
http://ijfr.sciedupress.com International Journal of Financial Research Vol. 12, No. 3, Special Issue; 2021 

Published by Sciedu Press                        1                           ISSN 1923-4023  E-ISSN 1923-4031 

Half Century of Gold Price: Regime-Switching and Forecasting 

Framework 

Nguyen Bao Anh1 & Yiqiang Q. Zhao2 
1 Dong Nai Technology University, Vietnam 
2 Carleton University, Canada 

Correspondence, Nguyen Bao Anh, Dong Nai Technology University, Vietnam; Carleton University, Canada. E-mail: 
baoanh.nguyen@carleton.ca 

 

Received: October 6, 2020          Accepted: December 12, 2020         Online Published: January 11, 2021 

doi:10.5430/ijfr.v12n3p1                         URL: https://doi.org/10.5430/ijfr.v12n3p1 

 

Abstract 

This paper studies the history of gold price in the international context using Markov-switching models. The 
literature surrounding the Markov-switching model is reviewed from the earliest iterations of Hamilton to recent 
developments. We show applicability of Markov stochastic process in forecasting commodity prices; in particular, 
the gold spot price. The research imposes the features of Markov regime-switching models, considering gold as a 

financial asset to offer a comprehensive methodology for forecasting commodity price. The paper discovers that 
applying Markov regime-switching could significantly improve the forecast abilities in commodity prices. Analysis 
of the model outcome indicates that the abnormal increases of gold price in history always resulted from special 
economic conditions. This study makes a novel contribution to the field by demonstrating that the impact of CPI 
change to gold price is subject to the regimes, which is more sophisticated than what has been commonly accepted in 
economics literature to date. 
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1. Introduction 

1.1 Economic Conditions and Questions on Regimes 

In the first half of 2020, we observed extraordinary socio-economic situations and indicators of economic 
development. The economic growth rate of Canada was projected to be between 1.6 to 1.8% in 2020 (Source: 
Conference Board of Canada https://www.conferenceboard.ca/topics/economics) but turned out to have an actual 
drop to annualized -2.1% in the first quarter (Source: Statistics Canada https://www150.statcan.gc.ca). 

The Canadian oil patch faced the worst crisis in its history due to a confluence of factors, including a collapse in 
demand for all types of fuel caused by the Covid-19 shut down, and an unprecedented oil surplus due to the failure of 
the Organization of Petroleum Exporting Countries and their allies to reach an agreement on new production quotas 
until late April. The negative oil price in April, which shocked the statisticians, economists, and even computer 
application programmers, those who set positive value constraints for transaction price in software.  

The appreciation of precious metals and stock indexes was also observed. The gold spot price reached 1,715.90 
USD/ounce, which is the highest price since the end of 2015 where it stood at 1,060.00 USD/ounce. Supposing that 
one bought and held gold from that year, it would be possible to see a gain of 70% from the initial investment. The 
Bank of America projected that the Covid-19 pandemic would drive gold to a lofty record by October 2021. The 
average gold price in 2020 would reach 1,695 USD/ounce before the soaring demand pushes it to 2,063 USD/ounce 
the following year (Source: https://www.msn.com/en-au/money/markets/). Above all, gold and other natural resource 

commodities in normal economic circumstances remain volatile as an individual asset. In a larger perspective, the 
downturn has affected all aspects of Canada’s economy, though some sectors have been particularly hard hit in a 
manner equivalent to the 2008-09 financial crisis. 

The interesting question emerging from these concerns how statisticians, economists, and researchers, among others, 

can detect the different behaviors of socio-economic data in times of crisis. Naturally, we consider the potential 
methodologies that could learn and analyze the changes of states in the past, apply the different parameters in 
different periods and estimate the possibility to switch between states in the forecast models. Markov 
Regime-switching would give us a possibility to detect different regimes throughout the history. 

In times of crisis, while stock markets crash in general, some physical assets turn out to be on the top of the list of 
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items that investors would like to hold for maintaining their value in their portfolios. Precious metals such as gold, 
silver, and platinum are always in an investors mind. There is the obvious implication that the stocks of precious 

metal miners and producers would appreciate because their products bring increased profits. Another advantage of 
gold stock is that they are subject to depreciation and appreciation like other stocks. So, if there is a positive change 
in stock values, driven by either an increase in gold prices or market shocks, gold mining stocks go up. Because these 
appreciate like stocks, the extent of appreciation can be even more significant. That increases the justification for 
researchers and scholars to develop the application of Markov regime-switching in forecasting models on the price 
and returns of gold in the international or in a particular market. 

1.2 Background 

First introduced in 1989 in the seminal work of Hamilton, Markov switching models are a well-studied family of 
models in probability theory imposing time-varying parameters in different periods of time, known as state or 
regime-specific values. Statistically, this time-variation is governed by a discrete-valued latent stochastic process in 
the past. Specifically, as a feature of the Markov chain, the current value of the state is determined only by its value 
from the immediate previous period, and the transition probability matrix known as a system of dynamic 
transformation. The transition probability matrix regulates the properties of the Markov process by determining the 
probability that each of the states can be visited in the next period given the current state. The estimates of the 
transition probability entries and the matrix can be evaluated using filtering and smoothing methods as well as the 
estimation of state-specific parameters. These two features make it possible to have improved interpretations of the 
parameters associated with specific regimes combined with the corresponding regime probabilities, as well as for 
improved forecasting of performance based on persistent regimes and parameters characterizing them. 

The characteristics of the physical gold commodity are high liquidity, consumption, and convenient value storage. It 
is also a homogenous good which can be easily converted in transactions or by contracts. Therefore, not surprisingly, 
gold has a special position among other precious metals as an investment item and a type of currency to prevent 
inflation. Previous studies in the literature provide limited evidence that the fluctuation of the gold market is affected 
by the same macroeconomic factors as is the case for other metals (in the paper Trends of Base Metals Prices (Note 

1), we showed that macroeconomic factors such as technological progress, resource scarcity, natural resource taxes, 
and interest rates are the determinants of base metal price). The risk-mitigating features of gold have been discussed 
adequately in the literature, which has noted the increasingly important role played by gold as a hedge against 
inflation. 

Practically, gold price forecasting is performed by an average prediction of a diverse panel of experts and gold 
market analysts. Their assessments of gold price trends are based on a variety of methods including expert technical 
analysis, market fundamentals, current market sentiment, and an analysis of global economic and political events 
(Note 2). 

In Figure 1 below we can see how the gold spot price in major currencies changes throughout history (Note 3). In 
some periods, the price of gold in CAD and USD are quite close (from 2005 to 2013), while in others (from 2015 to 
2020 or from 1980 to 1990) there are a gap between their co-movements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Gold price in major currencies 
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Gold price moves in the opposite direction of inflation. This reflects the basic function of gold as an asset insofar as 

it stores value against inflation. Through a macroeconomics foundation, the relationship between a pair of currencies, 

or in other words, the exchange rate, depends on six factors: Differentials in Inflation, Differentials in Interest Rates, 

Current Account Deficits, Public Debt, Terms of Trade, and Strength of Economic Performance. 

All the factors and relationships among them impacting hundreds of economies around the world suggest that it is 

not realistic to build a model capable of accounting for such an extensive number of determinants. In the present 

document we use the gold prices in another currency (USD) and Consumer Price index to predict the price in CAD. 

This model reflects the reality that Canada is not a major consumer of gold and that the gold price in CAD depends 

on the tendencies of markets in other economies. 

The study of gold price and returns benefits investors of gold stocks, except for physical gold. When an investor 

selects a gold stock, he or she is not buying an amount of physical gold, gold bullion or gold coins. Consider, for 

example, mining stocks. The benefit is quick gains if the mining stocks perform well as for-profit economic entities. 

In a relative interaction, physical gold is better suited for anti-inflation investments. If we are investing in miners, we 

are investing in gold mining stocks, and therefore in particular companies. We assume that they are well managed as 

the standard in the industry. Indeed, one stock presents for the financial health or profit of one particular company. 

This research also refers to the index of gold stock in NYSE to study and illustrate the implication. 

It may be of interest to commodity investors and stock exchanges that the price of gold would impact the indices of 

gold stock. If gold price is high, then the gold mines would gain better profits and hence, the stock price would 

increase. Figure 2 shows the co-movement of gold price in USD and the HUI, XAU indices - the two most 

well-known gold indices in the financial markets (Note 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Indices of gold stocks vs. gold price in USD 

 

1.3 Main Contributions 

This study involves literatures on Statistics of Financial Markets: Markov Chain, Auto-regression, and 

Regime-switching models. We illustrate applications of Markov regime-switching models in an analysis of historical 

gold price, using the availability of data from the World Gold Council. The following are the major contributions of 

the work to literature: It contributes to the understanding of the development in Markov-switching Models studies, 

and their applications in forecasting works. The research provides a novel contribution, according to our best 

knowledge, introducing and presenting a forecasting model for gold spot price using the Markov Regime-switching 

auto-regression and the selected exogenous variables: USD value and CPI change. We discover that, changes in CPI 

impact gold price in a sophisticated manner, subject to the regimes. In doing so we show that applying Markov 

regime-switching could significantly improve the forecast abilities in commodity prices. The study also analyzes the 

periods of time that gold price switches; abnormal increases of gold price always result from special economic 

conditions. The main results are interpreted and presented, together with proposals for potential future research. The 

study offers novel results for forecasting a particular type of asset in financial theory or fundamental statistics. 
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1.4 Organization 

The remaining portion of the paper is organized as follows: Part 2 reviews theoretical background, concepts, and 

methods for estimating the models’ parameters. We systematize the literature of Markov regime-switching models 

and summarize the development of studies in the field. Part 3 compares popular models and our MS auto-regression 

model on gold price forecasting works. Part 4 concludes and discusses potential research to fully capture these 

concepts in future research. The Appendices list abbreviations and symbols to be used in the paper. 

2. Literature Review 

2.1 Markov Chain & Regime-Switching 

Regime-switching models are the models that can characterize time series properties in different regimes. Models in 

which the switching among regimes occurs stochastically according to a Markov process are called Markov 

regime-switching models or Markov switching models (MS, MSM) for short. 

We start with the definitions of basic terms and concepts that will be used to develop a unified approach for building 

our Markov switching model. Only the concepts of relevant terms are defined in this section because there are 

sufficient definitions in textbooks and in the literature. 

2.1.1 Definitions and Concepts 

In the below definitions, the state of a stochastic process 𝑆𝑡 , 𝑡 = 0,1,… at time t is the value of 𝑆𝑡 , denoted by 𝑠𝑡 , 
indexed in its value space by 𝑖, 𝑗. 

Definition 2.1: Markov Chain 

A discrete time Markov chain is defined as a stochastic process 𝑆𝑡 , 𝑡 = 0,1,… such that, at all time t, the probability 

of the future state 𝑆𝑡+1, is only dependent on the present state and independent of the past states, that is:  

𝑃(𝑆𝑡+1 = 𝑗|𝑆𝑡 = 𝑖𝑡 , … , 𝑆1 = 𝑖1, 𝑆0 = 𝑖0) = 𝑃(𝑆𝑡+1 = 𝑗|𝑆𝑡 = 𝑖𝑡) 

This probability, denoted by 𝑝𝑖𝑗 , is the transition probability from 𝑖 to 𝑗, the probability that the state will next be j 

when the current state is 𝑖. 

Definition 2.2: Transition Probability Matrix 

𝑷𝒌𝒌 = [

𝑝1,1 ⋯ 𝑝1,𝑘
⋮ ⋱ ⋮

𝑝𝑘,1 ⋯ 𝑝𝑘,𝑘
] 

The Transition Probability Matrix of k states is a matrix whose (i,j)-entry is the transition probability to state j given 

the previous state is i. 

The multi-step transition probabilities can be calculated recursively. In general, the 𝑛 −step transition probability is  

𝑃*𝑆𝑡+𝑛 = 𝑗|𝑆𝑡 = 𝑖+ = 𝑃𝑖𝑗
𝑛                                  (1) 

This leads to the formula for calculating the multi-step transition probability, from state i to state j via state k, known 

as Chapman-Kolmogorov equation. 

Theorem 2.1: Chapman-Kolmogorov equation  

𝑃𝑖𝑗
𝑚+𝑛 = ∑ 𝑁

𝑘=1 𝑃𝑖𝑘
𝑛𝑃𝑘𝑗

𝑚 𝑖, 𝑗 = 1,2,…𝑁                             (2) 

The following properties of stochastic matrices hold: 

Lemma: Properties of Transition Probability Matrix 

• All entries take values in the range [0,1], and each row sums to 1.  

• The Markov chain is homogeneous in the sense that the (i, j)-entry of the transition probability matrix gives 

the probability that the process moves from the 𝑖𝑡 state to the 𝑗𝑡 state during the next step of the process, 

independent of time.  

• The probability vector after n steps of a Markov chain is P
n ⃗, where  ⃗ is the initial probability vector and 

P is the transition probability matrix. A limit vector for a Markov chain is always a fixed point (a vector  ⃗ 

such that P ⃗ =  ⃗). 

Example: Assuming that we have two regimes (or states), representing the normal condition of the economy and the 

economy in crisis time. Then, the transition matrix is given by: 
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𝑷𝒌𝒌 = |
𝑝1,1 𝑝1,2
𝑝2,1 𝑝2,2

| 

where 𝑝1,1 + 𝑝1,2 = 1 and 𝑝2,1 + 𝑝2,2 = 1, and 

𝑷𝒌𝒌 = |
𝑃𝑁𝑜𝑟𝑚𝑎𝑙𝑎𝑡𝑡+1|𝑁𝑜𝑟𝑚𝑎𝑙𝑎𝑡𝑡 𝑃𝐶𝑟𝑖𝑠𝑖𝑠𝑎𝑡𝑡+1|𝑁𝑜𝑟𝑚𝑎𝑙𝑎𝑡𝑡

𝑃𝑁𝑜𝑟𝑚𝑎𝑙𝑎𝑡𝑡+1|𝐶𝑟𝑖𝑠𝑖𝑠𝑎𝑡𝑡 𝑃𝐶𝑟𝑖𝑠𝑖𝑠𝑎𝑡𝑡+1|𝐶𝑟𝑖𝑠𝑖𝑠𝑎𝑡𝑡
| 

As an illustration, we would follow these steps to compute the transition matrix to model the transition between the 

normal condition and crisis time: Suppose that there are 200 observations, of which 125 observations show that they 

keep remaining in normal condition, 5 observations exhibit the shift from normal condition to crisis time, 60 

observations move from crisis to normal, and 10 observations show that they remain in crisis given that the previous 

period of time is in crisis. 

The frequencies, or the numbers of observations for the different transitions: 

𝑶𝒌𝒌 = |125 05
60 10

| 

We then normalize the rows such that their sum is equal to 1: 

𝑷𝒌𝒌 = |0.962 0.038
0.875 0.143

| 

In this example, the probability of switching from regime 1 normal condition to regime 2 crisis time is 3.8%, the 

probability of staying in crisis is 14.3% if the previous state is crisis. 

Definition 2.3: Conditional, Filtered, and Smoothing Probabilities 

Conditional probability is the probability that 𝑆𝑡  take the value 𝑠𝑡  based on the information prior to time t (i.e 

𝑡 − 1), Filtering probability is the probability that 𝑆𝑡  take the value 𝑠𝑡  based on the information in the past and 

current information, and Smoothing probability is the probability that 𝑆𝑡  take the value 𝑠𝑡  based on the full sample 

information. 

That is  

𝑃conditional = 𝑃(𝑆𝑡 = 𝑠𝑡|Ω𝑡−1)                                (3) 

𝑃filtered = 𝑃(𝑆𝑡 = 𝑠𝑡|Ω𝑡) 

𝑃smoothing = 𝑃(𝑆𝑡 = 𝑠𝑡|Ω𝑇) 

In this paper we study estimation methods using the maximum likelihood function. To assess the likelihood of the 

state variable 𝑆𝑡 , it is critical to evaluate its optimal forecasts (conditional expectations) of 𝑆𝑡 = 𝑠𝑡, based on 

different information sets. These forecasts include the predictions of 𝑃𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 , 𝑃𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 , and 𝑃𝑠𝑚𝑜𝑜𝑡𝑖𝑛𝑔 .  

To estimate the parameters of the Markov-switching model we consider the joint conditional probability of each 

future state, as a function of the joint conditional probabilities of current states and the transition probabilities.  

Definition 2.4: Filtering Process 

A filtering process, with a system of dynamic transformation, is a process where the input is the conditional 

probabilities of the current states. The system of dynamic transformation is the transition probability matrix. The 

output is the conditional probability of future states. 

That is  

𝑃(𝑆𝑡 = 𝑠𝑡|𝑦𝑡−1) = 𝑃(𝑆𝑡 = 𝑠𝑡|𝑆𝑡−1 = 𝑠𝑡−1) × 𝑃(𝑆𝑡−1 = 𝑠𝑡−1|𝑦𝑡−1)                   (4) 

where the output 𝑃(𝑆𝑡 = 𝑠𝑡|𝑦𝑡−1) is the conditional probability of being in state 𝑠𝑡  given information at 𝑡 − 1. 

The input 𝑃(𝑆𝑡 = 𝑠𝑡|𝑆𝑡−1 = 𝑠𝑡−1) stands for the conditional probabilities of the current states. The system of 

dynamic transformation 𝑃(𝑆𝑡−1 = 𝑠𝑡−1|𝑦𝑡−1) is the transition probability matrix. 

2.1.2 Estimating Parameters 

The parameters of the system can be estimated by solving the maximizing likelihood function problem. The 

likelihood function is the probability density of the data, viewed as a function of the parameters, takes the dataset as 

a given. The conditional likelihood function is the product of conditional probability density functions. Consider a 

two-state model with a Markov chain process: 𝑦𝑡 = ∑ 𝑘
𝑖=1 𝐼𝑖�⃗�𝑖 + 𝜀𝑡 , where 𝑖 ∈ ,1,2-, 𝐼𝑖 = 1  in state i and 0 
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otherwise, and 𝜀𝑡  is a white noise residual. We want to evaluate the conditional probability 𝑃(𝑆𝑡 = 𝑠𝑡|𝑦𝑡−1), which 

is the probability of being in state 𝑠𝑡  given the information available at time 𝑡 − 1. Using the transition probability 

and its properties, this task is quite possible by the filtering process and equation (4). Eventually we are able to 

estimate the filtering probability, the probability of being in state 𝑠𝑡 , 𝑃(𝑆𝑡|𝑦𝑡) by imposing the information we know 

at time 𝑡. 

The joint density distribution of 𝑦𝑡 and 𝑆𝑡   

 𝑓(𝑦𝑡, 𝑆𝑡 = 𝑠𝑡|𝑦𝑡−1) = 𝑓(𝑦𝑡|𝑆𝑡 = 𝑠𝑡 , 𝑦𝑡−1) × 𝑃(𝑆𝑡 = 𝑠𝑡|𝑦𝑡−1) 

 = 𝑓(𝑦𝑡|𝑆𝑡 = 𝑠𝑡 , 𝑦𝑡−1) × 𝑃(𝑆𝑡 = 𝑠𝑡|𝑆𝑡−1 = 𝑠𝑡−1) 

 × 𝑃(𝑆𝑡−1 = 𝑠𝑡−1|𝑦𝑡−1) 

The density distribution of 𝑦𝑡  

 𝑓(𝑦𝑡|𝑦𝑡−1) = ∑ 2
𝑠𝑡=1

𝑓(𝑦𝑡 , 𝑆𝑡 = 𝑠𝑡|𝑦𝑡−1) (5) 

The updated joint probability of 𝑦𝑡 and 𝑆𝑡  is  

 𝑃(𝑆𝑡 = 𝑠𝑡|𝑦𝑡) =
𝑓(𝑦𝑡,𝑆𝑡=𝑠𝑡|𝑦𝑡−1)

𝑓(𝑦𝑡|𝑦𝑡−1)
 (6) 

In reality we are facing many forecasting problems that have more than two states. They can be solved generally by 

an auto-regressive intergrated moving average with exogenous variables model where the data series is 

auto-regressive of order 𝑝 with exogenous variables 𝑥𝑖𝑡 (ARIMAX). Let Ω𝑡−1 denote the available information 

set 𝑥𝑘 , 𝑦𝑘, 𝑘 = 𝑡 − 1, 𝑡 − 2,… , 𝑡 − 𝑝. The strategy to estimate the model’s parameters is well studied in the literature 

(for example, Hamilton, 1989, and Wang, 2002). Considering the data series as a Markov chain process, then the 

joint conditional probability of the current state and p previous states is 

 𝑃(𝑆𝑡 = 𝑠𝑡 , 𝑆𝑡−1 = 𝑠𝑡−1, … , 𝑆𝑡−𝑝 = 𝑠𝑡−𝑝|Ω𝑡−1) (7) 

The joint density distribution of 𝑦𝑡 and 𝑆𝑡  is  

 𝑔(𝑦𝑡 , 𝑆𝑡 = 𝑠𝑡 , 𝑆𝑡−1 = 𝑠𝑡−1, … , 𝑆𝑡−𝑝−1 = 𝑠𝑡−𝑝−1|Ω𝑡−1) 

 = 𝑔(𝑦𝑡 , 𝑆𝑡 = 𝑠𝑡 , 𝑆𝑡−1 = 𝑠𝑡−1, … , 𝑆𝑡−𝑝−1 = 𝑠𝑡−𝑝−1, Ω𝑡−1) 

 × 𝑃(𝑆𝑡 = 𝑠𝑡 , 𝑆𝑡−1 = 𝑠𝑡−1, … , 𝑆𝑡−𝑝−1 = 𝑠𝑡−𝑝−1|Ω𝑡−1) 

 = 𝑔(𝑦𝑡 , 𝑆𝑡 = 𝑠𝑡 , 𝑆𝑡−1 = 𝑠𝑡−1, … , 𝑆𝑡−𝑝−1 = 𝑠𝑡−𝑝−1, Ω𝑡−1) 

 × 𝑃(𝑆𝑡 = 𝑠𝑡|𝑆𝑡−1 = 𝑠𝑡−1) × 𝑃(𝑆𝑡−1 = 𝑠𝑡−1, … , 𝑆𝑡−𝑝−1 = 𝑠𝑡−𝑝−1|Ω𝑡−1) 

The density distribution of 𝑦𝑡  

 𝑔(𝑦𝑡|Ω𝑡−1) = ∑ 𝑘
𝑠𝑡=1

∑ 𝑘
𝑠𝑡−1=1

…∑ 𝑘
𝑠𝑡−𝑝=1

𝑓(𝑦𝑡, 𝑆𝑡 = 𝑠𝑡 , 𝑆𝑡−1 = 𝑠𝑡−1, … , 𝑆𝑡−𝑝−1 = 𝑠𝑡−𝑝−1, Ω𝑡−1) 

The updated joint probability of 𝑦𝑡 and 𝑆𝑡  at time t  

 𝑃(𝑆𝑡 = 𝑠𝑡|𝑦𝑡) =
𝑔(𝑦𝑡,𝑆𝑡=𝑠𝑡,𝑆𝑡−1=𝑠𝑡−1,…,𝑆𝑡−𝑝−1=𝑠𝑡−𝑝−1|Ω𝑡−1)

𝑔(𝑦𝑡|Ω𝑡−1)
 

The summation over the states at lag p is just the output of the filter 

 𝑃(𝑆𝑡 = 𝑠𝑡 , 𝑆𝑡−1 = 𝑠𝑡−1, … , 𝑆𝑡−𝑝 = 𝑠𝑡−𝑝|Ω𝑡) = ∑ 𝑁
𝑠𝑡−𝑝−1=1

𝑃(𝑆𝑡 = 𝑠𝑡 , 𝑆𝑡−1 = 𝑠𝑡−1, … , 𝑆𝑡−𝑝−1 = 𝑠𝑡−𝑝−1|Ω𝑡) 

The probability of the states at time t is obtained  

 𝑃(𝑆𝑡 = 𝑠𝑡|Ω𝑡) = ∑ 𝑁
𝑠𝑡=1

∑ 𝑁
𝑠𝑡−1=1

…∑ 𝑁
𝑠𝑡−𝑝=1

𝑃(𝑆𝑡 = 𝑠𝑡 , … , 𝑆𝑡−𝑝−1 = 𝑠𝑡−𝑝−1|Ω𝑡) (8) 

The likelihood function, where �⃗� denotes the vector of the set of parameters,  

 𝐿(�⃗�) = ∏ 𝑇
𝑡=1 𝑔(𝑦𝑡|Ω𝑡−1; �⃗�) (9) 

Logarithmizing the likelihood function yields  

 ℒ(�⃗�) = ∑ 𝑇
𝑡=1 𝑙𝑜𝑔𝑔(𝑦𝑡|Ω𝑡−1; �⃗�) (10) 

Solving the problems of maximizing the likelihood function, yields the MLE for parameters �⃗�. For simplicity we 

illustrate the two-state Markov chain process of equation 𝑦𝑡 = ∑ 𝑘
𝑖=1 𝐼𝑖 ∗ �⃗�𝑖 + 𝜀𝑡: 𝑖 = 1, 2.  Let 
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𝑃𝑡𝐿(1) = 𝑃(𝑆𝑡−1 = 1|𝑦𝑡−1) and 𝑃𝑡𝐿(2) = 𝑃(𝑆𝑡−1 = 2|𝑦𝑡−1). Assuming that the residual is normally distributed, 

then the maximum log-likelihood function is 

 𝐿(�⃗�) = ∑ 𝑇
𝑡=1 𝑓(𝑦𝑡|Ω𝑡−1; �⃗�) 

 = ∑ 𝑇
𝑡=1 ∑ 2

𝑠𝑡=1
𝑓(𝑦𝑡|𝑆𝑡 = 𝑠𝑡 , 𝑦𝑡−1; �⃗�) × 𝑃(𝑆𝑡 = 𝑠𝑡|𝑦𝑡−1) 

 = ∑ 𝑇
𝑡=1 ∑ 2

𝑠𝑡=1
∑ 2
𝑠𝑡−1=1

*𝑓(𝑦𝑡|𝑆𝑡 = 𝑠𝑡 , 𝑦𝑡−1; �⃗�) 

 × 𝑃(𝑆𝑡 = 𝑠𝑡|𝑆𝑡−1 = 𝑠𝑡−1) × 𝑃(𝑆𝑡−1 = 𝑠𝑡−1|𝑦𝑡−1)+ 

 = ∑ 𝑇
𝑡=1 *

1

√2𝜋𝜎
exp,

−(𝑦𝑡−𝜇1)
2

2𝜎2
- × ,𝑝11 × 𝑃1𝐿(1) + 𝑝21 × 𝑃𝑡𝐿(2)- 

 +
1

√2𝜋𝜎
exp,

−(𝑦𝑡−𝜇2)
2

2𝜎2
- × ,𝑝21 × 𝑃𝑡𝐿(1) + 𝑝22 × 𝑃𝑡𝐿(2)-+ 

where 𝜇1, 𝜇2 are the mean values of 𝑦𝑡 in the two states. 

Smoothing process considers the whole data available to estimate the parameters. At time t we have a set of 

information about what happened until the last period 𝑡 − 1, which we base our estimate for state 𝑆𝑡 . Whenever the 

new information arrives, we take the chance to update the estimated 𝑆𝑡 . We can also use the information at time 

𝑡 + 1 or further in the future to smooth the data series. The smoothing process revises 𝑃(𝑆𝑡 = 𝑠𝑡|Ω𝑡) to reflect the 

most accurate estimate possible. Denote the revised smoothing probability by 𝑃(𝑆𝑡 = 𝑠𝑡|Ω𝑇) 

 𝑃(𝑆𝑡−𝑝 , … , 𝑆𝑡 , 𝑆𝑡+1|Ω𝑇) = 𝑃(𝑆𝑡−𝑝+1, … , 𝑆𝑡 , 𝑆𝑡+1|Ω𝑇) × 𝑃(𝑆𝑡−𝑝|𝑆𝑡−𝑝+1, … , 𝑆𝑡+1, Ω𝑇) 

 = 𝑃(𝑆𝑡−𝑝, … , 𝑆𝑡+1|Ω𝑇) = 𝑃(𝑆𝑡−𝑝+, 𝑆𝑡−𝑝, … , 𝑆𝑡+1|Ω𝑇) × 𝑃(𝑆𝑡−𝑝|𝑆𝑡−𝑝+1, … , 𝑆𝑡+1, Ω𝑡) 

 =
𝑆𝑡−𝑝+1,…,𝑆𝑡,𝑆𝑡+1|Ω𝑇)×𝑃(𝑆𝑡−𝑝,𝑆𝑡−𝑝+1,…,𝑆𝑡,𝑆𝑡+1,Ω𝑡)

𝑃(𝑆𝑡−𝑝+1,𝑆𝑡−𝑝,…,𝑆𝑡,𝑆𝑡+1|Ω𝑡)
 

 =
𝑆𝑡−𝑝+1,…,𝑆𝑡,𝑆𝑡+1|Ω𝑇)×𝑃(𝑆𝑡−𝑝,𝑆𝑡−𝑝+1,…,𝑆𝑡,𝑆𝑡+1,Ω𝑡)×𝑃(𝑆𝑡+1|𝑆𝑡

𝑃(𝑆𝑡−𝑝+1,𝑆𝑡−𝑝,…,𝑆𝑡,𝑆𝑡+1|Ω𝑡)
 

Assuming that the probability density function remains unchanged, or approximating over the two consequent 

periods 𝑡 − 𝑝 to 𝑡 − 𝑝 + 1, that is  

 𝑓(𝑦𝑡+1, Ω𝑇𝑡|𝑆𝑡−𝑝 , 𝑆𝑡−𝑝+1, … , 𝑆𝑡 , 𝑆𝑡+1, Ω𝑡) ≈ 𝑓(𝑦𝑡+1, Ω𝑇𝑡|𝑆𝑡−𝑝+1, … , 𝑆𝑡 , 𝑆𝑡+1, Ω𝑡) (11) 

where Ω𝑇𝑡 = Ω𝑇 − Ω𝑡 then the second equality holds, meaning that we will have 

 𝑃(𝑆𝑡−𝑝|𝑆𝑡−𝑝+1, … , 𝑆𝑡 , 𝑆𝑡+1, Ω𝑇) = 𝑃(𝑆𝑡−𝑝|𝑆𝑡−𝑝+1, … , 𝑆𝑡 , 𝑆𝑡+1, Ω𝑡) (12) 

Now summing over 𝑆𝑡+1 = 1,2,…𝑁 we obtain the probabilities of visiting 𝑠𝑡−𝑝 , … , 𝑠𝑡, given the whole sample: 

 𝑃(𝑆𝑡−𝑝, … , 𝑆𝑡|Ω𝑇) = ∑ 𝑁
𝑆𝑡+1=1

𝑃(𝑆𝑡−𝑝, … , 𝑆𝑡 , 𝑆𝑡+1|Ω𝑇) (13) 

These are the smoothed states given no serial correlation. In the cases where there are no lags 𝑦𝑡 involved, we 

obtain the smoothing probability 

 𝑃(𝑆𝑡|Ω𝑇) = ∑ 𝑁
𝑆𝑡=1

∑ 𝑁
𝑆𝑡−1=1

…∑ 𝑁
𝑆𝑡−𝑝=1

𝑃(𝑆𝑡 , … , 𝑆𝑡−𝑝|Ω𝑇) (14) 

That implies that 𝑃(𝑆𝑡|Ω𝑇) is equal the summation over all probabilities in states 𝑆𝑡  to 𝑆𝑡−𝑝 in the whole space of 

state values. 

2.2 Empirical Literature Review 

We can divide the literature of Markov-switching models into two periods: from its introduction until the year 2000, 

it played a major role in solving problems in business cycle and financial research; after 2000, interest in switching 

models became broader with applications in technical issues and complex models of regime-switching.  

Within the scope of this research, we review some notable studies and applications. 

2.2.1 Literature of the Field From 1989 to 2000 

Initially originating from the publications of Hamilton (1989, 1990), Markov switching models have drawn much 

attention in technical, financial, and economic data series analysis. In the long run there are changes in business 

environment, behaviors of customers or even the natural conditions. Collectively, these movements can be defined as 
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regime shifts, where the parameters of the process changed. The Markov switching model exhibits more than one 

state or regime; it can present the dynamic process of the studied variables and shows us how these variables are 

evolving over times, and hence, gives us the perspective of the process in the future. Probably most of the applied 

research is in business cycles where recent studies are still burgeoning. In the time of digital electronic devices 

booming with the availability of large datasets, the Markov switching model has been widely applied because there 

are more chances to discover different regimes in historical data (Hamilton, 1989). 

Sola, Martin and Driffill, and Edward (1994), tested the term structure of interest rates using a stationary vector 

auto-regression with regime switching. In another paper, Driffill and Sola (1998) applied the Markov switching 

model to justify whether there is an intrinsic bubble in stock prices so that stock prices deviate too far from the 

values predicted by the common predicted models: present value model or the fundamental asset evaluation using 

income and asset value. The paper concluded that a Markov switching model is a more appropriate representation of 

dividends because the dividends switch between regimes while stock prices can be better explained than through the 

bubble hypothesis. 

In attempt to characterize the business environment and the switching between different regimes, Asea and Blomberg 

(1998) studied the lending behavior of banks over lending cycles, using the Markov switching model with a panel 

data set consisting of approximately two million commercial and industrial loans granted by 580 banks between 

1977 and 1993. They demonstrated that banks change their lending standards from tightness to laxity systematically 

over the cycle.  

The changing pattern of interest rates is indicative of business cycle conditions and could be subject to regime shifts 

itself. To investigate how real interest rates shift, Bekdache (1998) adopted a time varying parameter model with 

Markov switching conditional heteroscedasticity to capture two sources of shifts in real interest rates: shifts in 

coefficients and shifts in variance. The former relates the ex-ante real rate to the nominal rate, the inflation rate, and a 

supply shock variable, while the latter has unconditional shifts in the variance of the stochastic process. The results 

support a time varying parameter model over Markov switching with limited states. Dewachter (1996) studied 

interest rate volatility by examining both regime shifts in the variance and links between volatility and levels of the 

interest rate. While regime shifts were found in the variance, the contribution of volatility-level links cannot be 

ignored. The above findings suggest that univariate or single element regime shifts in interest rate modelling fail to 

fully characterize interest rate dynamics. 

Research conducted by Kim and Nelson (1999) classifies the economy into two states of booms and recessions, then 

investigates whether there has been a structural break in post-war US real GDP growth towards stabilization. They 

used a Bayesian approach to identify a structural break at an unknown change-point in a Markov-switching model. 

Their empirical results suggested a break in GDP growth toward stabilization at the first quarter of 1984, and a 

narrowing gap between growth rates during recessions and booms. In 2000, Maheu and McCurdy used a Markov 

switching model to classify returns into a high-return stable state and a low-return volatile state. The two states bull 

and bear markets are respectively defined in the research question. The paper’s finding is that although bull markets 

have a declining hazard function, the best market gains come at the start of a bull market. The paper also finds that 

volatility increases with duration in bear markets, which is intuitively foreseeable. 

2.2.2 Literature of the Field From 2000 to Present 

After the year 2000, the Hidden Markov models featured issues concerning mixture modeling. In ‘A Markov 

switching model for annual hydrologic time series’ by Akintug and Rasmussen (2005), the study assumes that the 

climate is switching between M states and that the state sequence can be described by a Markov chain. Observations 

are assumed to be drawn from a normal distribution whose parameters depend on the state variable. The paper 

presented stochastic properties of this class of models along with procedures for model identification and parameter 

estimation. There are strong similarities between MS and ARMA models, as those are applied to the time series of 

the mean annual discharge of the Niagara River. Although it is difficult to draw any general conclusion from a single 

case study, it appears that MS models (and ARMA models derived from MS models) generally have stronger 

auto-correlation at higher lags than ARMA models estimated by conventional maximum likelihood. 

Marco Bazzi et al., (2014) proposed a new Markov switching model with time varying probabilities for the 

transitions. The novelty of the model is that the transition probabilities evolve over time by means of an observation 

driven model. The innovation of the time varying probability was generated by the score of the predictive likelihood 

function. This paper also studied the dynamic mean and variance behavior of U.S. Industrial Production growth. The 

findings include empirical evidence of changes in the regime switching probabilities, with more persistence for high 

volatility regimes in the earlier part of the sample. 
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N. Sopipan et al (2014) proved that the MRS-GARCH model is the best performing model for gold price volatility 

according to some loss functions. The paper forecasts closing prices of gold price to trade future contracts using data 

from 2007 to 2011 in the Thai market. 

Shih-Tang Hwuy et al. (2016) proposed a novel N state Markov-switching regression model in which the state 

indicator variable is correlated with the regression disturbance term. The model admits a wide variety of patterns for 

this correlation, while maintaining computational feasibility. The paper considered two applications of the N regime 

endogenous switching model, one to an empirical model of U.S. business cycles, and the other to a switching 

volatility model of U.S. equity returns. 

Peter Nystrup et al. (2017) presented an adaptive estimation approach that allows for the parameters of the estimated 

models to be time varying. It was shown that a two state Gaussian hidden Markov model with time varying 

parameters can reproduce the long memory of squared daily returns that was previously believed to be the most 

difficult aspect to reproduce with a hidden Markov model. Capturing the time varying behavior of the parameters 

also leads to improved one step density forecasts. 

Yoosoon Chang et al. (2017) introduced a new approach to model regime switching using an auto-regressive latent 

factor, which determines regimes depending upon whether it takes a value above or below some threshold level. The 

paper developed a modified Markov switching filter to estimate the mean and volatility models with Markov 

switching that are frequently analyzed and find that the presence of endogeneity in regime switching is indeed strong 

and ubiquitous. 

Maciej Augustyniak, Luc Bauwens & Arnaud Dufays (2019) proposed the factorial hidden Markov volatility (FHMV) 

process to model financial returns or realized variances. Its dynamics are driven by a latent volatility process 

specified as a product of three components: a Markov chain controlling volatility persistence, an independent 

discrete process capable of generating jumps in the volatility, and a predictable (data-driven) process capturing the 

leverage effect.  

In summary, the Markov switching methodology was introduced by the seminal work of Hamilton (1989). Before the 

year 2000, Markov regime-switching was directly applicable to time series analysis in economics and finance for its 

dynamic nature. After the year 2000 there were significant studies to extend the scope of its applications, 

methodologies, and enhance its forecasting abilities. Even though Markov regime-switching has been well studied 

theoretically, the application and analysis in commodities prices likely need more development and combination with 

other disciplines: Financial Engineering, Trading in International Exchanges, and Behavioral Economics. There may 

be more fruitful outcomes in such collaboration works. 

3. Forecasting Models & Results 

Extensive multi-disciplinary efforts have been spent on building a reliable model to forecast gold price. They include: 

The Economic Explanatory Model, Autoregressive Integrated Moving Average (ARIMA), Adaptive Neuro-Fuzzy 

Inference System (ANFIS), Multilayer Perceptron (MLP) Neural Network, Radial Basis Function (RBF) Neural 

Network, and Generalized Regression Neural Networks (GRNN). In the scope of our study, we develop the 

application of Markov regime switching in auto-regression models, and the performance of the model is evaluated. 

Our proposed MS auto-regression model will be based on components of the explanatory and auto-regression models; 

therefore, we apply these two models first to obtain the necessary foundation for comparison. 
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3.1 The Explanatory Model 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Gold price in CAD, USD, and the CPI change rate 

 

We begin by looking at the time series of gold price in Canadian dollars. Details about the datasets are described in 

the appendix A. Figure 3 demonstrates the monthly average gold price from Jan. 1979 to May 2020. Intuitively it can 

be seen that an auto-regressive model would not yield a rational forecasting result because the impacts of economic 

factors are totally ignored. But the price in the previous month could provide a clue as to performance in the 

following month with a certain range of errors. Monthly average price is calculated by the total monthly revenue, 

divided by the quantity traded in the whole month. Using the monthly average price helps excluding the temporary 

shocks or short-term tendencies of the market. 

The gold price in Canadian dollar can be explained by its price in USD, a major currency in the world economy, and 

the change in CPI. Therefore, it is modeled as a linear function of price in USD and the rate of change of CPI in the 

Canadian economy. We can always consider one or many other exogenous variables using a similar approach. 

Collinearity is an issue when using USD price as predictor, but that is a matter of fact; we could not reject its impacts 

on the gold price in Canada and must analyze the price in USD as it is the most powerful currency globally.  

 �̂�𝑡 = 𝛼 + 𝛽1𝑥1𝑡 + 𝛽2𝑥2𝑡 + 𝜀𝑡  (15) 

where �̂�𝑡 is the forecasting spot price of gold at time t in CAD, 𝑥1𝑡 , 𝑥2𝑡 is the price in USD and CPI change rate at 

time t, respectively, 𝜀𝑡  is a random term, or forecasting residual which is normally distributed. In this model, 

𝑥1𝑡 , 𝑥2𝑡 are exogenous variables; 𝛼, 𝛽1, 𝛽2 are the coefficients that need to be estimated.  

The regression of �̂�𝑡 with explanatory variables 𝑥1𝑡 , 𝑥2𝑡  yields the outcome shown as in Table 1. Note the 

significant codes are 0 ***; 0.001 **; 0.01 *; 0.05.; 0.1 1. 

 

Table 1. Fitted parameters of the Explanatory Regression Model 

 Coefficients     Estimate   Std. Error    t value   Pr(>|t|) 

Intercept      112.56754  12.07728    9.321    < 2e-16 *** 

USD       1.07277    0.01167     91.911   < 2e-16 *** 

CPI           -6.72388   1.80322      -3.729   0.000215 *** 

 

 Residuals Min 1Q Median 3Q Max 

 Value -277.93 -42.23 2.13 28.93 445.81 

Residual standard error: 108.5 on 494 degrees of freedom 

Multiple R-squared:  0.951 

Adjusted R-squared:  0.9508 

F-statistic:   4792 on 2 and 494 DF 

p-value:    < 2.2e-16 
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This implies the explanatory model of gold price can be written as  

 �̂�𝑡 = 112.56754 + 1.07277𝑥1𝑡 − 6.72388𝑥2𝑡 + 𝜀𝑡 (16) 

The negative coefficient of 𝑥2𝑡 implies that CPI increases negatively impact on the gold price as we can roughly see 

in the Figure 3 above.  

The R-squared value, which is a statistical measure, represents the proportion of the variance for a dependent 

variable that is explained by independent variables, takes a very high values, 0.951. Therefore, we can say that the 

price can be well explained through the USD value and the CPI change. The two exogenous variables are good 

candidates for our MS auto-regression model, which will be presented later in subsection 3.3. Notably, we can see 

that the residuals may not be normally distributed (the quartile values are −277.93; −42.23; 2.13; 28.93; 

445.81), this fact encourages us to explore a new forecasting model.  

3.2 The Auto-regression Model 

Gold price is an auto-regressive process. The price depends on ‘itself’ based on the previous time periods, with the 

residuals normally distributed.  

 �̂�𝑡 = 𝛼 + ∑ 
𝑝
𝑖=1 𝛾𝑖𝑦𝑡−𝑖 + 𝜀𝑡  (17) 

where �̂�𝑡 is the forecasting spot price of gold at time t, 𝑦𝑡−𝑖 is the gold price at time 𝑡 − 𝑖, 𝛼, 𝛾𝑖 are parameters 

that need to be estimated, p is the lag, 𝑖 ∈ ,1, 𝑝-, and 𝜀𝑡  is a random term, or forecasting residual which is normally 

distributed. The outcome of the auto-regression in R gives 

 

Table 2. Fitted Parameters of the Auto-regression Model, AR(1) 

 AR1 Intercept 

Coefficients:              0.9994            826.7293 

S.E.                       0.0011           1223.7952 

𝜎2 estimated as 1381:  LL = -2505.31,  AIC = 5016.61 

 

Using lags 𝑝 = 2,3,4 for the auto-regression model yields similar AIC values (4994.58, 4993.25, 4995 respectively). 

Therefore, we choose AR(1) with the lag 𝑝 = 1 for simplification, because the higher 𝑝 does not improve 

significantly forecast ability. This reflects our intuition and feature of the Markov chain, that the current state of the 

process only depends on the state of immediately preceding period. Table 3 below shows the outcome of AR(4) 

model with similar AIC. 

 

Table 3. Fitted Parameters of the Auto-regression Model, AR(4) 

 AR1 AR2 AR3 AR4 Intercept 

Coefficients: 1.2355 -0.3234 0.1030 -0.0158  834.4876 

S.E. 0.0449 0.0715 0.0716  0.0457 1118.6860 

𝜎2 estimated as 1306:          L = -2491.57       AIC = 4995.13 

 

The outcome of the model implies 𝑦𝑡 = (1 − 0.9994) ∗ 826.7293 + 0.9994𝑦𝑡−1. Hence, the auto-regression model 

is  

 �̂�𝑡 = 0.4960 + 0.9994𝑦𝑡−1 + 𝜀𝑡  (18) 

3.3 The MS Auto-regression Model 

Suppose that gold price is a random process following two regimes: in one regime, gold price depends only on an 

exogenous variables; in another regime, gold price is an auto-regressive process, where the price at time t depends on 

the price at time 𝑡 − 1. This means that we impose both of the two models above and evaluate the switch between 

them described by a Markov process. 

The model  

 �̂�𝑡 = ∑ 2
𝑖=1 𝐼𝑖�⃗�𝑖𝑥𝑖 + 𝜀𝑡  (19) 
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where �⃗�𝑖 is the parameters’ vetor of the regime 𝑖, 𝑖 ∈ ,1,2-  

 �⃗� = ,𝜃1𝜃2𝜃3𝜃4- 

and 𝒙𝒊 is the predictors’ vector of the regime 𝑖  

 𝒙 = ,1𝑥1𝑥2𝑦𝑡−1-
𝑇 

where 𝐼𝑖 takes value 1 if the process is in regime 𝑖, 0 otherwise, and 𝜀𝑡  is the residual term at time t as usual. The 

Markov regime-switching model yields the following coefficients and statistics in Table 4.  

 

Table 4. Fitted parameters of the MS Auto-regression Model, MS AR(1) 

REGIME 1 

     

  

Coefficients Estimate Std. Error t value Pr(>|t|) 

Residual standard error: 52.59953 (Intercept)(S) 3.423 15.4871 0.221 0.825092 

Multiple R-squared:      0.9883 USD(S) 0.0918 0.0282 3.2553 0.001133 ** 

  

CPI(S) 1.5468 1.7671 0.8753 0.381411 

CAD1(S) 0.9265 0.0239 38.7657 < 2.2e-16 *** 

Standardized Residuals Min 1Q Median 3Q Max 

Value -139.4999 -5.4652 -0.3805 0.6528 203.4511 

REGIME 2 

      

  

Coefficients Estimate Std. Error t value Pr(>|t|) 

       Residual standard error: 12.88244 (Intercept)(S) 44.4512 4.2992 10.3394 < 2.2e-16 *** 

Multiple R-squared:       0.9962 USD(S) 0.1998 0.0235 8.5021 < 2.2e-16 *** 

  

CPI(S) -2.1165 0.3151 -6.7169 1.856e-11 *** 

  

CAD1(S) 0.7676 0.0249 30.8273 < 2.2e-16 *** 

Standardized Residuals Min 1Q Median 3Q Max 

Value -32.0437 -3.87 0.0138 5.2002 35.7343 

INFORMATION CRITERIA FOR  

BOTH REGIMES 

AIC 

 

BIC 

 

LL 

 

4611.161 

 

4694.466 

 

-2297.58 

 

The equations for the two regimes, equation 20 represents Regime 1 and equation 21 represents Regime 2: 

�̂�𝑡1 = 3.4230 + 0.0918𝑥1 + 1.5468𝑥2 + 0.9265𝑦𝑡−1                        (20) 

�̂�𝑡2 = 44.4512 + 0.1998𝑥1 − 2.1165𝑥2 + 0.7676𝑦𝑡−1                       (21) 

The Markov-switching model has both regimes significant, where the R-squared values are 0.9883 and 0.9962.  

Equation 16 describes the negative impact of CPI change on gold price in the explanatory model. But in 20 and 21 

we observe the more sophisticated effects of the hidden mechanism that controls this impact. In some periods of time 

the CPI change has positive marginal effects on gold price. 
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Figure 4. Graph of filtered and smoothed probabilities 

 

Table 5 at the end of this section shows the transition probability matrix: the transition probability matrix has high 

determinant values, which indicates that it is difficult to change from one regime to the other. The model perfectly 

detects the periods of each state. The residuals are white noise and show a better fit to the normal distribution in each 

regime than in the explanatory model (see Table 1). 

Figure 4 above describes filtered and smoothed probabilities. Since the smooth probabilities are evaluated using the 

whole dataset while the filtered probability at time t are evaluated using data up to and including time t (but 

excluding time 𝑡 + 1,… , 𝑇), we can realize a slight difference between them.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Graph of price vs. smoothed probabilities 

In Figure 5, the regimes and price are represented in the same graph. It shows that almost all the substantial increases 

of gold price are associated with regime 1. This implies that the abnormal increases of, or the shocks in gold price, 

resulted from special economic conditions.  
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Figure 6. Graph of Residuals, upper panel: regime 1, lower panel: regime 2 

 

Figure 6, the upper panel introduces the residual terms of the model with regime 1. It reveals, for example, in the 

periods from Jul. 2005 to May 2020 (observations from 330 to 497), gold price follows regime 1, and the residual is a 

white noise. The lower panel describes the residual terms of the model with regime 2. It can be clearly seen that, in the 

period from Jul. 2005 to May 2020 (observations from 330 to 497), the residual has a tendency with a mean greater 

than 0; it is a non-stationary process. This confirms that the price follows regime 1. In Figure 7 below we combine both 

two regimes in the model, the graph of residual terms fluctuates around zero. Visibly it looks like white noise. The 

calculation confirms that the mean value of the residuals is 1.9744×10−8 ≈ 0.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Graph of residuals, the two regimes 
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Table 5. Transition Probability Matrix P(2,2) 

 

Regime 1 Regime 2 

   Regime 1 0.93419448 0.06580552 

   Regime 2 0.03776094 0.96223906 

 

3.4 Forecasting Work 

Suppose that this month, gold price is in regime 1, probability that next month it will stay in regime 1 is 93.42% and 

visit regime 2 is 6.58%. Probability that gold price process stays in regime 2 for the two consecutive months is 3.78% 

while probability that it moves from regime 2 to regime 1 is 96.22%. 

The dataset used as sample is from Jan. 1979 to May 2020. Now given that the spot price in USD for Jun. 2020 is 

1732.2, the CPI change rate is 0.5472, the price in CAD in May 2020 is 2398.9. Using equations 20 and 21 obtains  

�̂�𝑡1 = 3.4230 + 0.09181732.2 + 1.54680.5472 + 0.92652398.9 = 2385.887 

�̂�𝑡2 = 44.4512 + 0.19981732.2 − 2.11650.5472 + 0.76762398.9 = 2230.794 

The graph in Figure 5 shows that, May 2020 the gold price is in regime 1. Using the transition probability matrix 

P(2,2) above yields the expected price in June �̂�𝑡 = 0.93422385.887 + 0.06582230.794 = 2375.672 

The actual price of gold in June, according to World Gold Council (Note 5) is CAD 2347.5 per ounce. The 

forecasting error is |1 −
2375.672

2347.5
| ≈ 1.198%. Similarly, we use the formula 1 to obtain the 𝑘 −step transition 

probability, then forecasting for 𝑘 months ahead �̂�𝑡0+𝑘. 

3.5 Evaluation of Models’ Performance 

The most popular performance measure for forecasting models is the mean squared-error. There are two variants of 

this measure: Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE). 

The Mean Absolute Percentage Error defined as 

 MAPE =
∑𝑁

|�̂�𝑡−𝑦𝑡|

𝑦𝑡

𝑁
 

where �̂�𝑡, 𝑦𝑡 are the forecasted price and actual price at time 𝑡, respectively. By our calculation, the auto-regression 

model AR(1) has an MAPE of 2.9862%. The explanatory model yields an MAPE of 7.3063%. Using the MS 

auto-regression model we obtain a forecasting error average of 2.6085%.  

Using the Root Mean Square Error (RMSE) measure  

 RMSE = √
∑𝑁(�̂�𝑡−𝑦𝑡)

2

𝑁
, 

our proposed MS auto-regression model has RMSE of 33.6233, one of the best performance among the models 

evaluated in literature (R. Hafezi et al. 2018). 

4. Conclusion and Potential Research 

In this research, we studied the theoretical background of the Markov chain Regime-switching model, and its 

application in forecasting data series. The paper proposed a Markov Regime-switching auto-regression model for 

forecasting gold price. The results showed that the MS auto-regression model is very efficient in the analysis of 

historical data series, specifically, gold price in the Canadian market. The specific application of Markov 

regime-switching in forecasting gold price with two regimes was examined and compared with other popular 

analyzing methods. We showed that the MS auto-regression performs dominantly. The forecasting model for gold price 

in two regimes was proposed. 

The R-squared values in the two regimes of the model are 0.9883 and 0.9962. Using Mean Absolute Percentage Error 

to evaluate the forecasting error, using the MS auto-regression model we can obtain the forecasting error average of 

2.6085%. This is a significant improvement in comparison with other popular models in the literature. The model with 
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exogenous variables gives MAPE = 7.3063% and the model with auto-regression yields MAPE = 2.9862%. The 

Transition Probability Matrix, which is considered as an important property of the specific Markov chain, was 

evaluated. Applying the forecating model for a specific moment of time, we obtained a forecating price in June 2020 

with error less than 1.2%. 

We argued and presented statistical evidence that the dramatic changes in gold price likely happen in regime 1 which 

is explained by macroeconomic factors. Socio-economic conditions substantially impact gold price. The other 

commodity price series can be analyzed using the same method. We can also partition a long period of time into 

many regimes by giving N ≥ 2 or applying N = 2 multiple times. 

The forecasted price series fits very well with the actual gold price series as per the Figure 8. 

4.1 Potential Research 

We know that, when the transition matrix P for a Markov chain is regular, then the Markov chain has a unique limit 

vector (known as a steady-state vector), regardless of the values of the initial probability vector by the property of the 

Markov chain. If the transition matrix P for a Markov chain is regular, the positive powers of P approach a limit 

(which is a matrix) all of whose columns equal the chain’s steady-state vector. This might be particularly beneficial 

to some type of commodity prices or asset returns (including stock prices) because then we will have a steady state, 

meaning stable prices over time.  

Suppose a transition probability matrix P, initial state vector  ⃗0, steady state vector  ⃗∞; I denotes the identity 

matrix. After k periods, the state vector is:  

  ⃗0𝑃
𝑘 =  ⃗∞ 

Solving the following equation yields the steady state vector  ⃗∞. 

  ⃗∞(𝑃 − 𝐼) = 0 

The steady state is quite possible in reality when the demand and supply of a commodity are saturated in the market. 

In a business and legal environment, a study in historical data series can address the time and the conditions where 

entries to an industry would be stable.  

 

 

Figure 8. Gold price in CAD - Forecasted and actual series 

 

In federal or provincial administration, the tax debts have significant impacts on government budgeting and public 

policies. Studies in steady-states of these processes would benefit the economy and social welfare by figuring out the 

circumstances that there would be no large deviation in tax collection and hence, there would be no more struggling 

with budget deficit. 
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Notes 

Note 1. Nguyen Bao Anh & Aggey Semenov, 2015 

Note 2. https://www.gold-eagle.com/forecasts-predictions 

Note 3. Data: World Gold Council. https//www.gold.org/goldhub 

Note 4. Data: Yahoo Finance. https://ca.finance.yahoo.com 

Note 5. https://www.gold.org/goldhub/data/gold-prices 
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Appendix A 

Abbreviation 

AIC   Akaike Information Criterion 

AR    Autoregression (Model) 

ARCH   Autoregressive Conditional Heteroskedasticity 

ARIMAX  Auto Regressive Integrated Moving Average with eXogeneous Input 

BIC   Bayesian Information Criterion 

CPI    Consumer Price Index 

GARCH   Generalized Autoregressive Conditional Heteroskedasticity 

HMM   Hidden Markov Model 

LBMA   London Bullion Market Association 

LL    Log Likelihood function 

MAPE   Mean Absolute Percentage Error 

MLE   Maximum Likelihood Estimate 

MS    Markov-Switching 

MSM   Markov-Switching Model 

RMSE   Root Mean Square Error (RMSE) 

 

Appendix B 

SYMBOLS 

𝛼, 𝛽1 , 𝛽2 ,𝛾𝑖   Coefficients of the models 

𝜀𝑡     Residuals, random, or irregular terms 

𝑓(𝑦𝑡|𝑦𝑡−1)  Probability density function of 𝑦𝑡, given 𝑦𝑡−1, 2 states 

𝑔(𝑦𝑡|Ω𝑡−1)  Probability density function of 𝑦𝑡, given information at t-1, N-states 

𝐿(�⃗�)   Likelihood function of parameters 

Ω𝑡    Information available at time t, gold price model 

𝑝𝑖𝑗     The transition probability from state i to j 

P    Transition Probability Matrix 

𝑠𝑡     State at time t (value) 

𝑆𝑡     State at time t (variable) 

𝜎2    Variance of the data at time t 

�⃗�𝑖    The parameters’ vector of the model 

x    The predictors’ vector of the model, including the lags if any 

𝑦𝑡    Gold price at time t, also known as information available at time t 

�̂�𝑡    Forecasting price at time t 
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