Cost-Aware Green Cellular Networks with Energy and Communication Cooperation

Rui Zhang
(e-mail: elezhang@nus.edu.sg)

ECE Department, National University of Singapore

IEEE OnlineGreenComm 2014
Wireless Communications in the Age of “Energism”

Wireless power transfer

Green communications

Energy harvesting

Smart grid

Introduction

Rui Zhang, National University of Singapore
Energy Harvesting Wireless Communication: A Brief Overview

- Point-to-point link with an energy harvesting transmitter
 - Throughput maximization: Staircase/directional water-filling power allocation [1,2]
 - Outage probability minimization [3]

- Practical considerations
 - Imperfect energy storage [4], half-duplex energy harvesting constraint [5], circuit power [6], ...

- Other setups
 - Relay channel [7], broadcast channel, multiple-access channel, ...
New Challenge: Cellular Networks with Energy Harvesting and Smart Grid Powered Base Stations (BSs)

- **Hybrid Energy Supply**
 - **Renewable Energy**: cheap but intermittent; unevenly distributed over both time and space
 - **Smart grid power**: reliable but expensive; time-varying energy prices; two-way energy flow

- **BSs’ Energy Demand**
 - To meet the quality of service (QoS) requirements of mobile terminals (MTs)
 - Time- and space-varying traffic loads due to mobility of MTs

- **Challenge**
 - How to use the stochastically and spatially distributed renewable energy at cellular BSs to reliably support time- and space-varying wireless traffic cost-effectively?
Energy Supply and Demand Models for Cellular Networks

- Consider one single cellular system with $N > 1$ BSs
- Renewable energy harvested by BS i: $E_i \geq 0$
- Power consumption of BS i: $Q_i \geq 0$
- Net load at BS i: $\delta_i = Q_i - E_i$
 - $\delta_i < 0$: Renewable energy adequate
 - $\delta_i > 0$: Renewable energy deficit
 - δ_i's are geographically diverse and time-varying

Spatially distributed harvested energy
Spatially distributed traffic load
Energy Cost by Directly Employing Renewable Energy at BSs

- **Renewable energy deficit BS** \(i \) with \(\delta_i > 0 \)
 - Purchase \(\delta_i \) unit of energy from the grid

- **Renewable energy adequate BS** \(j \) with \(\delta_j < 0 \)
 - Waste \(-\delta_j\) unit of renewable energy (if not selling back to the grid or stored for future use)

- **Total energy cost of the** \(N \) **BSs:**
 \[
 C_1 = \pi \Delta_+ \\
 \Delta_+ \square \sum_{i=1}^{N} [\delta_i]^+ \text{ with } [x]^+ = \max(x, 0)
 \]
 - Total energy purchased from the grid:
 - Price for BSs to purchase one unit of energy from the grid: \(\pi \)

- **Inefficient renewable energy utilization:**
 - In total \(\Delta_- \square -\sum_{j=1}^{N} [\delta_j]^- \geq 0 \) unit of energy wasted, where
 \[
 [x]^- = \min(x, 0)
 \]
Energy Cost Saving for Cellular Networks by Energy and/or Communication Cooperation

- **Approach I:** Energy Cooperation on Supply Side
 - BSs exploit *two-way energy flow* in smart grid to share their renewable energy supply E_i’s to match the wireless traffic loads

- **Approach II:** Communication Cooperation on Demand Side
 - BSs share wireless resources and reshape wireless loads Q_i’s to match their renewable energy supplies

- **Approach III:** Joint Energy and Communication Cooperation on Both Supply and Demand Sides
Agenda

- Approach I: Energy Cooperation on Supply Side
- Approach II: Communication Cooperation on Demand Side
- Approach III: Joint Energy and Communication Cooperation on Both Supply and Demand Sides
- Conclusion and Future Work Direction
Energy Cooperation Among BSs

Exploiting the two-way energy flow between cellular BSs and smart grid
- To better utilize the otherwise wasted renewable energy surplus (Δ) at BSs

Practical implementation
- Aggregator serves as an intermediary party to control a group of BSs for energy sharing via the grid
- Smart meters enable the two-way energy and information flows between the grid and BSs
Two schemes

- Aggregator-assisted energy trading with BSs
- Aggregator-assisted energy sharing among BSs
Aggregator-Assisted Energy Trading with BSs

- The aggregator trades energy with BSs at different selling and buying prices
 - $\pi_{\text{buy}} > 0$ and $\pi_{\text{sell}} > 0$ denote the unit energy prices for the BSs to buy and sell energy from/to the aggregator
 - $\pi_{\text{sell}} < \pi_{\text{buy}} < \pi$: both prices are cheaper than the grid energy price so that the BSs and aggregator both benefit from the trading

- Energy trading at the BSs
 - The BSs with adequate renewable energy will sell their total Δ_+ unit of surplus energy to the aggregator at the price π_{sell}
 - The BSs short of renewable energy will first purchase $\min(\Delta_+, \Delta_-)$ unit of energy from the aggregator at the price π_{buy}, (if not enough) then will buy $\Delta_+ - \min(\Delta_+, \Delta_-)$ additional energy from the grid at the price π

- Total energy cost of the N BSs:

 $$
 C_2 = \begin{cases}
 \pi_{\text{buy}}\Delta_+ - \pi_{\text{sell}}\Delta_-, & \text{if } \Delta_+ \leq \Delta_- \\
 \pi_{\text{buy}}\Delta_- - \pi_{\text{sell}}\Delta_+ + \pi(\Delta_+ - \Delta_-), & \text{if } \Delta_+ > \Delta_-
 \end{cases}
 $$
Aggregator-Assisted Energy Sharing Among BSs

- The BSs mutually negotiate and share renewable energy by simultaneously injecting or drawing energy to/from the aggregator.
 - The group of BSs should sign a contract with the aggregator by paying a contract fee \bar{C}.

- Energy sharing among the BSs:
 - When $\Delta_+ \leq \Delta_-$, the N BSs can maintain their operation without purchasing any energy from the grid; otherwise, a total $\Delta_+ - \Delta_-$ amount of energy should be purchased from the grid at the price π.

- Total energy cost of the N BSs:
 $$C_3 = \begin{cases}
 \bar{C}, & \text{if } \Delta_+ \leq \Delta_- \\
 \pi(\Delta_+ - \Delta_-) + \bar{C}, & \text{if } \Delta_+ > \Delta_-
 \end{cases}$$
A Case Study [8]

Schemes for comparison
- Conventional design without energy or communication cooperation
- Approach I: energy cooperation via aggregator-assisted energy trading (without communication cooperation)
- Approach I: energy cooperation via aggregator-assisted energy sharing (without communication cooperation)

Parameters
- Energy prices: $\pi = 1, \pi_{buy} = 0.5, \pi_{sell} = 0.4$; contract fee for the aggregator: $\tilde{C} = 0.1$
Performance Comparison

<table>
<thead>
<tr>
<th>Approach I: Energy Cooperation on Supply Side</th>
<th>BS 1’s renewable energy supply</th>
<th>BS 2’s renewable energy supply</th>
<th>BS 1’s energy consumption</th>
<th>BS 2’s energy consumption</th>
<th>Total cost</th>
<th>energy cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional design without energy or communication cooperation</td>
<td>10</td>
<td>2.5</td>
<td>4.14</td>
<td>18.28</td>
<td>15.78</td>
<td></td>
</tr>
<tr>
<td>Approach I: energy cooperation via aggregator-assisted energy trading</td>
<td>4.14</td>
<td>8.36</td>
<td>4.14</td>
<td>18.28</td>
<td>10.51</td>
<td></td>
</tr>
<tr>
<td>Approach I: energy cooperation via aggregator-assisted energy sharing</td>
<td>4.14</td>
<td>8.36</td>
<td>4.14</td>
<td>18.28</td>
<td>10.03</td>
<td></td>
</tr>
</tbody>
</table>

- Renewable energy supplies are modified via energy cooperation
- Energy demands remain unchanged
- Energy cooperation saves energy cost
Agenda

- Approach I: Energy Cooperation on Supply Side

- Approach II: Communication Cooperation on Demand Side

- Approach III: Joint Energy and Communication Cooperation on Both Supply and Demand Sides

- Conclusion and Future Work Direction
Wireless resource sharing via communication cooperation
- Reshape BSs’ wireless load and energy consumption (Q_i’s) to better match their individual renewable energy supply, thus minimizing the use of more expensive grid energy

Practical implementation
- Communication/energy information sharing among BSs through backhauls
- Communication protocols need to be redesigned to be aware of "energy cost" saving
Three “energy cost”-aware communication cooperation schemes
- Cost-aware traffic offloading
- Cost-aware spectrum sharing
- Cost-aware coordinated multi-point (CoMP) transmission

Key difference from conventional communication cooperation
- Need to consider the price differences of renewable and grid energy for cost minimization

BS 1 shares wireless resource (e.g., spectrum) to BS 2, and/or BS 2 shifts wireless load to BS 1, to reduce BS 2’s energy purchased from the grid.
Cost-Aware Traffic Offloading

- Traffic offloading between BSs based on renewable energy availability
 - BSs short of renewable energy can offload their MTs to neighboring BSs with surplus renewable energy, thus reducing the energy drawn from the grid
 - Different from conventional traffic offloading, which shifts the traffic of heavily loaded BSs to more lightly loaded BSs for load balancing

User association **before** traffic offloading

User association **after** traffic offloading
Cost-Aware Spectrum Sharing

- Spectrum sharing between BSs based on renewable energy availability
 - Energy and spectrum can partially substitute each other to support the same wireless transmission QoS, thus sharing spectrum to a BS short of renewable energy can help reduce its transmit power and save the energy cost
 - Different from conventional spectrum sharing, which aims to improve the spectrum utilization efficiency

Approach II: Communication Cooperation on Demand Side

Bandwidth allocation before spectrum sharing

Bandwidth allocation after spectrum sharing
Cost-Aware CoMP

- CoMP downlink transmission based on BSs’ renewable energy availability
 - BSs adjust transmit power to match individually harvested energy, thus minimizing the total energy drawn from the grid while meeting MTs’ QoS
 - Different from conventional CoMP, which aims to maximize the spectrum efficiency subject to BSs' given transmit power
- Need to implement at baseband signal level and require instantaneous channel state information (CSI) at BSs

Approach II: Communication Cooperation on Demand Side

Downlink transmission without CoMP

Downlink transmission with CoMP
A Case Study [8]

- Schemes for comparison
 - Conventional design without energy or communication cooperation
 - Approach II: communication cooperation via spectrum sharing (without energy cooperation)
 - Approach II: communication cooperation via CoMP (without energy cooperation)
Performance Comparison

<table>
<thead>
<tr>
<th>Approach II: Communication Cooperation on Demand Side</th>
<th>BS 1’s renewable energy supply</th>
<th>BS 2’s renewable energy supply</th>
<th>BS 1’s energy consumption</th>
<th>BS 2’s energy consumption</th>
<th>Total cost</th>
<th>energy cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional design without energy or communication cooperation</td>
<td>10</td>
<td>2.5</td>
<td>4.14</td>
<td>18.28</td>
<td>15.78</td>
<td></td>
</tr>
<tr>
<td>Approach II: communication cooperation via spectrum sharing</td>
<td>10</td>
<td>2.5</td>
<td>10.00</td>
<td>14.04</td>
<td>11.54</td>
<td>1.25</td>
</tr>
<tr>
<td>Approach II: communication cooperation via CoMP</td>
<td>10</td>
<td>2.5</td>
<td>10.00</td>
<td>3.75</td>
<td>1.25</td>
<td></td>
</tr>
</tbody>
</table>

Renewable energy supplies remain unchanged

Energy demands are rescheduled via communication cooperation

Communication cooperation saves energy cost
Agenda

- Approach I: Energy Cooperation on Supply Side

- Approach II: Communication Cooperation on Demand Side

- Approach III: Joint Energy and Communication Cooperation on Both Supply and Demand Sides

- Conclusion and Future Work Direction
Joint Energy and Communication Cooperation on Both Supply and Demand Sides

- Two schemes considered for energy cooperation on supply side
 - Aggregator-assisted energy trading with BSs
 - Aggregator-assisted energy sharing among BSs

- Three schemes considered for communication cooperation on demand side
 - Cost-aware traffic offloading
 - Cost-aware spectrum sharing
 - Cost-aware CoMP transmission

- Many combined solutions for joint energy and communication cooperation on both supply and demand sides with different complexity-performance trade-offs
Joint Energy and Communication Cooperation on Both Supply and Demand Sides

- **Practical implementation**
 - Communication information sharing among BSs through **backhauls**
 - Energy information sharing among BSs through **smart meters**

- **Three specific schemes to be considered**
 - Joint energy and spectrum sharing [9]
 - Joint energy trading and CoMP [10]
 - Joint energy sharing and CoMP [11]
Joint Energy and Spectrum Sharing

- Aggregator-assisted energy trading with BSs on supply side and communication spectrum sharing on demand side
 - BSs exchange energy and spectrum to take advantage of the resource complementarity

- Two scenarios
 - Unidirectional sharing: one BS adequate in energy and spectrum shares both resources to the other
 - Bidirectional sharing: one BS exchanges its energy for spectrum with the other
Joint Energy Trading/Sharing and CoMP

- Aggregator-assisted energy trading/sharing with BSs on supply side and CoMP transmission on demand side
 - BSs jointly optimize the energy trading/sharing via the aggregator and their CoMP based cooperative transmission to minimize the total energy cost
Schemes for comparison
- Conventional design without energy or communication cooperation
- Approach I: energy cooperation via aggregator-assisted energy trading/sharing
- Approach II: communication cooperation via spectrum sharing/CoMP
- Approach III: joint energy and spectrum sharing
- Approach III: joint aggregator-assisted energy trading and CoMP
- Approach III: joint aggregator-assisted energy sharing and CoMP

A Case Study [8]
<table>
<thead>
<tr>
<th>Approach III: Joint Energy and Communication Cooperation on Both Supply and Demand Sides</th>
<th>BS 1’s renewable energy supply</th>
<th>BS 2’s renewable energy supply</th>
<th>BS 1’s energy consumption</th>
<th>BS 2’s energy consumption</th>
<th>Total energy cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional design without energy or communication cooperation</td>
<td>10</td>
<td>2.5</td>
<td>4.14</td>
<td>18.28</td>
<td>15.78</td>
</tr>
<tr>
<td>Approach I: energy cooperation via aggregator-assisted energy trading</td>
<td>4.14</td>
<td>8.36</td>
<td>4.14</td>
<td>18.28</td>
<td>10.51</td>
</tr>
<tr>
<td>Approach I: energy cooperation via aggregator-assisted energy sharing</td>
<td>4.14</td>
<td>8.36</td>
<td>4.14</td>
<td>18.28</td>
<td>10.03</td>
</tr>
<tr>
<td>Approach II: communication cooperation via spectrum sharing</td>
<td>10</td>
<td>2.5</td>
<td>10.00</td>
<td>14.04</td>
<td>11.54</td>
</tr>
<tr>
<td>Approach II: communication cooperation via CoMP</td>
<td>10</td>
<td>2.5</td>
<td>10.00</td>
<td>3.75</td>
<td>1.25</td>
</tr>
<tr>
<td>Approach III: joint energy and spectrum sharing</td>
<td>5.00</td>
<td>7.50</td>
<td>5.00</td>
<td>15.00</td>
<td>7.60</td>
</tr>
<tr>
<td>Approach III: joint aggregator-assisted energy trading and CoMP</td>
<td>6.87</td>
<td>5.62</td>
<td>6.87</td>
<td>5.77</td>
<td>0.46</td>
</tr>
<tr>
<td>Approach III: joint aggregator-assisted energy sharing and CoMP</td>
<td>5.47</td>
<td>7.03</td>
<td>5.47</td>
<td>7.03</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Renewable energy supplies are modified via energy cooperation

Energy demands are rescheduled via communication cooperation

Joint energy trading/sharing and CoMP save the most energy cost
Agenda

- Approach I: Energy Cooperation on Supply Side
- Approach II: Communication Cooperation on Demand Side
- Approach III: Joint Energy and Communication Cooperation on Both Supply and Demand Sides
- Conclusion and Future Work Direction
Conclusion

Cellular Networks with Energy Harvesting and Smart Grid Powered BSs

- Challenges and opportunities
 - Unevenly distributed energy harvesting rates over both time and space
 - Cost differences between harvested energy versus smart grid power
 - Time-varying buying/selling energy prices for the smart grid power
 - Time- and space-varying traffic loads and energy demands

- Energy and/or communication cooperation
 - Energy cooperation on supply side: BSs exploit two-way energy flow in smart grid to share their renewable energy to match the given wireless traffic load
 - Communication cooperation on demand side: BSs share wireless resources and reshape wireless loads to match the given renewable energy supplies
 - Joint energy and communication cooperation on both supply and demand sides: BSs jointly optimize the energy and communication cooperation to exploit both benefits
Future Work Direction

- Multi-time-scale implementation of joint energy and communication cooperation under practical constraints
 - Energy harvesting rates in general change slowly as compared to wireless channel and traffic load variations [13]

- Cooperation between self-interested system operators with incomplete and private information sharing constraints
 - Incentive mechanisms design to motivate different systems to cooperate with "win-win" and fair cost reductions [9]

- Energy and communication cooperation in heterogeneous networks
 - Need to address both heterogeneous communication demands and heterogeneous energy supplies

- Joint spatial and temporal energy/communication cooperation with energy storage management
 - Exploit both time and space energy diversity [12]
References