Localized Multi-Feature Metric Learning for Image Set Based Face Recognition

Jiwen Lu, Member, IEEE, Gang Wang, Member, IEEE, and Pierre Moulin, Fellow, IEEE

Abstract—This paper presents a new approach to image set based face recognition, where each training and testing example is a set of face images captured from varying poses, illuminations, expressions and resolutions. While a number of image set based face recognition methods have been proposed in recent years, most of them model each face image set as a single linear subspace or as the union of linear subspaces, which may lose some discriminative information for face image set representation. To address this shortcoming, we propose exploiting statistics information as feature representations for face image sets, and develop a localized multi-kernel metric learning (LMKMML) algorithm to effectively combine different statistics for recognition. Moreover, we propose a localized multi-kernel multi-metric learning (LMKMMML) method to jointly learn multiple feature-specific distance metrics in the kernel spaces, one for each statistic feature, to better exploit complementary information for recognition. Our methods achieve state-of-the-art performance on four widely used video face datasets including the Honda, Mobo, YouTube Celebrities (YTC), and YouTube Face (YTF) datasets.

Index Terms—Face recognition, image set classification, metric learning, multi-kernel learning, multi-metric learning.

I. INTRODUCTION

There has been a high level of interest in image set classification methods in recent years [1], [3], [4], [6], [10], [16], [19], [20], [24], [26], [29], [35], [37], [41], [49], [56], [59], [61], [63], which have a wide variety of applications in visual surveillance and multi-view image analysis. One representative application is video-based face recognition, where each gallery and probe face video is considered as an image set and the characteristics of the set are used for person identification. Unlike conventional image classification, each training and testing example contains a set of images. Compared to a single image, an image set provides more information to describe objects of interest. However, it is also challenging to exploit discriminative information of image sets as intra-class variations are usually larger within an image set.

There has been substantial work on image set based face recognition over the past two decades [1], [3], [10], [19], [25], [28], [37], [41], [49], [50], [57]. However, most of these methods are based on prior assumptions such as Gaussian models, Gaussian mixture models, and subspace or manifold models, to represent image sets. In many practical applications, these assumptions do not hold, especially in the presence of large and complex data variations within the face image set. Moreover, the models learned based on these assumptions may also lose some discriminative information for recognition.

In this paper, we propose a new approach to image set based face recognition. Fig. 1 illustrates the basic idea. Given a face image set, we compute multiple statistics as feature representations. For each statistic, we construct a kernel matrix to measure the pairwise similarity of two face image sets. Then, we combine these statistics by using a localized multi-feature metric learning approach, where two kernel-based metric learning algorithms called localized multi-kernel metric learning (LMKMML) and localized multi-kernel multi-metric learning (LMKKMML) were proposed, respectively. Lastly, a nearest neighbor classifier is used for image set based face identification or face verification.

Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org. Manuscript received Aug 31, 2014; revised Feb 23, 2015; accepted Feb 26, 2015. This work was supported by a research grant from the Agency for Science, Technology and Research of Singapore for the Human Cyber Security Systems (HCSS) Program at the Advanced Digital Sciences Center, and also in part supported by Singapore Ministry of Education (MOE) Tier 2 ARC28/14, and Singapore A*STAR Science and Engineering Research Council PSF1321202099.

Jiwen Lu, Gang Wang, and Pierre Moulin are with the Advanced Digital Sciences Center, Singapore, 138632. E-mail: jiwen.lu@adsc.com.sg.

Gang Wang is with the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, and the Advanced Digital Sciences Center, Singapore, 138632. E-mail: wanggang@ntu.edu.sg.

Pierre Moulin is with the Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, and the Advanced Digital Sciences Center, Singapore, 138632. E-mail: moulin@ifp.uiuc.edu.
learn multiple feature-specific distance metrics in the kernel spaces, one distance metric for each feature, to better exploit complementary information for recognition. Experimental results on four widely used video face datasets show the effectiveness of our proposed approach.

This paper is an extended version of work presented at ICCV 2013 [34]. New contributions include the newly proposed localized multi-kernel multi-metric learning (LMKMMML) method, application to face verification, analysis of the proposed approach, and extensive comparisons with state-of-the-art methods in terms of both accuracy and robustness.

II. BACKGROUND

In this section, we briefly review three related topics: image set based face recognition, multiple kernel learning, and metric learning.

A. Image Set Based Face Recognition

Recent algorithms for image set classification can be mainly classified into parametric [1], [15], [28], [41] and nonparametric [3], [9], [16], [19], [20], [25], [48], [50] methods. Parametric methods model image sets using a parametric family of probabilistic distribution, and the Kullback-Leibler (KL) divergence between two distributions is used to measure the similarity of two image sets. Representative distributions include a single Gaussian model and a mixture of Gaussian models. However, parametric methods usually fail when the underlying distributional assumptions do not hold. To overcome these limitations, nonparametric methods have been recently proposed [3], [16], [19], [20]. They exploit geometrical information to measure the similarity of two image sets. While encouraging performance has been obtained [3], [16], [19], [20], most of these methods model each image set as a single linear subspace or as the union of linear subspaces, which may result in the loss of some discriminative information for classification. While [49] explored the use of second-order statistics of image set representation, other statistics were ignored.

B. Multiple Kernel Learning

There has been extensive research on multiple kernel learning [2], [8], [12], [14], [21], [27], [32], [40], [47], [51], [60], [62]. The key objective is to seek an optimal combination of kernels to learn models for applications such as classification [2], [12], [40], [51], clustering [60], transfer learning [8], and dimensionality reduction [32]. However, little progress has been made in metric learning with multiple kernels. Recently, Wang et al. [47] proposed a multi-kernel metric learning method by learning a universal weight vector over the whole space. However, the characteristics of local regions in the kernel space were ignored. Moreover, most existing multiple kernel learning algorithms aim to learn a single combined kernel, which is not powerful enough to exploit the specific information of each feature. Hence, it is desirable to learn multiple distance metrics in the kernel spaces, one metric for each single feature, to jointly extract complementary information and exploit the interactions of different feature representations.

C. Metric Learning

In recent years, a number of metric learning algorithms have been proposed in machine learning and computer vision [7], [11], [53]. Representative methods include neighborhood component analysis (NCA) [11], large margin nearest neighbor (LMNN) [53], and information theoretic metric learning (ITML) [7]. While these methods have achieved encouraging performance in applications such as face recognition [14], human activity recognition [44], person re-identification [43], [62], image retrieval [58], and visual tracking [45], [52], most of them only learn a distance metric with a single feature representation and cannot handle multiple features directly.

In our previous work, we proposed a multi-view neighborhood repulsed metric learning method [33], which learns a latent distance metric space to combine multiple features for kinship verification. However, the weights of different features are assumed to be the same for all samples, which cannot effectively exploit the data-adaptive characteristics of the samples in classification because different features usually show different discriminative power in different classes. Hence, it is desirable to exploit such information to learn one or multiple more discriminative distance metrics.

III. PROPOSED APPROACH

Fig. 1 illustrates our proposed approach. The details are presented in the following subsections.

A. Face Image Set Representation

Let $X = [x_1, x_2, \ldots, x_n]$ be a face image set containing n images of a subject, where $x_i \in \mathbb{R}^d$ denotes the ith face image sample, $1 \leq i \leq n$, d is the feature dimension of each face image, which is usually set in the range $[300, 1000]$. Image pixel values are used as raw features. We compute the following statistics as features to represent the set.

- **First-order statistic**: the sample mean vector m of the image set is:
 $$m = \frac{1}{n} \sum_{i=1}^{n} x_i \in \mathbb{R}^d. \quad (1)$$

- **Second-order statistic**: the sample $d \times d$ covariance matrix C of the image set is:
 $$C = \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j=1}^{n} (x_i - m)(x_j - m)^T. \quad (2)$$

- **Combined statistic**: the Kronecker product of the covariance matrix C and the mean m of the image set is considered as a combined statistic feature:
 $$\mathcal{T} = C \otimes m \quad (3)$$
 which is a $d \times d \times d$ tensor.
space. We aim to learn a distance metric to force face image sets from the same category to be close, and those from different categories to be far apart in the learned metric space. Unlike existing multi-kernel learning methods [2], [12] which assume the weights of different types of features (which are the different statistic features here) are the same for all classes, we argue that weights should be data-adaptive. For example, if an image set’s mean vector is discriminative, then we should assign a higher weight to it, compared to other features.

We formulate our LMKML problem based on this concept. Write $S = [S_1, S_2, \ldots, S_N]$ as the training set of N image sets, where $S_i = [s_{i1}, s_{i2}, \ldots, s_{in_i}]$ denotes the ith image set, $1 \leq i \leq N$, and n_i is the number of samples in this image set. For each image set S_i, we compute its first-order, second-order, and combined statistics m_i, C_i and T_i, respectively. Let $X^p = [x_i^1, x_i^2, \ldots, x_i^p]$ be the pth statistic feature set of all training samples, and $x_i^p \in \mathbb{R}^{d_p}$ the pth statistic feature extracted from the ith image set S_i, where $1 \leq p \leq P$. In this work, $P = 3$ as we use three different order statistics features for image set representation. ϕ_i^{p} is the corresponding high-dimensional feature of x_i^p, which for notational convenience we assume to be finite-dimensional. M is a matrix to be learned in the high-dimensional space \mathcal{F}. The similarity between two image sets S_i and S_j under M and $\{\eta_p\}_{p=1}^P$ is defined as:

$$d(S_i, S_j) = \sum_{p=1}^P \eta_p(\phi_i^{p})(\phi_i^{p} - \phi_j^{p})^T M(\phi_i^{p} - \phi_j^{p}) \eta_p(\phi_j^{p}) \quad (4)$$

where $\eta_p(\phi_i^{p})$ is a gating function that assigns a positive weight to ϕ_i^{p}, as detailed later. Because of $\eta_p(\phi_i^{p})$, our learning method is “localized”. Clearly, previous global kernel weighting algorithms [2], [12] can be considered as a special case, where $\eta_p(\phi_i^{p})$ is independent of ϕ_i^{p}.

To learn the matrix M, we seek to simultaneously maximize inter-class variations and minimize intra-class variations. The learning criterion is:

$$\max_{M, \{\eta_p\}_{1 \leq p \leq P}} J = \frac{1}{N_S^−} \sum_{i,j=1}^{N} \frac{1}{(S_i, S_j) \in S^-} d(S_i, S_j)$$

$$- \frac{1}{N_S^+} \sum_{i,j=1}^{N} \frac{1}{(S_i, S_j) \in S^+} d(S_i, S_j) \quad (5)$$

where S^- and S^+ denote the inter-class and intra-class sample pairs in the training set, and N_S^- and N_S^+ denote the number of pairs in these two sets, respectively.

Denote d^F be the dimensionality of the feature space. The $d^F \times d^F$ matrix M is symmetric and positive semidefinite. We seek a matrix $W = [w_1, w_2, \ldots, w_d]$ of size $d^F \times d$, where $d^F \geq d$, and d is the number of weight vectors in W, such that

$$M = WW^T. \quad (6)$$

1While more combined statistics could be computed from the first-order and second-order statistics, we only compute one in this work because it is very expensive to compute such features.
Combining (4), (5) and (6), we express J as follows:

$$J = \text{tr} \left[W^T (A_1 - A_2) W \right]$$

(7)

where

$$A_1 = \frac{1}{N_S^-} \sum_{i,j=1}^{N} \sum_{p=1}^{P} \eta_p(\phi_i^p) (\phi_i^p - \phi_j^p)$$

$$(S_i, S_j) \in S^-$$

$$\times (\phi_i^p - \phi_j^p)^T \eta_p(\phi_i^p),$$

$$A_2 = \frac{1}{N_S^+} \sum_{i,j=1}^{N} \sum_{p=1}^{P} \eta_p(\phi_i^p) (\phi_i^p - \phi_j^p)$$

$$(S_i, S_j) \in S^+$$

$$\times (\phi_i^p - \phi_j^p)^T \eta_p(\phi_i^p)$$

(9)

are $d^p \times d^p$ matrices.

Generally, it is difficult or even impossible to compute A_1 and A_2 directly in the feature space F because the explicit form of ϕ_i^p is usually unknown. Hence, we use the kernel trick by expressing the weight vector w_k as a linear combination of all the training samples in the mapped space, i.e.,

$$w_k = \sum_{i=1}^{N} u_i^k \phi_i^p.$$

(10)

Hence,

$$\sum_{p=1}^{P} u_k^p \phi_j^p = \sum_{i,j=1}^{P} u_k^p (\phi_i^p)^T \phi_j^p = \sum_{p=1}^{P} (u_k^p)^T K_i^p$$

(11)

where u_k^p is a N-vector with ith entry denoted by u_k^i, and K_i^p is the ith column of the pth kernel matrix K_i. This is an $N \times N$ kernel matrix, calculated from the pth statistic feature between each pair of image sets.

Then, (5) can be expressed as

$$\max_{U, \{\eta_p\}_{p \in [1, P]}} J = \text{tr} \left[U^T (B_1 - B_2) U \right]$$

(12)

where $U = [u_1, \cdots, u_d]$ is a $N \times d$ matrix ($N < d$), and

$$B_1 = \frac{1}{N_S^-} \sum_{i,j=1}^{N} \sum_{p=1}^{P} \eta_p(\phi_i^p) (K_i^p - K_j^p)$$

$$(S_i, S_j) \in S^-$$

$$\times (K_i^p - K_j^p)^T \eta_p(\phi_j^p),$$

$$B_2 = \frac{1}{N_S^+} \sum_{i,j=1}^{N} \sum_{p=1}^{P} \eta_p(\phi_i^p) (K_i^p - K_j^p)$$

$$(S_i, S_j) \in S^+$$

$$\times (K_i^p - K_j^p)^T \eta_p(\phi_j^p)$$

(13)

(14)

are symmetric $N \times N$ matrices.

Now we discuss how to choose the gating functions $\eta_p(\cdot)$. As in (12), we choose

$$\eta_p(\phi_i^p) = \frac{\exp(h_p^T \phi_i^p + b_p)}{\sum_{p=1}^{P} \exp(h_p^T \phi_i^p + b_p)}$$

(15)

which is parameterized by a vector h_p and a scale factor b_p. This gating function is monotonically increasing, non-negative, and is easy to differentiate with respect to h_p and b_p.

Since ϕ_i^p is implicit, we express $h_p^T \phi_i^p$ as follows, similarly to (11):

$$h_p^T \phi_i^p = \sum_{i=1}^{N} a_p^T (\phi_i^p)^T \phi_j^p = \sum_{i=1}^{N} a_p^T K_i^p$$

(16)

where $a_p \in \mathbb{R}^{N \times 1}$ and $b_p \in \mathbb{R}$ are the parameters to be learned. Then, the gating function can be written as

$$\eta_p(\phi_i^p) = \frac{\exp(a_p^T K_i^p + b_p)}{\sum_{p=1}^{P} \exp(a_p^T K_i^p + b_p)}$$

(17)

To our best knowledge, there is no closed-form solution to the optimization problem in (12) because we aim to learn U but have to infer a_p and b_p simultaneously. Hence, we use an alternating optimization algorithm. The approach is to fix a_p and b_p, update U, update a_p and b_p, etc. iteratively.

We first initialize a_p and b_p with small random numbers, $1 \leq p \leq P$, and obtain U by solving the optimization problem in (12). The columns of U are constrained to be orthogonal. Then, U can be obtained by solving the following eigenvalue problem

$$(B_1 - B_2) u = \lambda u.$$

(18)

Write $U = [u_1, u_2, \cdots, u_d]$ such that the columns in U are eigenvectors of (18) corresponding to the g largest eigenvalues ordered according to $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_g$. Then, U is the transformation matrix to be learned.

Having obtained U, we use the gradient descent method to update $\{a_p\}$ and $\{b_p\}$ as follows:

$$a_p^{t+1} = a_p^t - \alpha \frac{\partial J}{\partial a_p^t}$$

(19)

$$b_p^{t+1} = b_p^t - \alpha \frac{\partial J}{\partial b_p^t}, \text{ and } 1 \leq p \leq P$$

(20)

where α is the learning rate, which is set to 10^{-6} in our experiments.

Having updated $\{a_p\}$ and $\{b_p\}$, $1 \leq p \leq P$, we recompute the weight $\eta_p(\phi_i^p)$ in (17), and then B_1 and B_2 in (13) and (14), respectively. Then, we update U by re-solving the eigenvalue equation in (18). We repeat this procedure until convergence. The proposed LMKML algorithm is summarized in Algorithm 1.

C. Localized Multi-Kernel Multi-Metric Learning

While LMKML combines multiple features by using the learned distance metric, it only learns a single distance metric, which may not be powerful enough to exploit the specific information of each individual feature. This motivates us to learn feature-specific metrics. Moreover, different features of the same sample share the same identity information, it is also necessary to exploit some common characteristic among different features. Hence,
we propose a localized multi-kernel multi-metric learning (LMKML) to jointly learn feature-specific distances and sharable metrics, so that complementary information can be better extracted.

Let M_p be the distance metric to be learned for the pth feature, $1 \leq p \leq P$, and M_0 be the shared distance metric to be learned. We define the similarity between two image sets S_i and S_j under $\{M_p\}_{p=1}^P$, M_0, and $\{\eta_p\}_{p=1}^P$ as follows:

$$d'(S_i, S_j) = \sum_{p=1}^P \eta_p(\phi^p_i)(\phi^p_i - \phi^p_j)^T (M_p + M_0) \times (\phi^p_i - \phi^p_j) \eta_p(\phi^p_j)$$

(21)

where $\eta_p(\phi^p)$ is a gating function that assigns a positive weight to ϕ^p, as in LMKML.

Similarly, we formulate LMKMML as the following optimization problem:

$$\max_{M_0, (M_p)_{1 \leq p \leq P}, \{\eta_p\}_{1 \leq p \leq P}} H = H_1 - \lambda H_2$$

(22)

where

$$H_1 = \sum_{i,j=1}^N \frac{d'(S_i, S_j)}{N_{S^-}} - \sum_{i,j=1}^N \frac{d'(S_i, S_j)}{N_{S^+}}$$

(23)

$$H_2 = \|M_0 - M\|_F^2 + \delta \sum_{p=1}^P \|M_p\|_F^2$$

(24)

Here λ and δ are two parameters that balance the contributions of different terms in the objective function, and M is the distance metric learned by LMKML.

In (22), H_1 aims to make the learned distance metrics discriminative, and H_2 models the interaction between the individual distance metric and the shared metric. Specifically, if δ is large, our LMKMML reduces to learning P individual distance metrics. Otherwise, it degrades to LMKML if δ is small. Therefore, LMKMML can be considered as a special case of LMKMML if δ is set to 0, which enforces the individual distance metric to be as close as to the shared metric.

Since M and M_p are symmetric and positive semidefinite, we decompose $(M_0 + M_p)$ into $L_p L_p^T$, where $L_p \in \mathbb{R}^{d_F \times d_F}$, and rewrite H_1 as

$$H_1 = \sum_{p=1}^P \text{tr} \left[L_p^T (C_1^p - C_2^p) L_p \right]$$

$$= \sum_{p=1}^P \text{tr}(U_p^TRL_p)$$

(25)

where

$$C_1^p = \frac{1}{Ns^-} \sum_{i,j=1}^N \eta_p(\phi^p_i)(\phi^p_i - \phi^p_j)^T \eta_p(\phi^p_j) \times (\phi^p_i - \phi^p_j)^T$$

(26)

$$C_2^p = \frac{1}{Ns^+} \sum_{i,j=1}^N \eta_p(\phi^p_i)(\phi^p_i - \phi^p_j)^T \eta_p(\phi^p_j) \times (\phi^p_i - \phi^p_j)^T$$

(27)

$$R \triangleq (C_1^p - C_2^p)$$

(28)

are $d_F \times d_F$ matrices.

It is also difficult or even impossible to compute C_1^p and C_2^p directly in the feature space F because the explicit form of ϕ^p is usually unknown. Hence, we use the kernel trick and express H_1 as

$$H_1 = \sum_{p=1}^P \text{tr} \left[U_p^T (D_1^p - D_2^p) U_p \right]$$

(29)

where $U_p = [u^1_p, \ldots, u^n_p]$ is an $N \times d$ matrix ($N < g$), and

$$D_1^p = \frac{1}{Ns^-} \sum_{i,j=1}^N \eta_p(\phi^p_i)(K^p_i - K^p_j) \times (K^p_i - K^p_j)^T \eta_p(\phi^p_j)$$

(30)

$$D_2^p = \frac{1}{Ns^+} \sum_{i,j=1}^N \eta_p(\phi^p_i)(K^p_i - K^p_j) \times (K^p_i - K^p_j)^T \eta_p(\phi^p_j)$$

(31)

are $N \times N$ matrices.

Generally, H_2 is hard to simplify because the explicit form of M_p and M_0 is unknown. To address this, we employ an alternative method by enforcing the constraints
The MT-LMNN method also minimizes the global optimization problem in (33). Hence, we use an alternating minimization algorithm, which is similar to that used in Algorithm 2.\footnote{Our LMKMML is a kernel-based metric learning method while MT-LMNN is a linear method.}

Algorithm 2: LMKMML

Input: Training set: $P N \times N$ kernels K^p, $1 \leq p \leq P$, computed from N image sets, feature dimension g, tolerance parameter e.

Output: Transformation matrix U_0, U_p, and parameters $\{a_p\}$ and $\{b_p\}$, $1 \leq p \leq P$.

Step 1 (Initialization):
1. Initialize $\{a_p^0\}$ and $\{b_p^0\}$, $1 \leq p \leq P$, with small random numbers.
2. Initialize $U_0 = U$, where U is learned by LMKML.
3. Initialize U_p with random matrices, $1 \leq p \leq P$, where each element is a small number.

Step 2 (Local optimization):
For $t = 1, 2, \cdots, T$, repeat
1. Fix U_p and U_0, update a_p and b_p.
2. Fix a_p, b_p, and U_0, update U_p.
3. Fix a_p, b_p, and U_p, update U_0.
4. If $t > 2$, $|a_p^{t+1} - a_p^t| < e$ and $|b_p^{t+1} - b_p^t| < e$ or $|U_p^{t+1} - U_p^t| < e$, go to Step 3.

Step 3 (Output transformation matrix and parameters):
Output U_0, U_p, $\{a_p\}$ and $\{b_p\}$, $1 \leq p \leq P$.

There appears to be no closed-form solution to the optimization problem in (33). Hence, we use an alternating minimization algorithm, which is similar to that used in LMKMML. The approach is to fix a_p, b_p, and 0 to update U_p, then update a_p and b_p by fixing U_0 and U_p, and finally update U_0 by fixing a_p, b_p, and U_p. Gradient descent is used to update the parameters $\{a_p, b_p\}$, U_p, and U_0, where $1 \leq p \leq P$. The proposed LMKMML algorithm is summarized in Algorithm 2.

Comparison with multi-task large-margin metric learning (MT-LMNN): The MT-LMNN method also learns multiple metrics for classification, and has been proposed for real-world insurance data classification and speech recognition [39]. However, there are two differences between our LMKMML and MT-LMNN: 1) The weights of different metrics are learned in a localized manner in our LMKMML, and MT-LMNN learns them in a global way; 2) Our LMKMML is a kernel-based metric learning method while MT-LMNN is a linear method.

D. Recognition

For image set based face identification, given a test image set X_T, we first compute its P statistics for feature representation, denoted by x^p_T, $1 \leq p \leq P$. Then, we calculate the similarity between X_T and each training image set X_i by (4) for LMKML and (21) for LMKMML. Lastly, we classify the test image set X_T into the class c that achieves

$$c = \arg \min_i d(S_T, S_i).$$

Unlike face identification, the goal of face verification is to determine whether a given pair of face images comes from the same person or not. For face verification, the receiver operating characteristic (ROC) curve which describes the tradeoff between false acceptance rate (FAR) and true acceptance rate (TAR), is used for evaluation. The positive and negative pairs in the training set are used to compute A_1 and A_2 in (8) and (9), respectively, to learn the discriminative distance metric. Having obtained the distance metric M, we first compute the distance between two face images using (21) and normalize these distances in the range $[0, 1]$. Lastly, the ROC curve is computed.

IV. Experiments

We evaluated our proposed approach on four publicly available video face databases including the Honda [28], Mobo [13], YouTube Celebrities (YTC) [23] and YouTube Face (YTF) [54] datasets. The Honda, MoBo, and YTC datasets are used to evaluate our face identification method, and the YTF dataset is selected to evaluate our face verification method.

A. Datasets

There are 59 videos of 20 subjects in the Honda dataset. For each subject, 1-3 videos were collected, each containing around 400 frames with pose and expression variations.

There are 96 videos of 24 subjects in the CMU MoBo dataset. For each subject, 4 video sequences were collected, each of which corresponds to a different walking pattern, and comprised of about 300 frames.

The YTC dataset contains 1910 videos of 47 celebrities which were collected from YouTube. Most videos have low resolution and are highly compressed. The number of image frames in those videos in this dataset ranges from 8 to 400.

The YTF dataset contains 3425 videos of 1596 subjects which were also downloaded from YouTube. The average length of each video clip is about 180 frames. There are large variations in pose, illumination, expression, and resolution in these videos.

In the Honda, Mobo and YTC datasets, each image frame is first automatically detected by the face detector method proposed in [46] and then resized to 20×20. For the YTF dataset, each image frame is cropped to 20×20 according to the provided eye coordinates. Hence, d is set to 400 in our implementations. For each image frame in all these
Fig. 3. From top to bottom are exemplar face images cropped from the Honda, MoBo, YTC, and YTF datasets, respectively, where images in the same row are face samples from the same person which were captured in different environments.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Honda</th>
<th>MoBo</th>
<th>YTC</th>
<th>YTF</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>40</td>
<td>48</td>
<td>141</td>
<td>141</td>
</tr>
</tbody>
</table>

TABLE I
VALUE OF N FOR FACE DATASETS IN OUR EXPERIMENTS.

We performed histogram equalization to remove illumination effects. Fig. 3 shows some cropped face images from the four datasets after resizing.

B. Experimental Settings

To make a fair comparison with previous methods, we followed the same protocol used in [3], [19], [48]–[50]. For the Honda, MoBo and YTC datasets, we conducted experiments 10 times by randomly selecting gallery/probe combinations, and computed the mean identification/verification rates. Specifically, we randomly selected one image set for each person as the gallery set and the remaining image sets were used for probes. For the YTC dataset, the whole dataset was equally divided into five folds (with minimal overlapping) each containing 9 videos per subject. In each fold, 3 image sets per subject were randomly selected as the gallery set, and the remaining 6 were selected as the probe sets. For the YTF dataset, we followed the standard evaluation protocol in [54] by evaluating our method on 5000 video pairs. Half of them were from the same person and the remaining half were from different persons. These pairs were equally divided into 10 folds and each fold contains 250 intra-personal pairs and 250 inter-personal pairs, respectively. We trained our LMKML and LMKMML on the YTC dataset and used the 10-fold cross validation strategy for face verification on the YTF dataset [54]. The value of N for the datasets in our experiments is given in Table I.

C. Results and Analysis

1) Comparison with Existing Image Set Based Face Recognition Methods: We conducted image set based face identification experiments on the Honda, MoBo and YTC datasets and compared the proposed approach with several recently proposed methods, including Discriminant Canonical Correlation analysis (DCC) [25], Manifold-to-Manifold Distance (MMD) [50], Manifold Discriminant Analysis (MDA) [48], Affine Hull based Image Set Distance (AHISD) [3], Convex Hull based Image Set Distance (CHISD) [3], Sparse Approximated Nearest Point (SANP) [19], Covariance Discriminative Learning (CDL) [49], and Regularized Nearest Points (RNP) [59].

We employed the standard implementations of all these methods except CDL which we implemented because the source code has been not released. We tuned the parameters of different methods for a fair comparison. Specifically, we applied PCA to learn a linear subspace for DCC and selected a 20-dimensional subspace for similarity measure. For MMD and MDA, the maximum canonical correlation was used to compute MMD, and the number of nearest neighbors was set to 15. For AHISD, there was no parameter. For CHISD and SANP, we followed the same parameter settings as described in the original papers in [3] and [19]. For CDL, the kernel LDA (KLDA) was used for discriminative learning so that it is fair to compare it with our LMKML. The regularization parameter of CDL was the same as in [49]. For RNP, there are two regularization parameters: λ_1 and λ_2. In our experiments, we followed the same setting in [59], and set λ_1 and λ_2 to 0.001 and 0.1, respectively. For our LMKML and LMKMML methods, the RBF kernel was used and the standard deviation from each statistic feature was used as the parameter to estimate the kernel values. The parameters λ and δ were empirically set to 1 and 0.2 using the cross-validation strategy from the training set. For DCC, MDA, CDL and our methods, since there is a single gallery image set from each class in the Honda and MoBo datasets, we randomly divided each gallery set into two subsets to model the within-class variation.

Table II tabulates the average rank-one recognition results of different methods on the Honda, MoBo and YTC datasets.
datasets\(^2\). Our methods outperform the other ones, especially on the most challenging YTC dataset. This is because the other methods require certain assumptions for image set representation, and these assumptions may not hold in this challenging dataset. However, no assumption is required in our methods and hence better performance is obtained.

2) Comparison with State-of-the-Art Face Verification Methods: We compared our approach with the state-of-the-art face verification methods on the YTF dataset\(^3\). These compared methods include Matched Background Similarity (MBGS) [54], APEM [30], STFRD+PMML [5], MBGS+SVM\(^\oplus\) (LBP) [55], VSOF+OSS (Adaboost) [36], Method in [38], PHL+SILD [22], DDML (LBP) [17], DeepFace-single [42], EigenPEP [31], and LM3L [18]. Table III and Fig. 5 show the mean verification rate with the standard error and ROC curves on the YTF dataset, respectively. Our LMKML and LMKMML achieve competitive performance in terms of mean verification rate. While existing

\(^2\)The recognition performance of the other methods on the YTC dataset is much better than that reported in our conference version [34]. The reason is that we found for our detected YTC dataset, the optimal parameters of these methods are not the default ones which were recommended by the original papers.

\(^3\)Available from: http://www.cs.tau.ac.il/~wolf/ytfaces/results.html.

![Figure 4](image1.png)

Fig. 4. CMC curves (%) of different image set based face recognition methods on the (a) Honda, (b) MoBo, and (c) YTC datasets, respectively, where ACA denotes the average classification accuracy.

![Figure 5](image2.png)

Fig. 5. Comparisons of ROC curves between our work and the state-of-the-art methods on the image restricted YTF dataset.

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBGS (LBP) [54]</td>
<td>76.4 ± 1.8</td>
</tr>
<tr>
<td>APEM (LBP) [30]</td>
<td>77.4 ± 1.5</td>
</tr>
<tr>
<td>APEM (fusion) [30]</td>
<td>79.1 ± 1.5</td>
</tr>
<tr>
<td>STFRD+PMML [5]</td>
<td>79.5 ± 2.5</td>
</tr>
<tr>
<td>MBGS+SVM(^\oplus) (LBP) [55]</td>
<td>79.5 ± 2.5</td>
</tr>
<tr>
<td>VSOF+OSS (Adaboost) [36]</td>
<td>79.7 ± 1.8</td>
</tr>
<tr>
<td>Method in [38] [38]</td>
<td>82.4 ± 1.1</td>
</tr>
<tr>
<td>PHL+SILD (LBP) [22]</td>
<td>80.2 ± 1.3</td>
</tr>
<tr>
<td>DDML (LBP) [17]</td>
<td>81.3 ± 1.6</td>
</tr>
<tr>
<td>DeepFace-single [42]</td>
<td>91.4 ± 1.1</td>
</tr>
<tr>
<td>EigenPEP [31]</td>
<td>84.8 ± 1.4</td>
</tr>
<tr>
<td>LM3L [18]</td>
<td>81.3 ± 1.2</td>
</tr>
<tr>
<td>LMKML</td>
<td>82.3 ± 1.4</td>
</tr>
<tr>
<td>LMKMML</td>
<td>82.7 ± 1.5</td>
</tr>
</tbody>
</table>

TABLE III

COMPARISONS OF THE MEAN VERIFICATION RATE AND STANDARD ERROR (%) WITH THE STATE-OF-THE-ART RESULTS ON THE YTF DATASET UNDER THE IMAGE RESTRICTED SETTING.

![Figure 4](image3.png)

Fig. 5. Comparisons of ROC curves between our work and the state-of-the-art methods on the image restricted YTF dataset.

state-of-the-art video-based face verification methods only considered the mean information of the video, our methods exploit more statistical information. This makes it possible to better capture the relationship between different frames within the video and extract complementary information for verification.

3) Comparison of Statistic Features: We compared the discriminative power of different statistic features for image set classification. For each feature, we performed face recognition/verification on different datasets. Table IV tabulates the classification rates. We observe that the combined statistic feature achieves better classification performance than the other two features.

To further show the advantage of the combined statistic feature, we removed it in our LMKML and performed face recognition/verification by combining the first-order and second-order features with LMKML. Table V shows the classification rates. We observe that the combination of three features slightly outperforms that of two features in LMKML.

4) Localized vs. Global Multi-Kernel Metric Learning: The multi-kernel distance metric can also be learned in
Fig. 6. Rank-one recognition rate (%) of different image set based face recognition methods with noisy data on the (a) Honda, (b) MoBo and (c) YTC datasets, respectively.

Fig. 7. Rank-one recognition rate (%) of different image set classification methods with varying data size on the (a) Honda, (b) MoBo and (c) YTC datasets, respectively.

TABLE IV
RECOGNITION/VERIFICATION RATES (%) OF DIFFERENT STATISTIC FEATURES ON THESE FOUR DATASETS.

<table>
<thead>
<tr>
<th>Method</th>
<th>Honda</th>
<th>MoBo</th>
<th>YTC</th>
<th>YTF</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-order</td>
<td>95.4</td>
<td>92.3</td>
<td>72.7</td>
<td>79.5</td>
</tr>
<tr>
<td>Second-order</td>
<td>96.5</td>
<td>88.9</td>
<td>67.5</td>
<td>80.5</td>
</tr>
<tr>
<td>Combined statistic</td>
<td>97.2</td>
<td>94.2</td>
<td>76.2</td>
<td>80.9</td>
</tr>
<tr>
<td>LMKML</td>
<td>98.5</td>
<td>96.3</td>
<td>78.2</td>
<td>82.3</td>
</tr>
<tr>
<td>LMKMML</td>
<td>98.5</td>
<td>96.7</td>
<td>78.5</td>
<td>82.7</td>
</tr>
</tbody>
</table>

TABLE V
RECOGNITION/VERIFICATION RATES (%) OF LMKML WHEN DIFFERENT COMBINATIONS OF STATISTIC FEATURES ARE USED ON THESE FOUR DATASETS.

<table>
<thead>
<tr>
<th>Method</th>
<th>Honda</th>
<th>MoBo</th>
<th>YTC</th>
<th>YTF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two features</td>
<td>97.8</td>
<td>95.7</td>
<td>77.5</td>
<td>81.7</td>
</tr>
<tr>
<td>Three features</td>
<td>98.5</td>
<td>96.3</td>
<td>78.2</td>
<td>82.3</td>
</tr>
</tbody>
</table>

TABLE VI
RECOGNITION/VERIFICATION RATES (%) OF DIFFERENT MULTI-KERNEL METRIC LEARNING METHODS ON DIFFERENT DATASETS.

<table>
<thead>
<tr>
<th>Method</th>
<th>Honda</th>
<th>MoBo</th>
<th>YTC</th>
<th>YTF</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMKML</td>
<td>98.3</td>
<td>95.4</td>
<td>76.7</td>
<td>81.1</td>
</tr>
<tr>
<td>LMKML</td>
<td>98.5</td>
<td>96.3</td>
<td>78.2</td>
<td>82.3</td>
</tr>
</tbody>
</table>

TABLE VII
RECOGNITION/VERIFICATION RATES (%) OF DIFFERENT MULTI-KERNEL MULTI-METRIC LEARNING METHODS ON DIFFERENT DATASETS.

<table>
<thead>
<tr>
<th>Method</th>
<th>Honda</th>
<th>MoBo</th>
<th>YTC</th>
<th>YTF</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMKMML</td>
<td>98.3</td>
<td>95.8</td>
<td>77.5</td>
<td>81.8</td>
</tr>
<tr>
<td>KMT-LMNN</td>
<td>98.3</td>
<td>96.2</td>
<td>77.9</td>
<td>82.1</td>
</tr>
<tr>
<td>LMKMML</td>
<td>98.5</td>
<td>96.7</td>
<td>78.5</td>
<td>82.7</td>
</tr>
</tbody>
</table>

a global manner. To show the effect of localized multi-kernel learning, we assume that \(\eta_p(\phi^p) \) is constant and learn a distance using the global multi-kernel metric learning (GMKML) algorithm, where the weights of different kernels are learned and updated by the multi-view metric learning method of [33]. Moreover, we also compare LMKML with the kernel-based multi-task large margin nearest neighbor (KMT-LMNN) method [39], where the MT-LMNN method was applied in the kernel space and the weight is learned in a global way. Tables VI- VII show the recognition rates of these three methods with different learning strategies. We observe that our localized methods achieve better performance than the global multi-kernel metric learning methods. This shows that learning a data-specific kernel is better because it exploits more geometrical information of samples in learning the distance metric(s).

5) Single-Metric vs. Multi-Metric Learning: To better show the advantage of multi-metric learning over single-metric learning with multi-feature representation, we also develop another baseline for LMKML by adding a regularizer on \(M \) in LMKML, where the regularizer is introduced by following the same procedure in LMKMML and the only difference is we here only need to regularize
one metric while LMKMML regularizes multiple metrics. Table VIII shows the recognition rates of these metric learning strategies. We observe that multi-metric learning outperforms single-metric learning and the regularizer slightly improves the recognition rates on different datasets.

6) Robustness Analysis: We tested the robustness of our methods in case there is noise in the image sets and the image sets are of different sizes. We conducted three experiments using the same settings as in [3], [49]: 1) the gallery image sets were noisy; 2) the probe image sets were noisy, and 3) both the gallery and probe image sets were noisy. To make the image set noisy, we randomly selected one image from the other classes and included it in the current image set. For these three settings, we called the original and three noisy datasets “clean”, “NG” (only gallery image sets were noisy), “NP” (only probe sets were noisy), and “NGP” (both gallery and probe sets were noisy), respectively. Fig. 6 shows the mean identification rates of different image set based face recognition methods on different face datasets.

We also evaluated the performance of our approach when there are different number of frames in the image sets. We randomly selected a subset from each image set for recognition. We extracted 200, 100 and 50 frames from each image set, denoted as F200, F100, and F50, respectively. When an image set contains fewer frames, all image frames in this set were used for evaluation. Fig. 7 shows the average recognition rates of different face recognition methods on the YTC dataset.

From Figs. 6 and 7, we see that our proposed approach shows better robustness to these two challenges. That is because we use different statistics features as the set representation, which are robust to outliers and to the number of samples in the set. Hence, the effects of the noisy samples and varying data size are alleviated.

7) Parameter Analysis: Fig. 8 shows recognition accuracy versus iteration number on the YTC dataset. Our iterative methods rapidly achieve stable performance.

Fig. 9 shows recognition accuracy of LMKMML as a function of λ and δ on the YTC dataset. LMKMML achieves stable performance when λ and δ are set as around 1.0 and 0.2, respectively.

8) Convergence Analysis: Fig. 10 shows the values of the objective function of LMKML and LMKMML versus iteration number on the YTC dataset. Our algorithms converge in about 30-40 iterations.

9) Computational Time: We compared the computational time of different algorithms on the YTC dataset. Our hardware configuration comprises a 2.8-GHz CPU and a 10GB RAM. Table IX shows the time spent by these methods for training and testing (per face image set). It is to be noted that training time is only required for discriminative learning methods such as DCC, MDA, CDL and our methods. We see that the computational complexity of our methods are generally larger than the other methods. That is because our methods compute multiple features for image set representation, which requires more algebraic operations than other methods and hence higher computational complexity.

D. Discussion

From the above experimental results, we make the following three observations:

1) Our proposed methods achieve better performance than existing image set based face recognition methods on the Honda, Mobo and YTC datasets, and

<table>
<thead>
<tr>
<th>Method</th>
<th>Honda</th>
<th>MoBo</th>
<th>YTC</th>
<th>YTF</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMKML (no regularizer)</td>
<td>98.5</td>
<td>96.3</td>
<td>78.2</td>
<td>82.3</td>
</tr>
<tr>
<td>LMKML (with regularizer)</td>
<td>98.5</td>
<td>96.5</td>
<td>78.3</td>
<td>82.5</td>
</tr>
<tr>
<td>LMKMML</td>
<td>98.5</td>
<td>96.7</td>
<td>78.5</td>
<td>82.7</td>
</tr>
</tbody>
</table>

Table VIII: Recognition/Verification rates (%) of single-metric and multi-metric learning methods on different datasets.
show that our approach outperforms prior image set based face recognition methods in terms of both accuracy and robustness.

There are two interesting directions for future work:

1) The kernel computational method in this work is time-consuming, which is one limitation of the proposed approach. It would be desirable to develop an efficient kernel approximation method to improve the kernel estimation speed, especially for combined statistic features.

2) In this work, we applied LMKML and LMKMML for image set based face recognition. It would be interesting to use them for other visual analysis tasks such as visual recognition and information retrieval.

Table IX

<table>
<thead>
<tr>
<th>Method</th>
<th>DCC</th>
<th>MMD</th>
<th>MDA</th>
<th>AHISD</th>
<th>CHISD</th>
<th>SANP</th>
<th>CDL</th>
<th>LMKML</th>
<th>LMKMML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>122.8</td>
<td>N/A</td>
<td>225.0</td>
<td>N/A</td>
<td>N/A</td>
<td>80.2</td>
<td>4755.8</td>
<td>5325.8</td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td>3.8</td>
<td>5.4</td>
<td>64.8</td>
<td>9.2</td>
<td>14.5</td>
<td>55.6</td>
<td>15.6</td>
<td>220.3</td>
<td>230.6</td>
</tr>
</tbody>
</table>

Fig. 10. Convergence curve of LMKML and LMKMML on the YTC dataset.

obtain very competitive results on the YTF dataset. Compared to unsupervised methods such as MMD, AHISD, CHISD and SANP, our methods extract discriminative information from face image sets, which is helpful to improve the recognition rate. Compared to supervised methods such as DCC, MDA and CDL, our methods extract different statistic features from face image sets, hence exploit more complete information for classification.

2) Our methods consistently outperforms CDL on all four datasets. This is because our methods utilize different statistic features from each image set while CDL only extracts the second-order statistic feature for image set representation.

3) Our methods are more robust to outliers since they are statistics of all the samples in the image set and the effect of noise can be largely alleviated, especially compared to the previous nearest sample pair based image set classification methods such as AHISD, CHISD and SANP.

V. CONCLUSION AND FUTURE WORK

We have proposed a new image set based face recognition approach using multiple statistic features and localized multi-feature metric learning. Specifically, two kernel-based metric learning algorithms called localized multi-kernel metric learning (LMKML) and localized multi-kernel multi-metric learning (LMKMML) were proposed to effectively combine multiple statistic features from face image set. The proposed approach has been evaluated on four widely used video face datasets. Experimental results show that our approach outperforms prior image set based face recognition methods in terms of both accuracy and robustness.

REFERENCES

Jiwen Lu (S’10–M’11) received the B.Eng. degree in mechanical engineering and the M.Eng. degree in electrical engineering from the Xi’an University of Technology, Xi’an, China, and the Ph.D. degree in electrical engineering from the Nanyang Technological University, Singapore, respectively. He is currently a Research Scientist at the Advanced Digital Sciences Center (ADSC), Singapore. His research interests include computer vision, pattern recognition, and machine learning.

He has authored/co-authored over 100 scientific papers in these areas, where more than 30 papers are in the IEEE Transactions journals (TPAMI/TIP/TIFS/TCSVT) and the top-tier computer vision conferences (ICCV/CVPR/ECCV). He serves as Area Chair for 2015 IEEE International Conference on Multimedia and Expo (ICME 2015), 2015 IAPR/IEEE International Conference on Biometrics (ICB 2015), and Special Session Chair for 2015 IEEE Conference on Visual Communications and Image Processing (VCIP 2015).

Dr. Lu was a recipient of the First Prize National Scholarship and the National Outstanding Student Award from the Ministry of Education of China in 2002 and 2003, the Best Student Paper Award from PREMIA of Singapore in 2012, and the Top 10% Best Paper Award from MMMSP2014, respectively. Recently, he gives tutorials at some conferences such as CVPR 2015, FG 2015, ACCV 2014, ICME 2014 and IJCB 2014.

Gang Wang received the B.S. degree from Harbin Institute of Technology in electrical engineering in 2005 and PhD degree in the Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign in 2010. He is currently an Assistant Professor in the School of Electrical and Electronic Engineering, Nanyang Technological University, and a research scientist at the Advanced Digital Sciences Center, Singapore. His research interests include computer vision and machine learning. Particularly, he is focusing on object recognition, scene analysis, large scale machine learning, and deep learning. He is a member of IEEE.
Pierre Moulin received his doctoral degree from Washington University in St. Louis in 1990, after which he joined at Bell Communications Research in Morristown, New Jersey, as a Research Scientist. In 1996, he joined the University of Illinois at Urbana-Champaign, where he is currently Professor in the Department of Electrical and Computer Engineering, Research Professor at the Beckman Institute and the Coordinated Science Laboratory, and affiliate professor in the Department of Statistics. His fields of professional interest include image and video processing, compression, statistical signal processing and modeling, media security, decision theory, and information theory.

Dr. Moulin has served on the editorial boards of the IEEE Transactions on Information Theory, the IEEE Transactions on Image Processing, and the Proceedings of IEEE. He currently serves on the editorial boards of Foundations and Trends in Signal Processing. He was co-founding Editor-in-Chief of the IEEE Transactions on Information Forensics and Security (2005-2008), member of the IEEE Signal Processing Society Board of Governors (2005-2007), and has served IEEE in various other capacities.

He received a 1997 Career award from the National Science Foundation and an IEEE Signal Processing Society 1997 Senior Best Paper award. He is also co-author (with Juan Liu) of a paper that received an IEEE Signal Processing Society 2002 Young Author Best Paper award. In 2003 he became IEEE Fellow and Beckman Associate of UIUC’s Center for Advanced Study. In 2007-2009 he was Sony Faculty scholar at UIUC. In 2007-2009 he was Sony Faculty scholar at UIUC. He was plenary speaker for ICASSP 2006, ICIP 2011, and several other conferences. He is Distinguished Lecturer of the IEEE Signal Processing Society for 2012-2013.