Classifying Unseen Instances by Learning Class-Independent Similarity Functions

Ziming Zhang and Venkatesh Saligrama
Department of Electrical & Computer Engineering, Boston University
{zhang14, srv}@bu.edu

Abstract

In this paper we formulate ZSR as a binary prediction problem. Our resulting classifier is class-agnostic. It takes an arbitrary pair of source and target domain instances as input and predicts whether or not they come from the same class, i.e. whether there is a match. We model the posterior probability of a match since it is a sufficient statistic and propose a latent probabilistic model in this context. We develop a joint discriminative learning framework based on dictionary learning to jointly learn the parameters of our model for both domains, which ultimately leads to our class-agnostic classifier. Many of the existing embedding methods can be viewed as special cases of our probabilistic model. On ZSR our method shows 4.90% improvement over the state-of-the-art in accuracy averaged across four benchmark datasets. We also adapt ZSR method for zero-shot retrieval and show 22.45% improvement accordingly in mean average precision (mAP).

1. Introduction

Zero-shot learning (ZSL) deals with the problem of learning to classify previously unseen class instances. It is particularly useful in large scale classification where labels for many instances or entire categories can often be missing. One popular version of ZSL is based on so called source and target domains. In this paper we consider the source domain as a collection of class-level vectors, where each vector describes side information of one single class with, for instance, attributes [10, 19, 24, 27, 31], language words/phrases [4, 11, 34], or even learned classifiers [39]. The target domain is described by a distribution of instances (e.g. images, videos, etc.) [19, 38]. During training, we are given source domain side information and target domain data corresponding to only a subset of classes, which we call seen classes. During test time for the source domain, side information is then provided for unseen classes. A target domain instance from an unknown unseen class is then presented. The goal during test time is to predict the class label for the unseen target domain instance.

Intuition: In contrast to previous methods (e.g. [2]) which explicitly learn the relationships between source and target domain data, we posit that for both domains there exist corresponding latent spaces, as illustrated in Fig. 1, where there is a similarity function that is *agnostic* to class label. Such similarity functions are also used in other applications like feature matching [43].

Our supposition implies that, regardless of the underlying class labels, there is a statistical relationship between latent co-occurrence patterns of corresponding source and target instance pairs when the instance pairs describe the same thing. For example, our supposition would imply that the “zebra” image in Fig. 1 on the left will share an underlying statistical relationship with the description of zebra in text on the right, and that this relationship can be inferred by means of a class-agnostic “universal” similarity function.

To mathematically formalize this intuition we formulate zero-shot recognition (ZSR) as a binary classification prob-
lem. In this framework, we train a score function that takes an arbitrary source-target instance pair as input and outputs a likelihood score that the paired source and target instances come from the same class. We apply this score function on a given target instance to identify a corresponding source vector with the largest score. In this way our score function generalizes to unseen classes since it does not explicitly depend on the actual class label.

We train our binary predictor (i.e. score function) using seen class source and target domain data. It is well-known that for a binary classification problem the posterior probability of the binary output conditioned on data is a sufficient statistic for optimal detection. This motivates us to propose a latent parameterized probabilistic model for the posterior. We decompose the posterior into source/target domain data likelihood terms and a cross-domain latent similarity function. We develop a joint discriminative learning framework based on dictionary learning to jointly learn the parameters of the likelihood and latent similarity functions.

In test-time unseen source domain vectors are revealed. We estimate their corresponding latent source embeddings. Then, for an arbitrary target-instance, we estimate the latent target embedding. Finally we score each pair of source and target domain embeddings using our similarity function and classify based on these scores. Fig. 1 illustrates a specific scenario where visual and word embedding functions are learned using training data from seen classes and are utilized to estimate embeddings for unseen data. We test our method on four challenging benchmark datasets (i.e. aP&Y, AwA, CUB, SUN-attribute). Our performance on average shows 4.9% improvement in recognition accuracy. We also adapt ZSR method for zero-shot retrieval and show 22.45% improvement in mean average precision across these datasets.

Our proposed general probabilistic model is a systematic framework for ZSR. Indeed, existing methods including [1, 2, 11, 14, 23, 25] can be precisely interpreted as special cases of our method. We test our algorithm on several ZSL benchmark datasets and achieve state-of-the-art results.

1.1. Related Work

(i) Attribute prediction: A significant fraction of zero-shot methods are based on building attribute classifiers that transfer target domain data into source domain attribute space. For instance, [26] used semantic knowledge bases to learn the attribute classifiers. [19, 22, 37, 39, 40] proposed several (probabilistic or discriminative) attribute prediction methods using the information from attributes, classes, and objects. [23] proposed combining seen class classifiers linearly to build unseen class classifiers. [14] proposed first linearly projecting both source and target domain data into a common space and then training a max-margin multi-label classifiers for prediction. [32] proposed a related regularization based method for training classifiers. The main issue in such methods is that they may suffer from noisy source/target data, which often results in poor prediction. In contrast, our joint latent space model is robust to the noise issues on account of our lower-dimensional latent space representation.

(ii) Linear embedding: This type of methods are based on embedding both source and target domain data into a feature space characterized by the Kronecker product of source domain attributes and target domain features. Linear classifiers are trained in the product space. For instance, [1] created such spaces using label embedding, and [2, 11, 25, 34] utilized deep learning for the same purpose. Recently [20, 21] introduced semi-supervised max-margin learning to learn label embedding.

(iii) Nonlinear embedding: Similar to linear embedding, here the Kronecker product feature space is constructed after a nonlinear mapping of the original features. This literature includes [3, 16, 45], where [16, 45] embed source and target domain data nonlinearly into known semantic spaces (i.e. seen classes) in an unsupervised or supervised way, and [3] employed deep neural networks for associating the resulting embeddings.

Different from these (linear or nonlinear) embedding based zero-shot methods, our method learns a joint latent space for embedding source and target domain data. The learned joint space is used not only to fit each instance well but also to enable recognition during test-time. In this sense our proposed framework can be considered as a generalization of these embedding methods.

(iv) Other methods: Less related to our method includes approaches based on semantic transfer propagation [30], transductive multi-view embedding [12], random forest approach [15], and semantic manifold distance [13].

2. Our Method

2.1. Problem Setting

Let us motivate our approach from a probabilistic modeling perspective. This will in turn provide a basis for structuring our discriminative learning method. We denote by \(X^{(s)} \) the space of source domain vectors, by \(X^{(t)} \) the space of target domain vectors, and by \(Y \) the collection of all classes. Following convention, the random variables are denoted by capital letters, namely, \(X^{(s)}, X^{(t)}, Y \) and instances of them by lower-case letters \(x^{(s)}, x^{(t)}, y \).

Zero-shot learning is a special case where the class corresponding to the source domain instance is revealed during test time and thus there is no uncertainty regarding the class label for any source domain vector. Thus the problem reduces to assigning target domain instances to source domain vectors (and in turn to classes) during testing. For exposition we denote by \(y^{(s)} \) the label for the source domain
instance \(x^{(s)} \in X^{(s)} \) even though we know that \(y^{(s)} \) is identical to the true class label \(y \). With this in mind, we predict a class label \(y^{(t)} \) for target domain instance \(x^{(t)} \in X^{(t)} \).

2.2. General Probabilistic Modeling

Abstractly, we can view ZSR as a problem of assigning a binary label to a pair of source and target domain instances, namely whether or not \(y^{(st)} \triangleq [y^{(s)} = y^{(t)}] \) holds.

We view our goal in terms of evaluating how likely this proposal is true, i.e., \(p(y^{(st)} | x^{(s)}, x^{(t)}) \). Indeed, Bayes Optimal Risk theory tells us that the optimal classifier (see Eq. 6 in [9]), \(f(x^{(s)}, x^{(t)}) \), is obtained by suitably thresholding the posterior of \(y^{(st)} \) conditioned on data, namely,

\[
f(x^{(s)}, x^{(t)}) \triangleq \log \left[p(y^{(st)} | x^{(s)}, x^{(t)}) \right] \geq \theta \quad \text{(1)}
\]

where \(\theta \in \mathbb{R} \) is a threshold parameter. Here Ident is the hypothesis that source/target data describe the same class. Diff is the hypothesis that they are different.

Our latent embedding model (see Fig. 1) supposes that the observed and latent random variables form a Markov chain (see [6]):

\[
X^{(s)} \leftrightarrow Z^{(s)} \leftrightarrow Y \leftrightarrow Z^{(t)} \leftrightarrow X^{(t)}.
\]

This implies that the source domain data, \(X^{(s)} \), and its associated embedding, \(Z^{(s)} \), is independent of the target \(X^{(t)} \), \(Z^{(t)} \) conditioned on the underlying class \(Y \) (if they belong to the same class) and unconditionally independent if they belong to different classes.

It follows that the posterior can be factored as:

\[
p(y^{(st)} | z^{(s)}, z^{(t)} | x^{(s)}, x^{(t)}) = p(y^{(st)} | z^{(s)}, z^{(t)}) p(z^{(s)} | x^{(s)}, x^{(t)}) p(z^{(t)} | x^{(s)}, x^{(t)}).
\]

Next note that, in the absence of class information, it is reasonable to assume that an arbitrary pair of source and target domain latent embeddings are essentially independent, namely, \(p(z^{(s)} | z^{(t)}) \approx p(z^{(s)}) p(z^{(t)}) \). Consequently, the posterior probability can be expressed as follows:

\[
p(y^{(st)} | x^{(s)}, x^{(t)}) = \int \int p(z^{(s)} | x^{(s)}) p(z^{(t)} | x^{(t)}) p(y^{(st)} | z^{(s)}, z^{(t)}) dz^{(s)} dz^{(t)},
\]

where, \(z^{(s)} \in \mathbb{R}^{h_{s}} \) and \(z^{(t)} \in \mathbb{R}^{h_{t}} \) denote the latent coefficient vectors in the corresponding \(h_{s} \)-dim and \(h_{t} \)-dim latent spaces, respectively. Here \((z^{(s)}, z^{(t)}) \) defines the joint latent embedding for data pair \((x^{(s)}, x^{(t)})\). This factorization provides us two important insights:

(i) Class-Agnostic Embeddings: Note that in Eq. 3 the expression contains the probability kernels \(p(z^{(s)} | x^{(s)}) \) and \(p(z^{(t)} | x^{(t)}) \). Characterizing the latent embeddings depend only on the corresponding data instances, \(x^{(s)}, x^{(t)} \) and independent of the underlying class label.

(ii) Class-Agnostic Similarity Kernel: The expression in Eq. 3 reveals that the term \(p(y^{(st)} | z^{(s)}, z^{(t)}) \) is a class-invariant function that takes arbitrary source and target domain embeddings as input and outputs a likelihood of similarity regardless of underlying class labels (recall that predicting \(y^{(st)} \triangleq [y^{(s)} = y^{(t)}] \) is binary). Consequently, at a conceptual level, our framework provides a way to assign similarities of class membership between arbitrary target domain vectors and source domain vectors while circumventing the intermediate step of assigning class labels.

In our context the joint probability distributions and latent conditionals are unknown and must be estimated from data. Nevertheless, this perspective provides us with a structured way to estimate them from data. An important issue is that Eq. 3 requires integration over the latent spaces, which is computationally cumbersome during both training and testing. To overcome this issue we lower bound Eq. 3 by a straightforward application of Jensen’s inequality. We state it formally for future reference.

Lemma 1.

\[
\log p(y^{(st)} | x^{(s)}, x^{(t)}) \geq \max_{z^{(s)}, z^{(t)}} \log p(z^{(s)} | x^{(s)}) p(z^{(t)} | x^{(t)}) p(y^{(st)} | z^{(s)}, z^{(t)})
\]

In the training and testing procedure below, we employ this lower bound as a surrogate for the exact but cumbersome similarity function between source and target domains.

2.2.1 Training

During training we are given independent instances of source and target domain instances, \(x^{(s)}_i, x^{(t)}_j \), and a binary label \(y^{(st)}_i \) indicating whether or not they belong to the same class. We parameterize the probability kernels in Eq. 1 using \(p_B(z^{(s)} | x^{(s)}) \), \(p_D(z^{(t)} | x^{(t)}) \), \(p_W(y^{(st)} | z^{(s)}, z^{(t)}) \) in terms of data-independent parameters \(B, D, W \) respectively, and estimate them discriminatively using training data. Specifically, applying Lemma 1 leads to the following training objective:

\[
\max_{B,D,W} \left(\sum_{i=1}^{C} \sum_{h_{s}^{(i)}, h_{t}^{(i)}} \log p_B(z^{(s)}_i | x^{(s)}_i) \right) \sum_{i=1}^{C} \sum_{j=1}^{N} \log p_W(y^{(st)}_i | z^{(s)}_i, z^{(t)}_j) + \sum_{j=1}^{N} \log p_D(z^{(t)}_j | x^{(t)}_j) + \sum_{i=1}^{C} \sum_{j=1}^{N} \log p_W(y^{(st)}_i | z^{(s)}_i, z^{(t)}_j),
\]

where \(C \) is the size of the source domain training data (number of observed class labels) and \(N \) is the size of the target domain training data.

Salient Aspects of our Training Algorithm: Based on Eq. 5 our objective is two-fold. We need to learn a low-
Algorithm 1 Jointly latent embedding learning algorithm

Input : training data \([\{x_i^{(s)} \}, \{y_i^{(s)} \}]\) and \([\{x_j^{(t)} \}, \{y_j^{(t)} \}]\)

Output: \([z_i^{(s)}], \{z_j^{(t)} \}, B, D, W\)

Initialize \(B, D, W\);
\[
\forall i, z_i^{(s)} \leftarrow \arg \max_{z_i^{(s)}} \log p_B(z_i^{(s)} | x_i^{(s)}) ;
\]
\[
\forall j, z_j^{(t)} \leftarrow \arg \max_{z_j^{(t)}} \log p_D(z_j^{(t)} | x_j^{(t)}) ;
\]
\[
W \leftarrow \arg \max_W \sum_{i=1}^N \sum_{j=1}^N \log p_W(y_{ij}^{(st)} | z_i^{(s)}, z_j^{(t)}) ;
\]
repeat
\[
\forall i, z_i^{(s)} \leftarrow \arg \max_{z_i^{(s)}} \log p_B(z_i^{(s)} | x_i^{(s)}) + \sum_{j=1}^N \log p_W(y_{ij}^{(st)} | z_i^{(s)}, z_j^{(t)}) ;
\]
\[
\forall j, z_j^{(t)} \leftarrow \arg \max_{z_j^{(t)}} \log p_D(z_j^{(t)} | x_j^{(t)}) + \sum_{i=1}^N \log p_W(y_{ij}^{(st)} | z_i^{(s)}, z_j^{(t)}) ;
\]
\[
B \leftarrow \arg \max_B \sum_{i=1}^N \log p_B(z_i^{(s)} | x_i^{(s)}) ;
\]
\[
D \leftarrow \arg \max_D \sum_{j=1}^N \log p_D(z_j^{(t)} | x_j^{(t)}) ;
\]
\[
W \leftarrow \arg \max_W \sum_{i=1}^C \sum_{j=1}^N \log p_W(y_{ij}^{(st)} | z_i^{(s)}, z_j^{(t)}) ;
\]
until Converge to a local minimum;
return \([z_i^{(s)}], \{z_j^{(t)} \}, B, D, W\).

Algorithm 2 Test-time estimation of latent embeddings

Input : test data \([\{x_i^{(s)} \}, \{y_i^{(s)} \}]\) and \([\{x_j^{(t)} \}]\); learned latent embeddings \([\{z_i^{(s)} \}]\) and \([\{z_j^{(t)} \}]\); learned parameters \(B, D, W\) during training

Output: \([z_i^{(s)}], \{z_j^{(t)} \}\)

\[
\forall i, z_i^{(s)} \leftarrow \arg \max_{z_i^{(s)}} \log p_B(z_i^{(s)} | x_i^{(s)}) + \sum_{j=1}^N \log p_W(-1 | z_i^{(s)}, z_j^{(t)}) ;
\]
\[
\forall j, z_j^{(t)} \leftarrow \arg \max_{z_j^{(t)}} \log p_D(z_j^{(t)} | x_j^{(t)}) + \sum_{i=1}^C \log p_W(-1 | z_i^{(s)}, z_j^{(t)}) ;
\]
return \([z_i^{(s)}], \{z_j^{(t)} \}\).

dimensional latent embedding that not only accurately represents the observed data in each domain but also is capable of inferring cross-domain statistical relationships when one exists. Note that the first two log-likelihoods in Eq. 5 are data fitting terms, and the last one measures the joint latent similarity between the two latent vectors.

With this insight we propose a general alternating optimization algorithm to jointly learn \([z_i^{(s)}], \{z_j^{(t)} \}, B, D, W\) in Alg. 1. This follows from the exchangeability of two max operators. In this way our learning algorithm guarantees convergence to a local optimum within finite number of iterations. Also since the update rules for \(\forall i, z_i^{(s)}\) (or \(\forall j, z_j^{(t)}\)) are independent given \(\forall j, z_j^{(t)}\) (or \(\forall i, z_i^{(s)}\)) and parameters \(B, D, W\), we can potentially utilize parallel or distributed computing to train our models. This has obvious computational benefits.

We contrast some of the previous works such as [14] with our approach. The authors of [14] adopt the perspective that source domain vectors for unseen classes are also known during training. This perspective lets one exploit knowledge of unseen source domain classes during training. In contrast we are not provided unseen data for either the source or target domains. Thus, our data-independent variables \(B, D, W\) do not contain any information about unseen data.

2.2.2 Testing

In order to avoid confusion we index unseen class data with \(i^*, j^*\) corresponding to source and target domain respectively. The seen class training data is indexed as before with \(i, j\). During test-time the source domain data \([\{x_i^{(s)} \}, \{y_i^{(s)} \}]\) for all the unseen classes are revealed. We are then presented with an instance of unseen target domain data, \([x_j^{(t)}]\). Our objective is to identify an unseen source domain vector that best matches the unseen instance. As inputs for our test-time algorithm we are also given seen class latent embeddings \([z_i^{(s)}]\) and \([z_j^{(t)}]\) and the parameters \(B, D, W\) that are all learned during training. Since we perform ZSR in the joint latent space, we have to estimate these new latent vectors \(z_i^{(s)}, z_j^{(t)}\) for all the unseen-class data from both source and target domains, respectively. This naturally suggests the optimization algorithm in Alg. 2 at test time. Note that while the second term during this estimation process appears unusual we are merely exploiting the fact that the unseen class has no intersection with seen classes. Consequently, we can assume that \(y_{ij}^{(st)} = -1, y_{ij}^{(st)} = -1\). Notice that the latent vector computation is again amenable to fast parallel or distributed computing.

Decision function: We next compute the likelihood of being the same class label, i.e. \(p(y_{ij}^{(st)} | x_i^{(s)}, x_j^{(t)})\), for an arbitrary target domain data \(x_j^{(t)}\) using the source domain data \((x_i^{(s)}, y_i^{(s)})\). We denote \(i^*\) as \(i^*\) sharing the same source domain class label. There are two options: The first option is to directly employ latent estimates \(z_i^{(s)}, z_j^{(t)}\) for \(x_i^{(s)}, x_j^{(t)}\), respectively. Based on Eq. 5 this leads to the following expression (which is evidently related to the one employed in [45]):

\[
y_{ij}^{(t)} = y_{i^*}^{(s)}, i^* = \arg \max_{i^*} \left\{ \log p_W(y_{ij}^{(st)} | z_i^{(s)}, z_j^{(t)}) \right\}. (6)
\]

A second option is based on the lower bound surrogate as in Eq. 4. This option leads us to:

\[
y_{ij}^{(t)} = y_{i^*}^{(s)}, i^* = \arg \max_{i^*} \left\{ \log p_B(z_i^{(s)} | x_i^{(s)}) + \log p_W(y_{ij}^{(st)} | z_i^{(s)}, z_j^{(t)}) \right\}. (7)
\]

Note that the decision function in Eq. 7 is different from the one in Eq. 6, which is widely used in embedding meth-
ods (see Sec. 2.3.1), in that we also employ the source domain fit to identify the class label. Intuitively this option is meaningful because the information we have is asymmetric. We have a single source domain vector per class which captures the strongest information about that class. Consequently, our choice here reflects the fact that we can be confident about our prediction if the model can fit in the source domain data meaningfully.

2.3. Parameterization

2.3.1 Generalization of Existing Works

Our probabilistic model can be considered as generalization of many embedding methods for ZSL, including label embedding methods [1], output embedding methods [2], and semantic similarity embedding methods [45].

Linear embedding methods such as [1, 2] directly set \(z^{(s)} \overset{\Delta}{=} x^{(s)} \) for source domain and \(z^{(t)} \overset{\Delta}{=} x^{(t)} \) for target domain. These methods do not employ a latent space. Thus \(\log p(y^{(st)}|x^{(s)}, x^{(t)}) = \log p_W(y^{(st)}|z^{(s)}, z^{(t)}) \). We can map these methods to a special case of our method by parameterizing \(\log p_W(y^{(st)}|z^{(s)}, z^{(t)}) \) in terms of a regularized hinge loss.

Our probabilistic model also provides an explanation for nonlinear embedding methods such as those in [16, 45]. For instance, in [45] the source and target domain data is encoded independently by sparse coding (for \(p(z^{(s)}|x^{(s)}) \)) and nonlinear similarity functions such as intersection (for \(p(z^{(t)}|x^{(t)}) \)), respectively, and the regularized hinge loss (for \(\log p_W(y^{(st)}|z^{(s)}, z^{(t)}) \)) is used for prediction.

In general we can also introduce arbitrary nonlinear mapping functions (e.g. deep neural networks [3]) to parameterize our probabilistic model for generating the latent spaces as long as they satisfy our probabilistic model, namely, the posterior is modeled using data fit terms and the cross-domain latent similarity term.

2.3.2 Supervised Dictionary Learning

In this section we develop a supervised dictionary learning formulation to parameterize Eq. 5. Specifically, we map data instances into the latent space as the coefficients based on a learned dictionary, and formulate an empirical risk function as the similarity measure which attempts to minimize the regularized hinge loss with the joint latent embeddings.

For purpose of exposition we overload notation and let \(B \in \mathbb{R}^{d_s \times h_s}, D \in \mathbb{R}^{d_t \times h_t}, W \in \mathbb{R}^{h_s \times h_t} \) as the source domain dictionary, target domain dictionary, and the cross-domain similarity matrix in the joint latent space, respectively. Here \(d_s \) and \(d_t \) are original feature dimensions, and \(h_s \) and \(h_t \) are the sizes of dictionaries. Then given the seen class source domain data \(\{(x_i^{(s)}, y_i^{(s)})\} \) and target domain data \(\{(x_i^{(t)}, y_j^{(t)})\} \), we choose to parameterize the three log-likelihoods in Eq. 5, denoted by \(\log p_B, \log p_D, \log p_W \), respectively using dictionary learning and regularized hinge loss as follows. For source domain embedding, following [45], we enforce source domain latent coefficients to lie on a simplex (see Eq. 8 below). For target domain embedding, we follow the convention. We allow the latent vectors to be arbitrary while constraining the elements in the dictionary to be within the unit ball. Specifically, \(\forall i, \forall j \), we have,

\[
- \log p_B \propto \frac{\lambda_1\|z_i^{(s)}\|_2^2 + \lambda_2\|x_i^{(s)} - Bz_i^{(s)}\|_2^2}{2},
\]

\[
s.t. \quad z_i^{(s)} \geq 0, \quad e^Tz_i^{(s)} = 1,
\]

\[
- \log p_D \propto \frac{\lambda_1\|z_i^{(t)}\|_2^2 + \lambda_2\|x_j^{(t)} - Dz_j^{(t)}\|_2^2}{2},
\]

\[
s.t. \forall k, \quad \|D_k\|_F \leq 1,
\]

\[
- \log p_W \propto \frac{\lambda_W}{2}\|W\|_F^2 + \max\left\{0, 1 - y_{ij} \right\} \left[z_i^{(s)} \right]^T W z_j^{(t)} \right\},
\]

where \(\| \cdot \|_F \) and \(\| \cdot \|_2 \) are the Frobenius norm and \(\ell_2 \) norm operators, \(\geq \) is an entry-wise operator, \([\cdot]^T \) is the matrix transpose operator, \(e \) is a vector of 1’s, and \(\forall k, D_k \) denotes the \(k \)-th row in the matrix \(D \). \(1_{y_{ij}} = 1 \) if \(y_{ij} = y_{ij} \) \) and -1 otherwise. The regularization parameters \(\lambda_1 \geq 0, \lambda_2 \geq 0, \lambda_1 \geq 0, \lambda_2 \geq 0, \lambda_W \geq 0 \) are fixed during training. Cross validation is used to estimate these parameters by holding out a portion of seen classes (see Sec. 3.1).

Observe that our method leverages association between the source domain and target domain vectors across all seen classes and learns a single matrix for all classes. Our objective function utilizes a hinge loss to penalize mis-associations between source and target pairs in the joint latent space.

Training & Cross-Validation: We hold-out data corresponding to two randomly sampled seen classes and train our method using Alg. 1 on the rest of the seen classes for different combinations of regularization parameters. Training is performed by substituting Eqs. 8, 9, and 10 into Alg. 1. For efficient computation, we utilize proximal gradient algorithms [28] with simplex projection [8] for updating \(z_i^{(s)}, \forall i \) and \(z_j^{(t)}, \forall j \), respectively. We use linear SVMs to learn \(W \).

Testing: We substitute Eqs. 8, 9, and 10 into Alg. 2 and run it by fixing all the parameters learned during training. This leads to estimation of the latent embeddings for unseen class source and target domain data. Then we apply Eq. 6 or 7 to predict the class label for target domain data.
Table 2. Zero-shot recognition accuracy comparison (%) on the four datasets. Except for [2] where AlexNet [18] is utilized for extracting CNN features, for all the other methods we use vgg-verydeep-19 [33] CNN features.

<table>
<thead>
<tr>
<th>Method</th>
<th>aP&Y</th>
<th>AwA</th>
<th>CUB-200-2011</th>
<th>SUN Attribute</th>
<th>Ave.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akata et al. [2]</td>
<td>-</td>
<td>61.9</td>
<td>40.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lampert et al. [19]</td>
<td>38.16</td>
<td>57.23</td>
<td>-</td>
<td>72.00</td>
<td>-</td>
</tr>
<tr>
<td>Romera-Paredes and Torr [32]</td>
<td>24.22 ± 2.89</td>
<td>75.32 ± 2.28</td>
<td>82.10 ± 0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSE-INT [45]</td>
<td>44.15 ± 0.34</td>
<td>71.52 ± 0.79</td>
<td>30.19 ± 0.59</td>
<td>82.17 ± 0.76</td>
<td>57.01</td>
</tr>
<tr>
<td>SSE-ReLU [45]</td>
<td>46.23 ± 0.53</td>
<td>76.33 ± 0.83</td>
<td>30.41 ± 0.20</td>
<td>82.50 ± 1.32</td>
<td>58.87</td>
</tr>
</tbody>
</table>

(i) init. \(\forall z_t^{(s)}, \forall z_j^{(t)} \) + init. \(\forall z_t^{(s)}, \forall z_j^{(t)} \) + Eq. 6 38.10 ± 2.64 76.96 ± 1.40 39.03 ± 0.87 81.17 ± 2.02 58.81
(ii) init. \(\forall z_t^{(s)}, \forall z_j^{(t)} \) + init. \(\forall z_t^{(s)}, \forall z_j^{(t)} \) + Eq. 7 38.20 ± 2.75 80.11 ± 1.13 41.07 ± 0.81 81.33 ± 1.76 60.20
(iii) init. \(\forall z_t^{(s)}, \forall z_j^{(t)} \) + Alg. 2 + Eq. 6 47.29 ± 1.45 74.92 ± 2.51 38.94 ± 0.81 80.67 ± 2.57 60.46
(iv) init. \(\forall z_t^{(s)}, \forall z_j^{(t)} \) + Alg. 2 + Eq. 7 47.79 ± 1.83 77.37 ± 0.39 40.91 ± 0.86 80.83 ± 2.25 61.73
(v) Alg. 1 + init. \(\forall z_t^{(s)}, \forall z_j^{(t)} \) + Eq. 6 39.13 ± 2.35 77.58 ± 0.81 39.92 ± 0.20 83.00 ± 1.80 59.91
(vi) Alg. 1 + init. \(\forall z_t^{(s)}, \forall z_j^{(t)} \) + Eq. 7 38.94 ± 2.27 80.46 ± 0.53 42.11 ± 0.55 82.83 ± 1.61 61.09
(vii) Alg. 1 + Alg. 2 + Eq. 6 50.21 ± 2.90 76.43 ± 0.75 39.72 ± 0.19 83.67 ± 0.29 62.51
(viii) Alg. 1 + Alg. 2 + Eq. 7 50.55 ± 2.97 79.12 ± 0.53 41.78 ± 0.52 83.83 ± 0.29 63.77

3. Experiments

We test our method on four benchmark image datasets for ZSR, i.e. aPascal & aYahoo (aP&Y) [10], Animals with Attributes (AwA) [17], Caltech-UCSD Birds-200-2011 (CUB-200-2011) [36], and SUN Attribute [29]. Table 1 summarizes the statistics in each dataset. In our experiments we utilized the same experimental settings as [45]. For comparison purpose we report our results averaged over 3 trials.

3.1. Implementation

(i) Cross validation: Similar to [45], we utilize cross validation to tune the parameters. Precisely, we randomly select two seen classes from training data for validation purpose, trained our method on the rest of the seen classes, and recorded the performance using different parameter combinations. We choose the parameters with the best average performance on the held-out seen class data.

(ii) Dictionary initialization: For source domain, we initialize the dictionary \(D \) to be the collection of all the seen class attribute vectors on aP&Y, AwA, and CUB-200-2011, because of the paucity of the number of vectors. On SUN, however, for computational reasons, we initialize \(D \) using KMeans with 200 clusters on the attribute vectors.

For target domain, we utilize the top eigenvectors of all training data samples to initialize the dictionary \(D \). In

Figure 2. Effect of (a) the size of target domain dictionary, and (b) source domain parameter ratio \(\frac{\lambda_1^{(t)}}{\lambda_2^{(t)}} \) on accuracy.

We downloaded the code and CNN features from https://zimingzhang.wordpress.com/publications/.

3.2. Benchmark Comparison

On the four datasets, we perform two different tasks: (1) ZSR and (2) zero-shot retrieval. While both tasks are related, they measure different aspects of the system. Task 1 is fundamentally about classification of each target data instance. Task 2 measures which target domain samples are matched to a given source domain vector, and we adapt our recognition system for the purpose of retrieval. Specifically, given a source domain unseen class attribute vector we compute the similarities for all the unseen target domain data and sort the similarity scores. We can then compute precision, recall, average precision (AP) etc. to measure retrieval accuracy.
3.2.1 Zero-Shot Recognition

Recognition accuracy for each method is presented in Table 2. We also perform an ablative study in order to understand the contribution of different parts of our system. We experiment with the three parts of our system: (1) dictionary learning; (2) test-time latent variable estimation; (3) incorporating source domain data fit term in prediction.

Note that the source and target domain dictionaries B and D are initialized in the beginning of the dictionary learning process (see Sec 3.1 (ii)). Consequently, we can bypass dictionary learning (deleting repeat loop in Alg 1) and understand its impact. Next we can ignore the similarity function term for estimating the latent embeddings for unseen data during test-time. Finally, we can choose one of the two prediction rules (Eq. 6 or Eq. 7) to determine the utility of using source domain data fit term for prediction.

We denote by “init. $\forall z_i^{(s)}, \forall z_j^{(t)}$” when dictionary learning is bypassed; We denote by “init. $\forall z_i^{(s)}, \forall z_j^{(t)}$” when similarity term is ignored during test-time. We list all the 8 combinations of choices for our system in Table 2 (i) to (viii).

The overall best result is obtained for the most complex system using all parts of our system. For instance, by comparing (i) with (ii), using Eq. 7 the performance gains are 1.39% improvement over Eq. 6. We see modest gains (0.55%) from (iii) to (v). Still our ablative study demonstrates that on individual datasets there is no single system that dominates other system-level combinations. Indeed, for aP&Y (vi) is worse than (v).

Next, in Fig. 4 we plot the cosine similarity matrices for the learned embeddings as in [45] on the AwA dataset. Note that [45] employs so called semantic similarity embedding (SSE). The figures demonstrate that our method can generate a cosine similarity matrix which is much more similar to the source domain attribute cosine similarity (a). Fig. 3 and Fig. 4 together demonstrate that our method is capable of aligning the source and target domain data better than the state-of-the-art method [45]. In addition it is capable of learning qualitatively better (clustered) embedding representations for different classes, leading to improvements in recognition accuracy on the four benchmark datasets.

3.2.2 Zero-Shot Retrieval

We list comparative results for the mean average precision (mAP) for the four datasets in Table 3. Since retrieval is closely related to recognition and, SSE [45] is the state-of-art, we focus on comparisons with it. As we can see our
We again attempt to further analyze our method on the AwA dataset. We list class-wise AP as well as mAP comparison in Table 4, and illustrate the precision-recall curves for different methods in Fig. 5. Our method achieves over 70% AP for 6 out of 10 classes, and performs the best in 6 out of 10 classes. Fig. 5 depicts illustrative examples for different categories. Nevertheless, we note that for some classes our method is unable to achieve satisfactory performance (although other methods also suffer from performance degradation). For instance, we only get 28.18% AP for class “seal”. Note that in Fig. 4(e), we can see that the last row (or column), which corresponds to “seal”, shows some relatively high values in off-diagonal elements. This is because the problem of differentiating data within this class from data from other classes is difficult. Similar situations can be observed in SSE as well.

We also visualize our retrieval results in Fig. 6 with the top-5 returns for “difficult” cases (classes with AP less than 50%) in Table 4. Interestingly for the most difficult class “seal”, all five images are correct. This is probably because the global patterns such as texture in the images are similar, leading to highly similar yet discriminative CNN features.

4. Conclusion

In this paper we propose a novel general probabilistic method for ZSL by learning joint latent similarity embeddings for both source and target domains. Based on the equivalence of ZSR and binary prediction, and the conditional independence between observed data and predicted class, we propose factorizing the likelihood of binary prediction using our probabilistic model to jointly learn the latent spaces for each domain. In this way, we generate a joint latent space for measuring the latent similarity between source and target data. Our similarity function is invariant across different classes, and hence intuitively it fits well to ZSR with good generalization to unseen classes. We further propose a new supervised dictionary learning based ZSR algorithm as parameterization of our probabilistic model. We conduct comprehensive experiments on four benchmark datasets for ZSL with two different tasks, i.e. ZSR and retrieval. We evaluate the importance of each key component in our algorithm, and show significant improvement over the state-of-the-art.

Other choices for parameterization may also be possible, e.g. replacing the hinge loss in Eq. 10 with nearest neighbor distance loss [46]. Our method can be potentially utilized in various applications such as zero-shot activity recognition [5] and person re-identification [41, 42, 44] as well.
References