_{ij}} = \tilde{f}_{\tilde{\omega}_{ij}}$ and $\tilde{\omega}_{ij}$ is bounded and convex, (3) shows that

$$\|\tilde{f} - f_{\omega_{ij}}\|_{L^p(\tilde{\omega}_{ij})} \leq \rho_d \text{diam}(\tilde{\omega}_{ij}) \|\nabla \tilde{f}\|_{L^p(\tilde{\omega}_{ij})},$$

where ρ_d depends only on d. We have

$$\|\nabla \tilde{f}\|_{L^p(\tilde{\omega}_{ij})}^p = \left\| \left(\sum_{k=1}^d |D_{\sigma_k} \tilde{f}|^2 \right)^{1/2} \right\|_{L^p(\tilde{\omega}_{ij})}^p$$

$$= N_2 \left\| \left(N_2^{-2} |D_{\sigma_d} f|^2 + \sum_{k=1}^{d-1} |D_{\sigma_k} f|^2 \right)^{1/2} \right\|_{L^p(\omega_{ij})}^p$$

$$\leq N_2^{1-p} \|D_{\sigma_d} f\|_{L^p(\omega_{ij})}^p + N_2 \sum_{k=1}^{d-1} \|D_{\sigma_k} f\|_{L^p(\omega_{ij})}^p,$$

where $D_{\sigma_k} f = \nabla f^T \sigma_k$ denote the directional derivatives of f. Since

$$\int_{\omega_{ji}} D_{\sigma_k} f(x) \, dx = 0, \quad k = 1, \ldots, d - 1,$$
Poincaré inequality (3) also implies
\[\| D_{\sigma_k} f \|_{L^p(\omega_i)} \leq \rho_d \text{diam}(\omega_i) \| \nabla D_{\sigma_k} f \|_{L^p(\omega_i)}, \quad k = 1, \ldots, d - 1. \]

Hence
\[\sum_{j=1}^{N_2} \sum_{k=1}^{d-1} \| D_{\sigma_k} f \|_{L^p(\omega_{ij})}^p \leq d \left(\frac{\sqrt{d} \rho_d}{m} \right)^p \| f \|_{W^2_p(\omega)}^p. \]

By combining the above estimates we obtain
\[\| f - s_{\Delta_m}(f) \|_p^p \leq \left(\frac{d \rho_d}{m} \right)^p N_2^{-1} \sum_{i=1}^{N_1} \sum_{j=1}^{N_2} \| \nabla \tilde{f} \|_{L^p(\omega_{ij})}^p \]
\[\leq \left(\frac{d \rho_d}{m} \right)^p \sum_{i=1}^{N_1} \left[d \left(\frac{\sqrt{d} \rho_d}{m} \right)^p \| f \|_{W^2_p(\omega_i)}^p + N_2^{-1} \sum_{j=1}^{N_2} \| D_{\sigma_d} f \|_{L^p(\omega_{ij})}^p \right] \]
\[\leq \left(\frac{d \rho_d}{m} \right)^p d \left(\frac{\sqrt{d} \rho_d}{m} \right)^p \| f \|_{W^2_p(\Omega)}^p + \left(\frac{d \rho_d}{m N_2} \right)^p \| f \|_{W^2_p(\Omega)}^p. \]

Since \(N_1 = m^d, N_2 = m \), we have \(|\Delta| = m^{d+1} \), and (6) follows with \(C_d = d^{5/2} \rho_d^2 \).

3 Saturation Orders

The main result of this section is the following theorem which, together with Theorem 1 shows that the saturation order of piecewise constant approximation on convex partitions is \(|\Delta|^{-2/(d+1)} \).

Theorem 2. Assume that \(f \in C^2(\Omega) \) and the Hessian of \(f \) is positive definite at a point \(\hat{x} \in \Omega \). Then there is a constant \(C_{f,d} \) depending only on \(f \) and \(d \) such that for any convex partition \(\Delta \) of \(\Omega \),
\[E_1(f, \Delta)_\infty \geq C_{f,d} |\Delta|^{-2/(d+1)}. \]

The proof of Theorem 2 will be given at the end of the section.

It turns out that piecewise linear approximations on convex partitions have the saturation order \(|\Delta|^{-2/d} \). Thus, in contrast to piecewise constants, there is no improvement of the order in comparison to isotropic partitions.

Theorem 3. Assume that \(f \in C^2(\Omega) \) and the Hessian of \(f \) is positive definite at a point \(\hat{x} \in \Omega \). Then there is a constant \(C_{f,d} \) depending only on \(f \) and \(d \) such that for any convex partition \(\Delta \) of \(\Omega \),
\[E_2(f, \Delta)_\infty \geq C_{f,d} |\Delta|^{-2/d}. \]
Proof. Since \(f \in C^2(\Omega) \), there is \(\delta > 0 \) and a cube \(Q \subset \Omega \) such that the smallest eigenvalue of the Hessian of \(f \) is at least \(\delta \) everywhere in \(Q \).

Assume that \(\omega \in \Delta \) has nonempty intersection with \(Q \), and let \(x_1, x_2 \in \omega \cap Q \) be such that \(\|x_1 - x_2\| \geq \frac{\delta}{2} \) diam(\(\omega \cap Q \)). Since the univariate function \(g := f|_{[x_1, x_2]} \) is convex with second derivative at least \(\delta \) everywhere in \([x_1, x_2] \), the error of its best \(L_{\infty} \)-approximation by (univariate) linear polynomials is greater or equal \(\frac{\delta}{64} \|x_1 - x_2\|^2 \). Indeed, by parametrising \(g \) with \(t \in [0, 1] \) and assuming without loss of generality that \(g(0) = g(1) = 0 \), we have \(g''(t) \geq \frac{\delta}{2} \|x_1 - x_2\|^2 \) and \(g(t) = \frac{t(t-1)}{2} \int_0^1 g''(\tau) M_t(\tau) d\tau \leq \frac{t(t-1)}{2} \delta \|x_1 - x_2\|^2 \), where \(M_t \) is the Peano kernel of the second divided difference \([0, 1, t] \). Since \(g(\frac{1}{2}) \leq -\frac{\delta}{8} \|x_1 - x_2\|^2 \), Chebyshev theorem implies the claim.

Hence,

\[
E_2(f, \Delta)_{\infty} \geq E_2(f)_{L_{\infty}(\omega \cap Q)} \geq \frac{\delta}{64} \text{diam}^2(\omega \cap Q).
\]

It follows that

\[
|Q| \leq \frac{\mu_d}{2^d} \sum_{\omega \cap Q \neq \emptyset} \text{diam}^d(\omega \cap Q) \leq \mu_d |\Delta| \left(\frac{16}{\delta} \right)^{d/2} E_2(f, \Delta)_{\infty}^{d/2},
\]

where \(\mu_d \) denotes the volume of the \(d \)-dimensional ball of radius 1. Thus,

\[
E_2(f, \Delta)_{\infty} \geq \frac{\delta |Q|^{2/d}}{16 \mu_d^{2/d} |\Delta|^{-2/d}}.
\]

Proof of Theorem 2. We first choose \(\delta > 0 \) and a cube \(Q \subset \Omega \) such that the smallest eigenvalue of the Hessian of \(f \) is at least \(\delta \) everywhere in \(Q \). Clearly, \(\nabla f(\tilde{x}) \neq 0 \) for some \(\tilde{x} \in Q \). Since the gradient of \(f \) is continuous, there is a constant \(\gamma > 0 \) and a cube \(\tilde{Q} \subset Q \) containing \(\tilde{x} \) such that \(D_{\sigma} f(x) \geq \gamma \) for all \(x \in \tilde{Q} \), where \(\sigma = \nabla f(\tilde{x})/\|\nabla f(\tilde{x})\| \). We assume without loss of generality that \(\tilde{Q} = Q \).

The arguments in the proof of Theorem 3 lead to the estimate

\[
E_1(f, \Delta)_{\infty} \geq E_2(f, \Delta)_{\infty} \geq \frac{\delta}{64} \text{diam}^2(\omega \cap Q)
\]

for any \(\omega \in \Delta \) with nonempty intersection with \(Q \).

Moreover, if \([x_1, x_2] \) is an interval in \(\omega \cap Q \) parallel to \(\sigma \), then \(|f(x_2) - f(x_1)| \geq \gamma \|x_2 - x_1\|_2 \), which implies that

\[
E_1(f, \Delta)_{\infty} \geq \frac{\gamma}{2} \|x_2 - x_1\|_2.
\]
Hence $\omega \cap Q$ is contained between two hyperplanes orthogonal to σ, with distance between them not exceeding $\frac{2}{\gamma} E_1(f, \Delta)$. The penultimate display shows that the intersection of $\omega \cap Q$ with any intermediate hyperplane is contained in a $(d-1)$-dimensional ball of radius $(\frac{64}{\delta} E_1(f, \Delta))^{\frac{1}{2}}$. Therefore, we may estimate the volume of $\omega \cap Q$ as

$$|\omega \cap Q| \leq \frac{2}{\gamma} E_1(f, \Delta) \cdot \mu_{d-1} \left(\frac{64}{\delta} E_1(f, \Delta)\right)^{(d-1)/2},$$

which implies

$$|Q| \leq |\Delta| \frac{2\mu_{d-1}}{\gamma} \left(\frac{64}{\delta}\right)^{(d-1)/2} E_1(f, \Delta)^{(d+1)/2},$$

and Theorem 2 follows.

References

