Supporting Information: Molecular Dynamics Simulations of the Interaction of Beta Cyclodextrin with a Lipid Bilayer

Wasinee Khuntawee¹, Peter Wolschann²,³, Thanyada Rungrotmongkol⁴,⁵,*, Jirasak Wong-ekkabut⁶,*, Supot Hannongbua⁷

¹Nanoscience and Technology Program, Graduate School, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand

²Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, 14 Althan Straße 14, Vienna 1090, Austria

³Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria

⁴Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, Thailand

⁵Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand

⁶Department of Physics, Faculty of Science, Kasetsart University, 50 Phahon Yothin Road, Chatuchak, Bangkok 10900, Thailand

⁷Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand.

*Corresponding Author

(J.W.) Phone: +66-2562-5555 ext 3545. Fax: +66-2942-8029. Email: jirasak.w@ku.ac.th
(T.R.) Phone: +66-2218-5426. Fax: +66-2218-5418. Email: thanyada.r@Chula.ac.th, t.rungrotmongkol@gmail.com
Contents

1. The permeation and insertion of βCD molecule into the lipid bilayer

Figure S1. The initial structures of BCD1-BCD5 systems are presented in column (a), their distances of βCD from the bilayer center and the βCD tilt angle as a function of time are shown in column (b), and the last snapshots of each simulation, at 1 µs for BCD1-BCD4 systems and at 2 µs for BCD5 system are depicted in column (c). .. 3

2. Force field validation

Table S1. The structural properties of βCD in water from our MD simulation in comparison with the previous experimental and MD studies .. 4

3. The influence of the βCD on the lipid membrane properties

Figure S2. 2D-density maps on xy-plane of the phosphate groups, glycerol-ester groups, water and βCD molecule for all systems (BCD1-BCD5) compared to those of the POPC bilayer without βCD molecule (no βCD). ... 5

4. References ... 6
1. The permeation and insertion of βCD molecule into the lipid bilayer

Figure S1. The initial structures of BCD1-BCD5 systems are presented in column (a), their distances of βCD from the bilayer center and the βCD tilt angle as a function of time are shown in column (b), and the last snapshots of each simulation, at 1 µs for BCD1-BCD4 systems and at 2 µs for BCD5 system are depicted in column (c).
2. Force field validation

Table S1. The structural properties of βCD in water from our MD simulation in comparison with the previous experimental and MD studies.\(^1\)\(^-\)\(^4\)

<table>
<thead>
<tr>
<th>properties</th>
<th>βCD in water</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>cavity height (nm)</td>
<td>0.30±0.03</td>
<td>0.36(^a), 0.28(Glycam06)(^b),(^3), 0.35(Glycam04, Amber99SB, q4md-CD)(^b),(^3)</td>
</tr>
<tr>
<td>radial of gyration (nm)</td>
<td>0.60±0.01</td>
<td>0.6(^a),(^1), 0.6(^b),(^2)</td>
</tr>
<tr>
<td>1st rim diameter (nm)</td>
<td>1.07±0.29</td>
<td>1.01±0.08(^a),(^1), ~1.3(Glycam06)(^b),(^3), ~1.1(Glycam04, q4md-CD)(^b),(^3), ~1.2(Amber99SB)(^b),(^3)</td>
</tr>
<tr>
<td>2nd rim diameter (nm)</td>
<td>1.17±0.13</td>
<td>1.25±0.05(^a),(^1), ~1.35(Glycam06)(^b),(^3), ~1.3(Glycam04)(^b),(^3), ~1.25(Amber99SB, q4md-CD)(^b),(^3)</td>
</tr>
<tr>
<td>rmsd (nm)</td>
<td>0.24±0.02</td>
<td>0.19(Glycam06)(^b),(^3), 0.11(Glycam04)(^b),(^3), 0.15(Amber99SB)(^b),(^3), 0.13(q4md-CD)(^b),(^3), ~0.25(^b),(^4)</td>
</tr>
<tr>
<td>#intramolecular H-bonds</td>
<td>0-6</td>
<td>0-8(^b),(^4)</td>
</tr>
<tr>
<td>#H-bonds with waters</td>
<td>30-50</td>
<td>30-40(^b),(^4)</td>
</tr>
</tbody>
</table>

\(^a\)X-ray structure of βCD (entry code: BUVSEQ02)\(^1\)

\(^b\)MD data of βCD in solution at 298K using various force fields Glycam04\(^1\), Glycam04\(^3\), Amber99SB\(^2\), q4md-CD\(^3\), CHARMM22\(^2\) and GROMOS 53A6\(^6\)
3. The influence of the βCD on the lipid membrane properties

Figure S2. 2D-density maps on xy-plane of the phosphate groups, glycerol-ester groups, water and βCD molecule for all systems (BCD1-BCD5) compared to those of the POPC bilayer without βCD molecule (no βCD)
4. References

