Evaluation of a Singing Voice Conversion Method Based on Many-to-Many Eigenvoice Conversion

Hironori Doi1, Tomoki Toda1, Tomoyasu Nakano2, Masataka Goto2, Satoshi Nakamura1

1Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan
2National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan

\textsuperset{\{hironori-d, tomodoki, s-nakamura\}@is.naist.jp, \{t.nakano, m.goto\}@aist.go.jp}

Abstract

In this paper, we evaluate our proposed singing voice conversion method from various perspectives. To enable singers to freely control their voice timbre of singing voice, we have proposed a singing voice conversion method based on many-to-many eigenvoice conversion (EVC) that enables to convert the voice timbre of an arbitrary source singer into that of another arbitrary target singer using a probabilistic model. Furthermore, to easily develop training data consisting of multiple parallel data sets between a single reference singer and many other singers, a technique for efficiently and effectively generating the parallel data sets from nonparallel singing voice data sets of many singers using a singing-to-singing synthesis system has been proposed. However, we have never conducted sufficient investigations into the effectiveness of these proposed methods. In this paper, we conduct both objective and subjective evaluations to carefully investigate the effectiveness of proposed methods. Moreover, the differences between singing voice conversion and speaking voice conversion are also analyzed. Experimental results show that our proposed method succeeds in enabling people to control their own voice timbre by using only an extremely small amount of the target singing voice.

Index Terms: singing voice, voice conversion, eigenvoice conversion, singing-to-singing synthesis, performance evaluation

1. Introduction

Range of singing voice timbre that can be produced by individual singers is limited by physical constraints. To produce a singing voice beyond physical constraints, many approaches have been studied. One of the most popular approaches is the use of singing synthesis systems, which generate a singing voice from several pieces of information such as lyrics and the musical score. Among them, a text-to-singing approach, which synthesizes a singing voice from note-level score information of the melody with its lyrics, such as Vocaloid2 [1] and Sinsy [2] is popular in Japan. Moreover, singing-to-singing synthesis, which automatically synthesizes a more naturally sounding singing voice by estimating the parameters of the text-to-singing system from a target singing voice, has been proposed [3]. VocalListener [3], which is the system used for the estimation part of singing-to-singing synthesis, estimates parameters of pitch and dynamics for the singing synthesis system so that the synthesized singing voice becomes more similar to the target singing voice. If a user’s singing voice and the corresponding lyrics without any score information are available, VocalListener can synchronize them automatically to determine the musical note corresponding to each phoneme of the lyrics. However, it is still difficult to generate singing voices with arbitrary and desired voice timbre.

To make it possible for people to directly sing with a different specific voice timbre, and thus overcome physical constraints, singing voice conversion has been proposed [4]. Statistical voice conversion (VC) techniques [5, 6, 7] are used to convert the singing voice timbre of a source singer into that of a target singer. In this technique, Gaussian mixture model (GMM) of the joint probability density of an acoustic feature between the source singer’s singing voice and the target singer’s singing voice is trained in advance using a special data set, called a parallel data set, that consists of pairs of songs of the two singers. The trained model is capable of converting the acoustic features of the source singer’s singing voice into those of the target singer’s singing voice for any song while keeping the linguistic information of the lyrics unchanged. Moreover, real-time singing voice conversion can also be achieved using the low-delay conversion algorithm [8].

Towards realizing a more flexible singing voice conversion technique, we have proposed a singing voice conversion method [9] based on many-to-many eigenvoice conversion (EVC) [10]. Many-to-many EVC is a technique of converting from the voice of an arbitrary source singer into that of an arbitrary target singer. An eigenvoice GMM (EV-GMM) [11] is trained in advance using multiple parallel data sets that consist of a single predefined singer, called a reference singer in this paper, and many prestored target singers. The EV-GMM is capable of easily adapting the source/target voice timbre to that of its given voice samples in a text-independent (lyrics-independent) manner. Furthermore, we have proposed a technique for efficiently and effectively generating parallel data sets using a singing-to-singing synthesis system to artificially generate singing voices of the reference singer.

In this paper, we describe our proposed methods [9] and evaluate their effectiveness. A comparison between VC and EVC based singing voice conversion is conducted from various perspectives. Moreover, to analyze the differences between speaking voice and singing voice in voice conversion, we conduct comparison between singing voice conversion using EV-GMM trained from speaking voice and from singing voice.

2. Singing voice conversion based on many-to-many EVC

In this section, we describe singing voice conversion method based on many-to-many EVC and training data generation using singing-to-singing synthesis system.

2.1. Training data generation

The development of parallel data sets consisting of singing voice pairs of the single reference singer and many prestored
target singers is laborious work. To address this issue, we have artificially generated singing voices of the reference singer by applying a singing-to-singing synthesis system to singing voices of many prestored target singers. In this approach, we need to prepare only singing voices of multiple prestored target singers who need not sing the same song; these are available in existing databases, such as the RWC Music Database [12]. For the singing voices of each prestored target singer, corresponding singing voices of the reference singer are artificially generated by using the singing-to-singing synthesis system. Thus, this training data generation approach can efficiently and effectively develop parallel data sets without recording singing voices of the reference singer.

2.2. Training process
As acoustic features of the reference singer and the sth prestored target singer, we employ two D-dimensional joint features, $X_t = [x_t, \Delta x_t]^\top$ and $Y^{(s)} = [y^{(s)}_t, \Delta y^{(s)}_t]^\top$, consisting of D-dimensional static and dynamic spectral features at frame t, respectively, where \top denotes the transposition of the vector. The joint probability density of reference and target features is modeled with the EV-GMM as follows:

$$P(X_t, Y^{(s)} | \lambda^{(EV)}) \propto w^{(s)} \lambda^{(EV)}$$

$$= \sum_{m=1}^{M} \alpha_m N \left(X_t, Y^{(s)} | \mu_m, \Sigma_m \right), \quad (1)$$

$$\mu_m = \left[\begin{array}{c} \mu_m^{(X)} \\ A_m w^{(s)} + b_m \end{array} \right], \quad \Sigma_m = \begin{bmatrix} \Sigma_m^{(X,X)} & \Sigma_m^{(X,Y)} \\ \Sigma_m^{(Y,X)} & \Sigma_m^{(Y,Y)} \end{bmatrix}, \quad (2)$$

where $w^{(s)} = [w^{(s)}(1), \ldots, w^{(s)}(J)]^\top$ is the target-speaker-dependent weight parameter for controlling target voice timbre. $\lambda^{(EV)}$ is a canonical EV-GMM parameter set consisting of the weight α_m, the mean vector $\mu_m^{(X)}$, the covariance matrix Σ_m, the bias vector b_m, and the basis vectors $A_m = [a_m(1), \ldots, a_m(J)]$ for the mth mixture component, where the number of basis vectors is J. Acoustic features of an arbitrary target speaker are modeled by setting only $w^{(s)}$ to the speaker’s specific values. To alleviate the degradation of performance of EV-GMM caused by effects of acoustic variation of the many prestored target singers, the EV-GMM is trained by speaker adaptive training (SAT) [13, 14] using multiple parallel data sets consisting of utterance pairs of a reference and many prestored target singers.

2.3. Adaptation and conversion process
In the adaptation process, the EV-GMM is adapted to an arbitrary source singer and an arbitrary target singer by independently estimating the singer-dependent weight parameter using a few singing voice samples. The weight parameter for source singer $w^{(o)}$ is estimated by maximum a posteriori (MAP) [15, 16] as

$$w^{(o)} = \arg\max_w P \left(w | \lambda^{(w)} \right) \propto \prod_{t=1}^{T} P \left(X_t, Y^{(o)} | \lambda^{(EV)}, w \right) dX_t, \quad (3)$$

where $\lambda^{(w)} = \arg\max_\lambda P \left(\lambda | \lambda^{(w)} \right)$, with $\lambda^{(w)}$ being the mean model parameter set and λ the covariance matrix Σ. This model parameter set is trained in advance using a set of weight parameters estimated for individual prestored target singer. $Y^{(s)}$ is the acoustic features of the given source singer’s voice at frame t. The balance between $P \left(w | \lambda^{(w)} \right)$ and $\prod_{t=1}^{T} P \left(Y^{(o)} | \lambda^{(EV)}, w \right)$ is controlled by the hyperparameter τ. The weight parameter for the target singer $w^{(o)}$ is estimated in the same manner. On the other hand, our proposed method allows users to freely control voice timbre of the converted singing voice by manipulating the target singer’s weight parameters.

Then, the joint probability density of the acoustic features between the source singer’s voice and the target singer’s voice is derived as

$$P \left(Y^{(s)}_t, Y^{(o)}_t | \hat{w}^{(o)}, \hat{w}^{(s)}, \lambda^{(EV)} \right) = \sum_{m=1}^{M} P(m | \lambda^{(EV)}) \int P \left(Y^{(s)}_t | X_t, m, \hat{w}^{(o)} \right) P \left(X_t | m, \lambda^{(EV)} \right) dX_t,$$

$$= \sum_{m=1}^{M} \alpha_m N \left(y^{(s)}_t | \mu^{(s)}_m, \Sigma^{(s)}_m \right), \quad \left[\begin{array}{c} \mu^{(s)}_m \\ \Sigma^{(s)}_m \end{array} \right] = \left[\begin{array}{c} \Sigma^{(Y,Y)}_m \Sigma^{(Y,X)}_m \Sigma^{(X,Y)}_m \Sigma^{(X,X)}_m \end{array} \right], \quad (4)$$

where

$$\Sigma^{(Y,Y)}_m = \Sigma^{(Y,X)}_m \Sigma^{(X,X)}_m^{-1} \Sigma^{(X,Y)}_m. \quad (5)$$

In the conversion process, the converted static feature sequence vector is estimated using the adapted EV-GMM. Maximum likelihood estimation considering dynamic features and a global variance [6] is adopted. Note that real-time singing voice conversion is also achieved by using the low-delay conversion algorithm [8].

3. Experimental evaluations
To demonstrate effectiveness of our proposed method and investigate the differences between singing voice conversion and speaking voice conversion, four types of conversion model were compared.

VC conventional singing voice conversion based on VC [6]
EVC-human proposed singing voice conversion based on many-to-many EVC with conventional training data generation using a human voice as the reference singer’s voice
EVC-synth proposed singing voice conversion based on many-to-many EVC with training data generation using singing-to-singing synthesis
EVC-speaking conventional many-to-many EVC for a speaking voice

3.1. Experimental conditions
In this evaluation, only the spectral feature is converted in all conversion methods because the voice timbre strongly depends on the spectral feature. The 1^st to 24^th mel-cepstral coefficients were used as a spectral feature. STRAIGHT analysis [17] was employed to extract these coefficients from singing voices. F_i and the aperiodic components of the source singer are directly used to synthesize the converted singing voice. The shift length was 5 ms and the sampling frequency was 16000 Hz.

We used the solo singing voices of 30 Japanese songs in the RWC Music Database [12] as the prestored target singing voices to train EV-GMM. The phoneme balance was not considered in these songs. For EVC-human, the solo singing voices of one male singer were used as the singing voices of the reference singer. For EVC-synth, singing voices synthesized using the singing-to-singing synthesis system VocaListener with a singer database called Hatsune Miku [18] based on Vocaloid2 were
used as the reference singer. The number of basis vectors of the EV-GMMs was set to 29 and the number of mixture components of the EV-GMMs was set to 128. On the other hand, in EVC-speaking, we used parallel data sets of a single reference male speaker and 152 prestored target speakers to train the EV-GMM. These speakers were from the Japanese Newspaper Article Sentence (JNAS) database. Each prestored target speaker uttered one of seven subsets. Each subset consists of 50 phonetically balanced sentences. The EV-GMM for spectral conversion was trained from 152 parallel data sets consisting of the recorded reference speaking voices and the prestored target speaking voices. The number of basis vectors of the EV-GMMs was set to 151 and the number of mixture components of the EV-GMMs was set to 128.

For the adaptation and testing of the EV-GMMs and for the training and testing of the GMM, we selected two Japanese songs from the RWC Music Database (RWC-MDB-P-2001 No.46 and No.76), which were not included in the above 30 songs. Then, 5 singers (four male singers and one female singer) sang these two songs. Thus, as adaptation/training data and test data, we prepared 10 songs consisting of two songs sung by each singer. As the training data for the VC-based method and the adaptation data for the EVC-based methods, 2, 4, 8, 16, 32, or 64% of the sung parts of songs sung by the source and target singers was used, then, the remaining 36% of data was used for the test. The GMM and EV-GMMs were prepared for all combinations of the source and target singers. Thus, for each method, 20 conversion models (10 models × 2 song) were prepared. The weight parameters of the source and target singer were independently estimated using the spectral features from the source and target singing voices samples. The hyperparameter of MAP adaptation shown in eq. (3) was preliminarily optimized in each method. In this evaluation, it was set to 250, 1000, and 100 for EVC-human, EVC-synth, and EVC-speaking, respectively. For VC, we also trained a standard GMM for spectral conversion using a parallel data set consisting of the source and target singing voices. The number of mixture components of the GMM was preliminarily optimized so that the spectral conversion accuracy was maximized in the test data.

3.2 Objective evaluation
We evaluated two conditions of song setting: 1) the same-song condition, where the same song is used in both the training/adaptation process and the test process, and 2) the different-song condition, where different songs are used in the training/adaptation process and the test process. Figure 1 shows mel-cepstral distortion as a function of the amount of the singing voice adaptation data used in the EVC-based methods or the amount of parallel data of the singing voice pairs used in the VC-based method under the same-song condition. Figure 2 shows those under the different-song condition. In fig. 1 and 2, horizontal axis represents percentage of data that is used for training or adaptation from the sung parts of songs.

Under the same-song condition, when using a small amount of training/adaptation data, EVC-speaking is the best, EVC-human is the next, EVC-synth is the next, and VC is the worst in conversion accuracy. Although EVC-speaking exhibits the highest conversion accuracy, the differences from EVC-human are not so large even if the amount of training data for EVC-speaking is significantly larger than that for EVC-human. When using a large amount of training/adaptation data, VC is the best, EVC-speaking is the next, EVC-human is the next, and the EVC-synth is the worst in conversion accuracy. Note that the
components of EVC-human and EVC-synth model only acoustic features of a part of prestored target speakers. Consequently, it is expected that phonemic information and speaker individuality were not separated well in them. It is possible that this issue causes degradation of conversion performance.

The above results suggest that 1) the proposed EVC-human yields better conversion performance than VC when a small amount of singing voice data of the source and target singers is available, 2) the conversion performance of the proposed EVC-synth is slightly degraded than EVC-human, 3) since these proposed methods are robust against variations of the singing voice timbre often observed between different songs, they work reasonably well even when different songs are used in the adaptation and conversion processes, 4) the occupancies of individual mixture component of EV-GMM in EVC-human and EVC-synth are more biased than those in EVC-speaking, and then, this causes degradation of conversion accuracy for speaker individuality, 5) the differences between a speaking voice and singing voice strongly affects to naturalness of converted singing voice. Based on these results, to more correctly control the voice timbre, it is necessary to train EV-GMM from larger parallel data sets considering phoneme balance. And then, it is expected that training data generation using singing-to-singing synthesis is significantly effective to construct them.

4. Conclusion
In this paper, we evaluated our proposed singing voice conversion methods. Our proposed methods are capable of converting the singing voice timbre of an arbitrary source singer into that of an arbitrary target singer by adapting a small number of adaptive parameters of a conversion model using an extremely small amount of source and target singing voice data. Moreover, our proposed training data generation method can alleviate the burden of having to record singing voices to develop parallel data sets, by using a singing-to-singing synthesis system. The experimental result demonstrated that the proposed methods enable the effective conversion of a singing voice between an arbitrary singer pair even when using only several seconds of their singing voices as adaptation data. We plan to construct larger parallel data sets considering phoneme balance and further improve conversion performance.

5. Acknowledgements
This work was supported in part by a JSPS KAKENHI Grant Number 22680016 and JST OngCREST project. The authors are grateful to professor Hideki Kawahara of Wakayama University, Japan, for permission to use the STRAIGHT analysis-synthesis method.
6. References

