Research note

Cryptanalysis of a remote login authentication scheme

M.-S. Hwang *

Department of Information Management, Chao Yang University of Technology, P.O. Box 55-67, Wufeng, Taichung, Taiwan

Received 19 August 1998; accepted 25 January 1999

Abstract

In this article, we present a cryptanalysis of Wu's proposed efficient remote login authentication scheme which is based on simple geometric properties on the Euclidean plane. We show that the scheme contains pitfalls in the authentication phase.

Keywords: Cryptography; Password authentication; Remote login

1. Introduction

In 1995, Wu proposed an efficient remote login authentication scheme [1] which is based on simple geometric properties on the Euclidean plane. Wu's scheme is much simpler to implement than other remote login authentication schemes. The main advantage of this scheme is that users can choose and freely change their passwords, and the proposed system does not need verification tables for authenticating login requests.

Wu claimed that the security of his scheme is based on the shared line \(L_i \) constructed in the registration phase. However, if an illegal user has the ability to reconstruct \(L_i \), then he can impersonate a legal user by forging a valid authentic message and replaying it to pass the check in the authentication phase. In this article, we show that an illegal user may intercept a valid login request and replay it later to impersonate a legal user.

2. The weakness of Wu’s scheme

The proposed remote login authentication scheme is based on simple geometric properties on the Euclidean plane [1]. It is divided into three phases: registration, login, and authentication. The registration phase is completed by the central authority (CA), whose main role is to deliver a smart card to each registered user. The smart card contains four public parameters, denoted as \(ID_i, f, P, \) and \(A_i \), which are used in the login and authentication phases. The parameters are defined as follows:

- \(ID_i \) is a random integer given to each registered user;
- \(f \) is a one-way function [2];
- \(P \) is a large prime; and
- \(A_i \) is the middle point of \(r_{iw} \) and \(r_{io} \) on the Euclidean plane. Here,

\[
\begin{align*}
 r_{iw} &= (0, f(PW_i)), \\
 r_{io} &= (f(ID_i x_0), f(ID_i y_0)), \\
 A_i &= \left(\frac{f(ID_i x_0) + f(PW_i) + f(ID_i y_0)}{2}, \frac{a_1 + a_2}{2} \right)
\end{align*}
\]

where the pair \((x_0, y_0) \) is a random integer and kept confidential by the system; \(PW_i \) is the password of the registered user \(U_i \).

In the login phase, the user \(U_i \) first inserts his own smart card into a terminal and keys in his password \(PW_i \). Next, the smart card constructs four public parameters, denoted as \(ID_i, A_i, C_i, \) and \(T_i \), which are transmitted to the system and used in the authentication phases. The parameters are defined as follows:

- \(T_i \) is a timing sequence from the system; and
- \(C_i \) is a random point on the line \(L_W \) which passes through
Let \(P = 23 \), \((x_0, y_0) = (2, 3)\), \(f = x^2 + 1 \mod P \). Assume that the identity and password of the new user \(U_i \) are \(ID_i = 8 \) and \(PW_i = 6 \). In the registration phase, CA computes points \(r_{io} = (0, 14) \), \(r_{iw} = (4, 2) \), and \(A_i = (2, 8) \); and stores four public parameters: \(ID_i = 8 \), \(f = x^2 + 1 \), \(P = 23 \); and \(A_i = (2, 8) \) in a smart card which is delivered to \(U_i \) by hand.

In the login phase, \(U_i \) inserts his own smart card into a terminal and keys in his password \(PW_i = 6 \). Assume that the timing sequence \(T \) from the system is seven. The smart card computes points \(r_{iT} = (0, 18) \) and \(B_i = (1, 11) \) and constructs a line \(L_{WT} \). \(7x + y = 18 \mod 23 \), which passes through points \(r_{iT} \) and \(B_i \). The smart card randomly chooses a point \(C_i = (3, -3) = (3, 20) \) over GF(23) on the line \(L_{WT} \). Next, the smart card transmits the public parameters \((ID_i = 8, A_i = (2, 8), T = 7, C_i = (2, 4)) \) to the system.

In the authentication phase, the system computes the point \(r_{io} = (4, 2) \) and constructs the line \(L_i = 3x + y = 14 \mod 23 \) passing through points \(r_{io} \) and \(A_i \). The system computes the points \(r_{iw} = (0, E_i) = (0, 14) \), \(r_{iT} = (0, 18) \), and \(D_i = (1, 11) \). As \(D_i = B_i \), the system accepts the login request.

The security of Wu’s scheme is based on the shared line \(L_i \) constructed in the registration phase. If an illegal user has the ability to reconstruct \(L_i \), then he can impersonate the legal user by forging a valid authentic message and replaying it to pass the check in the authentication phase [1]. Here, we show that an illegal user can obtain \(f(PW_i) \) and the line \(L_i \) as follows:

1. Let point \(R = (a_{i1}, y) \) and construct a line \(L_{RA} \), \(x = a_{i1} \), passing through points \(R = (a_{i1}, y) \) and \(A_i = (a_{i1}, a_{i2}) \).
2. As an illegal user can easily intercept \(A_i, C_i, \) and \(T \) in the login phase and both \(f \) and \(P \) are made public, the illegal user can compute \(f(T) \). Therefore, he can obtain \(y \) by
computing:

\[y = a_{i_2} - f(T). \] (8)

3. Construct the line \(L_{WT} \) passing through points \(R \) and \(C_i \).
4. Find the intercept point \(r_{iT} = (0, f(PW_i) + f(T)) \) of the \(y \)-axis and the line \(L_{WT} \).
5. Obtain \(f(PW_i) \) and the point \(r_{iw} = (0, f(PW_i)) \) by computing \(r_{iT} = (0, f(T)) \).
6. The line \(L_i \) can thus be constructed by passing through points \(A_i \) and \(r_{iw} \).

It is easy to show that triangle \(\Delta r_{iw}B_ir_{iT} \) is equal to triangle \(\Delta A_iB_iR \) according to the angle-side-angle (ASA) rule. Therefore, the point \(B_i \) is the middle point of points \(r_{iw} \) and \(A_i \), and of points \(r_{iT} \) and \(R \). Fig. 2 illustrates the graphical result of our supposition.

We give the same example as Example 1 to illustrate the pitfalls of Wu’s scheme. Assume that an illegal user has intercepted \(A_i = (2, 8) \), \(C_i = (3, 20) \), and \(T = 7 \) in the public network. As both \(f \) and \(P \) are made public, the illegal user can easily obtain both \(P = 23 \) and \(f = 2^2 + 1 \mod 23 \).

Example 2.

1. Let point \(R = (2, y) \) and construct a line \(L_{RA}, x = 2 \), passing through points \(R = (2, y) \) and \(A_i = (a_{i_1}, a_{i_2}) = (2, 8) \).
2. Compute \(f(T) = 4 \) and \(y = a_{i_2} - f(T) = 8 - 4 = 4 \).
3. Construct the line \(L_{WT}, 8x + 11y = 14(\mod 23) \), passing through points \(R = (2, 4) \) and \(C_i = (3, 20) \) over GF(23).
4. Find the intercept point \(r_{iT} = (0, 18) = (0, f(PW_i) + f(T)) \) of the \(y \)-axis and the line \(L_{WT} \).
5. Obtain \(f(PW_i) = 14 \) and the point \(r_{iw} = (0, 14) \).
6. Construct the line \(L_i, 3x + y = 14(\mod 23) \), passing through points \(A_i = (2, 8) \) and \(r_{iw} = (0, 14) \).

3. Conclusions

In this article, we presented a cryptanalysis of Wu’s remote login authentication scheme. We have shown that an illegal user can easily intercept a valid login request and replay it later to impersonate a legal user in the authentication phase.

References