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1. Introduction 

With the increased infrastructure and amount of people living along the United States 
coastline, it is imperative to improve the accuracy of Atlantic hurricane intensity forecasts.    
Over the last 10 years, there have been many Atlantic hurricanes, including Hurricanes 
Katrina and Charley that surprised many forecasters with their rapid intensification and 
power.  The rapid intensification of tropical cyclones is the most serious aspect, when it comes 
to forecasting. It is generally accepted that sufficient surface ocean temperatures 
(approximately 26°C) are needed to produce and sustain tropical cyclone formation.  
However, the sea-surface temperature (SST) has shown not to be critical in intensity 
forecasting by itself, particularly with rapid intensification (Schade & Emmanuel, 1999; Law & 
Hobgood 2007).  Tropical cyclones derive much of their energy from warm, deep ocean water.  
Therefore, a quantified measure of the amount of this warm, deep water is a better way to 
measure the amount of energy available to the storm.  The oceanic heat content (OHC) is such 
a variable to measure the amount of warm water available for the tropical cyclone to convert 
into energy and has been shown to be a much better predictor than SST alone (Zebiak, 1989; 
McDougall, 2003; Wada & Usui 2007; Palmer & Haines, 2009; Shay & Brewster, 2010).      
The accuracy of predicting tropical cyclone tracks currently exceeds the accuracy of intensity 
prediction.  This is largely because track forecasts are largely governed by large-scale 
processes, such as upper-wind conditions and the positioning of ridges and troughs.  These 
large-scale processes are more easily captured by dynamic numerical models therefore 
making track forecasts more precise.  However, the same dynamic numerical models have 
difficulty capturing the sub-grid scale features inside of the tropical cyclone.  Since the sub-
grid scale features, such as the temperature/moisture profiles and heat fluxes, tend to 
govern the intensity of the systems, the dynamic numerical model accuracy of the intensity 
forecasts lag behind their track counterparts.  
While dynamic numerical models tend to lag behind in forecasting intensity, statistical 
models have been shown to outperform the performance of dynamic models.  Many 
statistical and statistical-dynamic models are used by the National Hurricane Center in 
Coral Gables, Florida, USA.  These would include such models as the Statistical Hurricane 
Intensity Prediction Scheme or SHIPS and SHIFOR5 which is a 5-day statistical hurricane 
intensity forecast model.  The SHIPS is a statistical-dynamic model uses a variety of 
dynamic variables such as the maximum sustained surface wind speed, 12-hour intensity 
change, 850-200 hPa vertical wind shear, the average temperature at 200 hPa, and the 850 
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hPa relative vorticity (DeMaria & Kaplan 1999; DeMaria et al., 2005).  Many of these 
climatological and synoptic sub-grid scale variables are averaged over the distance of the 
storm, to produce intensity forecasts based upon the climatological characteristics of 
previous tropical cyclones.  The SHIFOR5 model uses climatology and persistence as a 
purely statistical baseline. 
Regardless of statistical-dynamic or statistical models, rapid intensification processes still 
remain to be problematic when it comes to forecasting.  The purpose of this paper is to 
present a statistical-dynamic intensity model that utilizes OHC and show how critical the 
variable is to forecast the rapid intensification of Atlantic hurricanes.              

2. Oceanic heat content background 

While the SST may provide the conditions of the sea surface, it does not reveal the conditions 
of the upper 50 m of the ocean.  Strong relationships have been known to exist between the 
ocean and tropical cyclone development and intensification (Leipper & Volgenau, 1972, Shay 
et al., 2000, Law & Hobgood, 2007, Maineli et al. 2008).  This area is critical to tropical cyclone 
development and intensification as deep water upwelling provides the warm water necessary 
to eventually be converted into latent heat energy.  The OHC which is sometimes referred to as 
Tropical Cyclone Heat Potential (TCHP) is defined as the integrated vertical temperature from 
the sea surface to the depth of the 26°C isotherm.  The 26°C isotherm corresponds to the 
threshold necessary for tropical cyclone development (Gray 1968).  However despite being a 
key variable, OHC fields cannot be created by hydrographic observations alone.  These fields 
have to be produced from those observations by integrating the temperature profile down to 
the 26°C isotherm.  OHC values typically range over 100 kJ cm-2 and were found primarily for 
rapid major tropical cyclone intensification (Law & Hobgood 2007).     
OHC is calculated globally and daily from estimated altimeter-derived vertical temperature 

profiles (Shay et al. 2000).  There have been three different methods designed to estimate 

this parameter.  The first version was a reduced gravity model, used prior to 2005.  This 

method used three variables (a) SSTs derived from the Tropical Rainfall Measuring Mission 

(TRMM) Microwave Imager (TMI), (b) altimeter estimates of the 20°C isotherm chosen 

because it represents the thermocline and the upper level flow in the Gulf of Mexico and 

Atlantic (Goni et al, 1996), and (c) the depth of the 26°C isotherm based upon a 

climatological relationship between the 26°C and 20°C isotherms. 

The second version used from January 2005 to October 2008 was based upon a linear 
regression model between the depth of the 26°C and 28°C isotherms acquired from 
temperature profiles and topography estimated by Archiving, Validation and Interpretation of 
Satellite Oceanographic (AVISO) data.  The OHC was then computed by integrating the 
temperature profile from the surface down to the 26°C isotherm.  The third version used from 
October 2008 to present provides better agreement with observations in the Gulf of Mexico.  It 
estimates the isotherm depth based upon sea height anomalies from satellite observations.                 

3. Statistical and statistical-dynamic intensity models 

Statistical models such as SHIFOR5 and Statistical-Dynamic models such as SHIPS use a 
variety of synoptic and climatological variables to forecast the short-term intensification 
change of tropical cyclones.  Regression equations are created from the climatological 
tropical cyclone database using each of these variables.  However, statistical models 
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primarily have used a single set of regression equations to be used uniformly and 
throughout the entire life-cycle of a particular tropical cyclone.  It has been theorized that 
different sets of regression equations need to be created because parameters change in 
importance throughout the storm’s life cycle.  Law & Hobgood (2007) first developed such a 
model by incorporating Discriminant Function Analysis (DFA) with the regression 
equations.  By utilizing a DFA, it could be determined how close the tropical cyclone is to its 
rapid intensification period (RIP).  Therefore a specific set of regression equations could be 
applied based upon how close the tropical cyclone is to the RIP.  This particular study 
expands upon that method of statistical-dynamic intensification model.   

3.1 Dataset and variables 
The investigation consisted of all tropical cyclones in the Atlantic basin from 2002-2007.  
There were 96 tropical cyclones including 1 unnamed subtropical storm in 2005 and 1 
unnamed system in 2006.  A series of 12 variables were gathered for all of the storms in 6-hr 
intervals (Table 1).    
 

Latitude (LAT) 6-hr Change in Wind Speed (ΔWS) 850 hPa Relative Humidity (RH) 

Longitude (LONG) 6-hr Change in Pressure (ΔP) Sea Surface Temperature (SST) 

Wind Speed (WS) 850-200 hPa Wind Sheer Magnitude 
(ShrMag) 

Inception Time (Incep) 

Central Pressure (CP) 850-200 hPa Wind Shear Direction 
(ShrDir) 

Oceanic Heat Content (OHC) 

Table 1. List of 12 variables used in the statistical intensity model. 

The latitude (LAT), longitude (LONG), wind speed (WS), and central pressure (CP) are 
available in the Atlantic Best Track dataset from the National Hurricane Center archives.  This 
file contains the 6-hr locational coordinates as well as the maximum sustained winds and the 
central pressure.  The 6-hr changes in wind speed (ΔWS) and pressure (ΔP) were easily 
computed from this dataset.  The 850-200 hPa wind sheer magnitude (ShrMag) and direction 
(ShrDir), 850 hPa relative humidity (RH), and sea surface temperature (SST) were obtained 
from the National Centers for Environmental Prediction-National Center for Atmospheric 
Research (NCEP-NCAR) reanalysis dataset (Kalnay et al. 1996).  This 6-hourly reanalysis 
dataset is on a 2.5° latitude-longitude grid or approximately a 210 km resolution.  To smooth 
any extremes in the variables, a 10° latitude-longitude  “box” was created and positioned over 
the storm center indicated by the Best Track dataset.  This was to create an average value of the 
variable over the entire area of the storm. 
However, the SST data were available on a weekly time scale on a 1° latitude-longitude grid.  
The grid boxes were adjusted to fit the same area used for the relative humidity and the wind 
shear variables.  The SSTs were derived from a variety of in-situ ship and buoy data, satellites, 
and simulated SSTs for sea ice.  Prior to calculating the database, these parameters were 
adjusted for biases using simulated SSTs described by Reynolds (1988) and Reynolds and 
Marsico (1993) and more information describing the ocean interaction analysis can be found in 
Reynolds and Smith (1994). 
The Oceanic Heat Content (OHC) was obtained from a database constructed by the 
Cooperative Institute for Research in the Atmosphere (CIRA) at Colorado State University.  
This database utilized techniques described by Mainelli et al. (2008) and had the same 1° 
latitude-longitude resolution as the SST reanalysis data.  These data were similarly averaged 
over the storm center to give an average OHC over the entire area of the tropical cyclone.  
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3.2 Methodology 
The hypothesis of this study suggests that more than one regression model, rather than just 
one uniform model, is necessary to accurately forecast hurricane intensity.  By using the 
multiple regression models, it attempts to show the importance of OHC upon rapid 
hurricane intensification.  The statistical-dynamic intensity model used in this study used a 
variety of multiple regression equations to forecast the 24-hour change in the maximum 
sustained winds.  To form the equations, multiple regression analysis was used from a 
climatological database that was formed from the 96 tropical cyclones in the sample.  This 
database was created from the all 12 variables listed in Table 1.  In total, there were 3348 
individual cases.   
Every 6-h time interval for each storm was categorized based upon the current intensity of 
the system: tropical storm, minor hurricane, or major hurricane.  Of the 3348 total cases, 
2633 were tropical storm status, 445 were minor hurricanes (Category 1 or 2 on the Saffir-
Simpson Scale), and 270 major hurricanes (Category 3, 4, or 5). In addition, each time 
interval was divided based upon the future 6-h intensity change: weakening (>5 kts), little 
change (±5 kts), strengthening (>5 kts). Of the 3348 total cases, 697 exhibited future 
weakening intensity, 1857 cases showed little change, and 794 exhibited future 
strengthening characteristics.  Therefore there were nine different categories and sets of 
multiple regression equations to develop.  After each was classified, the multiple regression 
analysis was completed using future 24-hour maximum sustained wind speed change as the 
dependent variable and the 12 variables listed on Table 1 as the independents.  Figure 1 
shows a schematic of the combination of regression equations developed. 
 

 

Fig. 1. Schematic of the nine categories of regression equations 

When constructing the multiple regression equations and climatology database, the future 
6-hour is known. However, when using as a real-time prediction model, obviously the 
future 6-hour intensity change will not be known and a prediction technique must be used.  
Based upon the current characteristics of the variables used in the model, the DFA is then 
used as a prediction method to forecast the future 6-hour intensity change (weakening, little 
change, strengthening). 
The DFA equations were then applied to the same storms in the database to verify their 
selection accuracy. The most discriminating variables between the 9 categories as well as the 
most significant variables could be identified. Sample forecasts were created from the 
regression equations and also applied to the storms in the sample.  Mean error statistics 
were produced so the model could be compared to other statistical models and other official 
forecasts.   
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3.3 Revisions 
The previous method used by Law and Hobgood (2007) used a two-step DFA.  That version 

was used to predict how close the storm was to its rapid intensification period and then 

predict the magnitude of the intensification change.  The first step of the DFA was used to 

predict what status the tropical would eventually become (i.e. tropical storm, minor 

hurricane, or major hurricane).  The second step of the DFA was then used to predict how 

close it was to its RIP (i.e. the 24-h period where the maximum pressure decrease occurred).  

However, the problem with this version was that it could not be used over the entire life 

cycle of the storm. 

The method in this study used a one-step DFA approach, since it used the current status of 

tropical cyclone rather than trying to predict what it “would eventually become”.  The DFA 

was only used to predict the 6-h future intensity increase.  By predicting this parameter, it 

could be applied over the entire life cycle of the storm.  In addition, the other major revision 

was the inclusion of OHC which was not considered in the previous edition.           

4. Regression equations 

As mentioned in Section 3, there were 3348 individual cases.  Table 2 shows the number of 

cases for each of the nine types of regression equations which were created.  A stepwise-

multiple regression technique was performed to create the nine equations in each category.  

Variables that were not significant at the 95% confidence interval were omitted from the 

equation.  For the tropical storm cases, there were 494, 1621, and 518 cases for the future 

weakening, little change, and future strengthening cases, respectively.  For the minor 

hurricane cases, there were 122, 151, and 172 cases for the future weakening, little change, 

and future strengthening cases, respectively.  Finally, for the major hurricane cases, there 

were 81, 85, and 104 for the future weakening, little change and future strengthening cases, 

respectively. 
 

 Tropical 
Storms 

Minor 
Hurricanes 

Major 
Hurricanes 

 

Weakening 494 122 81 697 

Little Change 1621 151 85 1857 

Strengthening 518 172 104 794 

 2633 445 270 3348 

Table 2. Number of cases for each of the nine types of regression equations  

For all 9 equations, the most significant variable is the closest to the y-intercept and 

decreases in significance.  The first three equations are for tropical storms (Equations 1-3).  

Equations 1, 2, and 3 are for future weakening, little change, and future strengthening cases, 

respectively.  The next set of equations (Equations 4-6) is for minor hurricanes.  Likewise, 

Equations 4, 5, and 6 are for future weakening, little change and future strengthening cases, 

respectively.  The last set of equations (Equations 7-9) is for major hurricanes.  Again, 

Equations 7, 8, and 9 are for future weakening, little change, and future strengthening cases, 

respectively.         

 -.219 SST – .155 LAT – .075 LONG -.360 WS +75.478 (1) 
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 .10 LONG -.193 ΔP +.036 RH – .054 ShrMag – .047 WS + .106 ΔWS – .005 Incep - .090 (2) 

 -.296 SST -.146 ShrMag +.071 LONG -.178 CP -.282 LAT -.834 ΔCP + 286.731 (3) 

For the tropical storm cases, wind speed, latitude/longitude, pressure, and sea surface 

temperature were significant variables in predicting the intensification.  OHC was not 

significant for the tropical storms.  This suggests that while the storms are weak, it is not 

necessary to have warm, deep ocean water and that using sea surface temperatures are 

sufficient.   

 .338 LAT -.428 RH -.512 ΔCP -.244 LONG +9.409 (4) 

 .107 CP -104.760 (5) 

 -.654 ShrMag -.072 Incep +.317 LONG -.698 LAT +33.955 (6) 

Similarly, minor hurricanes did not incorporate OHC.  Minor hurricane intensification was 

strongly dependent upon the location (latitude/longitude), either central pressure or the 

change in the pressure, relative humidity, and if it happens to ben strengthening vertical 

wind shear.  Like tropical storms, it suggests that perhaps OHC is not significant when 

forecasting the intensity of minor hurricanes.     

 .272 OHC -1.157 LONG +35.930 (7) 

 -.325 LAT +5.981 (8) 

 -.713 ShrMag -.133 OHC -.094 Incep +.643 LONG +1.860 (9) 

However, with major hurricanes OHC was a very influential variable.  In both the weakening 
and strengthening cases OHC was significant.  Latitude and longitude were significant as well 
as vertical wind shear in strengthening cases.  Since OHC was significant rather than SST, it 
suggested that warm, deep ocean water is important and OHC better represents this 
parameter. 

5. Discriminant function analysis classifications 

The DFA was run on each of the three categories (tropical storms, minor hurricanes, and 

major hurricanes).  This was performed to analyze which variables are the most significant 

in differentiating between groups.  The standardized discriminant function coefficients were 

determined and are listed in Tables 3, 4, and 5 (tropical storms, minor hurricanes, and major 

hurricanes, respectively.  These tables show the relative significance of each variable to 

discriminate among each group. 

OHC was 10th (Table 3) and SST was 3rd showing that SST was more important than OHC 

when discriminating among tropical storms.  Tropical cyclones that tend to remain weak are 

influenced by smaller changes in central pressure and wind speed.  Since tropical storms are 

relatively weak, they do not have deep water upwelling and therefore are not influenced as 

much by OHC. 

However, with minor and major hurricanes (Tables 4 and 5) OHC was more significant than 
SST.  For minor hurricanes (Table 4), OHC was 5th on the list while SST was 11th.  Wind 
 

www.intechopen.com



The Impact of Oceanic Heat Content on the Rapid Intensification of Atlantic Hurricanes   

 

337 

VARIABLE COEFFICIENT 

Wind Speed 0.999 

6-h Change in Central 
Pressure 

0.377 

Sea Surface Temperature -0.327 

6-h Change in Wind Speed -0.281 

Central Pressure 0.279 

Longitude 0.226 

Wind Shear Magnitude 0.153 

Latitude 0.121 

Inception Time 0.065 

Oceanic Heat Content -0.023 

Relative Humidity 0.018 

Wind Shear Direction 0.004 

Table 3. Standardized discriminant function coefficients for tropical storms 

shear, latitude, pressure, and wind speed were the most significant but since OHC was more 

significant than SST, it suggests that deep ocean water becomes more important for these 

stronger systems.  Likewise, the most significant variables for major hurricanes were wind 

speed, pressure and latitude (Table 5).  OHC was again 5th on the list, while SST was 8th in 

significance suggesting that deep, water upwelling occurs and OHC indeed captures this 

parameter better than SST.  Another interesting facet was that wind shear magnitude was 

the most important for minor hurricanes but noticeably lower for major hurricanes.  Since 

major hurricanes exhibit little, if any, vertical wind shear, perhaps this explains the lower 

significance.  On the other hand, minor hurricanes may be experiencing a larger magnitude 

of wind shear, which is what is preventing it from becoming a major hurricane.  

6. Results 

6.1 Classification accuracy and mean values 
After the DFA was run and significant variables were found, the DFA was then applied to 

all 3348 cases to examine the accuracy. The overall classification accuracy for tropical storms 

was 55.4%.  Assuming there was an equal possibility of each of nine scenarios, the DFA 

added skill to the selection (e.g. 55.4% versus 11.1%).  Tropical storm (Table 6) weakening 

cases were classified correctly 69.2% of the time while little change and strengthening cases 

were accurately classified 45.3% and 65.1%, respectively.  Minor hurricane overall 

classification accuracy was 59.3%.  The weakening cases for minor hurricanes were correctly 

classified 51.9%, little change 49.1%, and strengthening cases 77.4% (Table 7).  Overall major 

hurricane overall accuracy was 68.1%.  The weakening cases for major hurricanes were 

correctly classified 72.5%, little change 60.3%, and strengthening cases 68.0% (Table 8).  Since 

the classification accuracy of major hurricanes was better than tropical storms and minor 

hurricanes, it suggests that the characteristics of major hurricanes are more discriminating.  

OHC was one of these key discriminating variables (Table 5) and plays a significant role in 

determining whether major hurricanes will weaken or strengthen. 
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VARIABLE COEFFICIENTS 

Wind Shear Magnitude 0.631 

Latitude 0.429 

Central Pressure 0.392 

Wind Speed 0.296 

Oceanic Heat Content -0.270 

6-h Change in Wind 
Speed 

-0.249 

Longitude 0.240 

Inception Time 0.165 

6-h Change in Pressure 0.122 

Relative Humidity -0.117 

Sea Surface Temperature 0.053 

Wind Shear Direction -0.045 

Table 4. Standardized discriminant function coefficients for minor hurricanes 

 

VARIABLE COEFFICIENTS 

Wind Speed 1.107 

Central Pressure 0.621 

Longitude 0.607 

Latitude 0.586 

6-h Change in Wind 
Speed 

-0.572 

6-h Change in Pressure -0.357 

Oceanic Heat Content -0.346 

Relative Humidity 0.307 

Wind Shear Magnitude 0.268 

Sea Surface Temperature 0.059 

Wind Shear Direction -0.025 

Inception Time -0.007 

Table 5. Standardized discriminant function coefficients for major hurricanes  

However, OHC was not a key discriminating variable for tropical storms and minor 
hurricanes.   It is widely known that as the strength of the hurricane increases, warmer SSTs 
are necessary to support it as the amount of energy extracted from the ocean increases 
(Anthes & Chang, 1978).  Conversely, there is an inverse relationship between vertical wind 
shear and hurricane intensity.  Table 9 shows the mean OHC and wind shear for all 3348 
cases and the different categories of tropical cyclones.  The mean values for OHC and wind 
shear were 27.0 kJ cm-2 and 12.3 m s-1 for tropical storms.  OHC slightly decreased and wind 
shear increased slightly however for Category 1 hurricanes.  Then as the hurricane intensity 
increased, the OHC increased and wind shear decreased as expected.  There was a 
noticeable increase in OHC from Category 3 to Category 4, where it increased from 45.0 kJ 
cm-2 to 66.0 kJ cm-2.  Similarly another large increase took place from Category 4 to Category 
5 (66.0 kJ cm-2 to 81 kJ cm-2).  The large OHC values of major hurricanes (Category 3, 4, and 
5) were dramatically different from the tropical storms and minor hurricanes.  This helps 
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explain why OHC was a key discriminator for major hurricanes but was not as significant 
for tropical storms and minor hurricanes.      
 

        Observed  Predicted Group  

 Weakening (%) Little Change (%) Strengthening (%) 

Weakening 69.2 14.4 16.4 

Little Change 20.7 45.3 34.0 

Strengthening 11.2 23.7 65.1 

Table 6. Classification table showing % classification for tropical storms 

 

Observed  Predicted Group  

 Weakening (%) Little Change (%) Strengthening 
(%) 

Weakening 51.9 30.5 17.6 

Little Change 34.0 49.1 17.0 

Strengthening 5.8 16.8 77.4 

Table 7. Classification table showing % classification for minor hurricanes 

 

Observed  Predicted Group  

 Weakening (%) Little Change (%) Strengthening (%) 

Weakening 72.5 16.9 10.6 

Little Change 14.1 60.3 25.6 

Strengthening 8.0 24.0 68.0 

Table 8. Classification table showing % classification for major hurricanes 

 

 Mean OHC (kJ cm-2) Mean Wind Shear (m s-1) 

Tropical Storm 27.0 12.3 

Category 1 24.0 12.9 

Category 2 40.0 10.4 

Category 3 45.0 9.2 

Category 4 66.0 8.0 

Category 5 81.0 6.1 

Table 9. Mean OHC and Wind Shear for different categories of tropical cyclones 

6.2 Oceanic heat content case studies 
Two of the most powerful, infamous hurricanes that rapidly intensified were Hurricanes 

Ivan (2004) and Katrina (2005).  Both hurricanes achieved Category 5 status and underwent 

a considerable Rapid Intensification Period (RIP).  The OHC was extraordinarily high for 

both events and both hurricanes traveled over the regions of the highest OHC.  Figures 2-9 

show maps of the OHC for Hurricane Katrina.  On Aug. 23, 2005 (Figure 2), Katrina was 

tropical storm status and located near the Bahamas (Green dot).  The OHC near the center of 

the storm was 78 kJ cm-2, which was much higher than usual for tropical storms.  It was 

natural to expect Katrina to intensify considering the conditions.  On Aug. 24, 2005 (Figure 

3), Katrina moved toward the northwest over slightly warmer water (99 kJ cm-2) while 
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maximum sustained winds increased from 30 to 40 kts and the pressure dropped from 1008 

hPa to 1003 hPa.  By the 25th, (Figure 4) Katrina turned west toward Florida, still located 

near high OHC (104 kJ cm-2), and was near hurricane status with winds of 60 kts.  But on the 

26th (Figure 5), Katrina passed over the Everglades in Florida and then into the Gulf where 

slightly cooler waters existed.  The OHC dropped to 55 kJ cm-2, nevertheless Katrina still 

intensified and achieved Category 1 hurricane status due to the nearby extraordinarily high 

OHC.  By the 27th (Figure 6), Katrina was beginning to enter the warm core ring in the Gulf 

of Mexico.  The OHC increased again to 88 kJ cm-2 and winds speeds were 100 kts achieving 

major hurricane (Category 3) status.  Over the next 24 hours (Figure 7), Katrina would 

undergo rapid intensification as it entered the center of the warm core ring with OHC 

values of 123 kJ cm-2.  Maximum sustained winds were 150 kts and was a very strong 

Category 5 hurricane.  It was not until Katrina exited the warm core ring where much lower 

OHC existed that the intensity lowered and the eventual landfall near New Orleans, 

Louisiana to further dissipate (Figures 8 - 10).   

Hurricane Ivan started much farther to the east near the African coast (green dot) on Sep. 2, 

2004.  This area typically has much lower OHC as indicated by the value of 21 kJ cm-2 

(Figure 11).  As Ivan progressed to the west, winds gradually increased to tropical storm 

status, but the OHC was still rather low (22 kJ cm-2) (Figure 12).  The relatively low OHC 

was part of the reason Ivan was slow to initially intensify through the 4th (Figure 13).  Over 

the next 24 hours (Figure 14), Ivan underwent the first rapid intensification period as winds 

suddenly increased to 110 kts (Category 3) and the OHC increased to 52 kJ cm-2.  The winds 

would gradually decrease as Ivan continued toward the west in the Caribbean on the 6th 

(Figure 15) despite high OHC values.  This temporary weakening was likely due to an 

eyewall replacement cycle as it would soon start to re-intensify.  Over the next 4 days, Ivan 

was over relatively high OHC ranging from 58 kJ cm-2 to 91 kJ cm-2 (Figures 16 – 19) as the 

winds would approach Category 4 status.  Then on Sep. 11th (Figure 20), Ivan was located 

just south of Cuba and underwent a second rapid intensification.  Ivan entered extremely 

high OHC values of 127 kJ cm-2 with Category 5 maximum sustained winds of 145 kts.    The 

OHC remained extremely high near Ivan over the 12th and 13th (Figures 21 and 22) which 

would help maintain the intensity at 130 and 140 kts, respectively.  Subsequently on the 14th, 

Ivan exited the high area of OHC into a much cooler area with values of 47 kJ cm-2 (Figure 

23).  As a result the maximum sustained winds gradually decreased to 120 kts.  Ivan passed 

over a small warm core ring in the central Gulf of Mexico on the 15th (Figure 24) and the 

OHC of 96 kJ cm-2 allowed the winds to maintain major hurricane status.  Hurricane Ivan 

would ultimately exit the warm core ring making landfall along the Gulf Coast dissipating 

rapidly on the 16th (Figure 25).                 

6.3 Average error 
The regression equations to forecast the 24 hour maximum wind speeds were applied to 

selected powerful major hurricanes during the 2004-2005 seasons.  Based upon the DFA 

classification, the appropriate regression was applied to forecast the wind speed.  The 

average error for the entire storm track forecast was computed for these tropical cyclones 

and then compared with the National Hurricane Center 24-h official forecast and another 

statistical model SHIFOR5 (Table 10) (Franklin 2005; Franklin 2006).  The statistical model 

exhibited in this study exhibited lower error than SHIFOR5 for all seven selected major  
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Fig. 2. Oceanic Heat Content of Hurricane Katrina, August 23, 2005 at 1800 UTC. 

 

 
 

Fig. 3. Oceanic Heat Content of Hurricane Katrina, August 24, 2005 at 1800 UTC. 
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Fig. 4. Oceanic Heat Content of Hurricane Katrina, August 25, 2005 at 1800 UTC. 

 

 

Fig. 5. Oceanic Heat Content of Hurricane Katrina, August 26, 2005 at 1800 UTC. 
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Fig. 6. Oceanic Heat Content of Hurricane Katrina, August 27, 2005 at 1800 UTC. 

 

 

Fig. 7. Oceanic Heat Content of Hurricane Katrina, August 28, 2005 at 1800 UTC. 
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Fig. 8. Oceanic Heat Content of Hurricane Katrina, August 29, 2005 at 1800 UTC. 

 

 

Fig. 9. Oceanic Heat Content of Hurricane Katrina, August 30, 2005 at 1800 UTC. 
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Fig. 10. Oceanic Heat Content of Hurricane Katrina, August 31, 2005 at 1800 UTC. 

 

 

Fig. 11. Oceanic Heat Content of Hurricane Ivan, September 2, 2005 at 1800 UTC. 
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Fig. 12. Oceanic Heat Content of Hurricane Ivan, September 3, 2005 at 1800 UTC. 

 

 

Fig. 13. Oceanic Heat Content of Hurricane Ivan, September 4, 2005 at 1800 UTC. 
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Fig. 14. Oceanic Heat Content of Hurricane Ivan, September 5, 2005 at 1800 UTC. 

 

 

Fig. 15. Oceanic Heat Content of Hurricane Ivan, September 6, 2005 at 1800 UTC. 
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Fig. 16. Oceanic Heat Content of Hurricane Ivan, September 7, 2005 at 1800 UTC. 

 

 

Fig. 17. Oceanic Heat Content of Hurricane Ivan, September 8, 2005 at 1800 UTC. 
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Fig. 18. Oceanic Heat Content of Hurricane Ivan, September 9, 2005 at 1800 UTC. 

 

 

Fig. 19. Oceanic Heat Content of Hurricane Ivan, September 10, 2005 at 1800 UTC. 
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Fig. 20. Oceanic Heat Content of Hurricane Ivan, September 11, 2005 at 1800 UTC. 

 

 

Fig. 21. Oceanic Heat Content of Hurricane Ivan, September 12, 2005 at 1800 UTC. 
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Fig. 22. Oceanic Heat Content of Hurricane Ivan, September 13, 2005 at 1800 UTC. 

 

 

Fig. 23. Oceanic Heat Content of Hurricane Ivan, September 14, 2005 at 1800 UTC. 
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Fig. 24. Oceanic Heat Content of Hurricane Ivan, September 15, 2005 at 1800 UTC. 

 

 

Fig. 25. Oceanic Heat Content of Hurricane Ivan, September 16, 2005 at 1800 UTC. 
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hurricanes. However, the official intensity forecast from the National Hurricane Center 

(OFCL) did produce more accurate forecasts for Charley, Ivan, Jeanne, and Rita.  It was 

noteworthy that this particular model produced much more accurate intensity forecasts for 

Katrina.  This is likely due to the inclusion of OHC in the major hurricane strengthening 

model.  
      

Selected Storm Average Error (kts) OFCL error (kts) SHF5 (kts) 

Hurricane Charley (2004) 14.5 9.2 14.7 

Hurricane Frances (2004) 9.2 10.4 13.0 

Hurricane Ivan (2004) 11.9 11.7 16.5 

Hurricane Jeanne (2004) 13.6 8.8 14.1 

Hurricane Katrina (2005) 10.8 17.8 28.0 

Hurricane Rita (2005) 18.3 16.2 28.1 

Hurricane Wilma (2005) 17.5 18.2 19.0 

Table 10. 24-h average error for selected tropical cyclones by the statistical intensity model 

7. Conclusion 

This study showed the importance of OHC in the role of rapid intensification of Atlantic 

Hurricanes.  By utilizing a different type of statistical-dynamic model which applies a 

regression model in a particular stage during the life of a hurricane, rather than applying 

one uniform equation, significant variables can be identified.  OHC was identified as such 

during weakening and strengthening cases for major hurricanes. OHC was a better 

discriminating variable than SST for minor and major hurricanes however SST was better 

for tropical storms.  This is likely due to the fact that minor and major hurricanes churn 

deep water and need to extract the energy required to maintain their substantial strength. 

By including OHC in the model and applying it during the weakening and strengthening 

cases for major hurricanes, it produced more accurate 24-h forecasts.  The model was able to 

produce more accurate forecasts than SHIFOR5 for seven major hurricanes during 2004-

2005, most notably Hurricane Katrina.  However, it still did not produce better forecasts 

than all of the official National Hurricane Center forecasts.   

More research needs to be conducted regarding the variables used in the equations to 

improve the accuracy of the regression equations and DFA classification. Additional forecast 

intervals need to be investigated besides short-term 24-h forecasts. In the future, other 

tropical cyclone basins also need to be examined to see how OHC and other parameters 

perhaps vary and influence hurricane intensification.          

8. References 

Anthes, R. A., & Chang, S. W., (1978).  Response of the Hurricane Boundary Layer to 

Changes of Sea Surface Temperature in a Numerical Model. J. Atmos. Sci., 35,  

(1240-1255) 

DeMaria M., & Kaplan J., (1999). An Updated Statistical Hurricane Intensity Prediction 

Scheme (SHIPS) for the Atlantic and Eastern North Pacific Basins.  Wea. Forecasting, 

14, (326-337) 

www.intechopen.com



 Recent Hurricane Research - Climate, Dynamics, and Societal Impacts 

 

354 

DeMaria M., Mainelli M., Shay, L. K., Knaff, J. A., & Kaplan J. (2005). Further Improvements 
to the Statistical Hurricane Intensity Prediction Scheme (SHIPS).  Wea. Forecasting, 

20, (531-543) 
Franklin J. L, (2005).  2004 National Hurricane Center Forecast Verification Report. National 

Hurricane Center, NOAA/NWS/NCEP/Tropical Prediction Center, (1-52) 
Franklin J. L, (2006).  2005 National Hurricane Center Forecast Verification Report. National 

Hurricane Center, NOAA/NWS/NCEP/Tropical Prediction Center, (1-52) 
Goni, G., Kamholz, S., Garzoli, S., &Olson, D., (1996). Dynamics of the Brazil-Malvinas 

Confluence Based on Inverted Echo Sounders and Altimetry, J. Geophys. Res., 
101(C7), (16,273-16,289)  

Gray, W, M., (1968). Global View of the Origin of Tropical Disturbances and Storms. Mon. 

Wea. Rev., 96, (669-700) 
Kalnay, E., and Coauthors, (1996).  The NCEP/NCAR 40-Year Reanalysis Project.  Bull. 

Amer. Meteor. Soc., 77, (437-471) 
Law, K. T., & Hobgood, J. S, (2007). A Statistical Model to Forecast Short-Term Atlantic 

Hurricane Intensity.  Wea. Forecasting., 22, (967-980) 
Leipper, D., & Volgenau, D., (1972). Hurricane Heat Potential of the Gulf of Mexico. J. Phys. 

Oceanogr., 2, (218-224) 
Mainelli, M., DeMaria, M, Shay, L., & Goni, G., (2008). Application of Oceanic Heat Content 

Estimation to Operational Forecasting of Recent Atlantic Category 5 Hurricanes. 
Wea. Forecasting, 23, (3-16) 

McDougall, T., J., (2003).  Potential Enthalpy: A Conservative Oceanic Variable for 
Evaluating Heat Content and Heat Fluxes. J. Phys. Oceanogr., 33, (945-963) 

Palmer, M. D., & Haines, K., (2009).  Estimating Oceanic Heat Content Change Using 
Isotherms. J. Climate, 22, (4953-4969) 

Reynolds R. W., (1988). A real-time global sea surface temperature analysis. J. Climate, 1,  
75-86. 

Reynolds, R. W., & Marsico, D. C., (1993).  An improved real-time global seas surface 
temperature analysis.  J. Climate, 6, (114-119) 

Reynolds, R. W., & Smith, T. M., (1994).  Improved global sea surface temperature analyses.  
J. Climate, 7, (929-948) 

Schade, L. K., & Emmanuel, K. A., (1999).  The Ocean’s Effect on the Intensity of Tropical 
Cyclones: Results from a Simple Coupled Atmosphere-Ocean Model. J. Atmos. Sci., 
56, (642-651) 

Shay L. K., Goni G. J., & Black P. G., (2000).  Effect of a Warm Ocean Ring on Hurricane 
Opal.  Mon Wea. Rev., 128, (1366-1383) 

Shay, L. K., & Brewster, J. K., (2010).  Oceanic Heat Content Variability in the Eastern Pacific 
Ocean for Hurricane Intensity Forecasting. Mon. Wea. Rev., 138, (2110-2131)   

Wada, A., & Usui, N., (2007).  Importance of Tropical Cyclone Heat Potential for Tropical 
Cyclone Intensification in the Western North Pacific. J. of Oceanography, 63, 3,  
(427-447) 

Zebiak, S. E., (1989). Oceanic Heat Content Variability and El Niño Cycles. J. Phys. Oceanogr., 
19, (475-486) 

www.intechopen.com



Recent Hurricane Research - Climate, Dynamics, and Societal
Impacts
Edited by Prof. Anthony Lupo

ISBN 978-953-307-238-8
Hard cover, 616 pages
Publisher InTech
Published online 19, April, 2011
Published in print edition April, 2011

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

This book represents recent research on tropical cyclones and their impact, and a wide range of topics are
covered. An updated global climatology is presented, including the global occurrence of tropical cyclones and
the terrestrial factors that may contribute to the variability and long-term trends in their occurrence. Research
also examines long term trends in tropical cyclone occurrences and intensity as related to solar activity, while
other research discusses the impact climate change may have on these storms. The dynamics and structure
of tropical cyclones are studied, with traditional diagnostics employed to examine these as well as more
modern approaches in examining their thermodynamics. The book aptly demonstrates how new research into
short-range forecasting of tropical cyclone tracks and intensities using satellite information has led to
significant improvements. In looking at societal and ecological risks, and damage assessment, authors
investigate the use of technology for anticipating, and later evaluating, the amount of damage that is done to
human society, watersheds, and forests by land-falling storms. The economic and ecological vulnerability of
coastal regions are also studied and are supported by case studies which examine the potential hazards
related to the evacuation of populated areas, including medical facilities. These studies provide decision
makers with a potential basis for developing improved evacuation techniques.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Kevin Law (2011). The Impact of Oceanic Heat Content on the Rapid Intensification of Atlantic Hurricanes,
Recent Hurricane Research - Climate, Dynamics, and Societal Impacts, Prof. Anthony Lupo (Ed.), ISBN: 978-
953-307-238-8, InTech, Available from: http://www.intechopen.com/books/recent-hurricane-research-climate-
dynamics-and-societal-impacts/the-impact-of-oceanic-heat-content-on-the-rapid-intensification-of-atlantic-
hurricanes

www.intechopen.com



www.intechopen.com



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and
derivative works building on this content are distributed under the same
license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

