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Abstract: The first coordination compound of copper and tiglic acid named tetrakis(µ-tiglato)bis(tiglic
acid)dicopper(II) was synthesized and crystallized from water solution. Its structure was determined
and analyzed based on X-ray diffraction measurement. The paddle-wheel coordination system of the
investigated compound was compared with other similar copper structures known in the literature.
The Hirshfeld analysis was used for the detailed analysis of intermolecular interaction. The new
compound was also characterized in terms of infrared absorption, thermal, and magnetic properties.
The antiferromagnetic coupling of copper ions was found.
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1. Introduction

More commonly known as tiglic acid, (2E)-2-Methylbut-2-enoic acid is one of the
simplest unsaturated monocarboxylic acids (Figure 1). It is a volatile, crystalline solid with
a distinctive, sweet odor. Tiglic acid naturally occurs in croton oil. It can also be found in
the secretions of certain species of beetles [1,2]. Along with angelic acid, it forms a pair of
cis–trans isomers.
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Figure 1. The chemical formula of tiglic acid.

Unsaturated organic acids are important compounds considering their industry ap-
plications. Their esters are widely used in the food, cosmetic, and pharmaceutical indus-
tries [3]. Tiglic acid is not an exception—along with its derivatives, it is an important
flavoring agent and fragrance additive. Tiglic acid can be used in the processes of manu-
facturing rum, caramel, bread, and fruit essences [4]. Its derivatives also exhibit potential
anti-inflammatory [5] and antiproliferative activity [6]. One of the biggest areas of inter-
est concerning tiglic acid is its biosynthesis—naturally occurring flavors and fragrances
synthesized using enzymes can be labeled as “natural” [3,7]. The coordination chemistry
of tiglic acid has not been widely explored to date [8–11]. In the Cambridge Structural
Database (CSD) [12], there are only 15 compounds whose structures contain such acid or
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its anion; thus, every new research effort in this field provides important knowledge and
fills the existing literature gap.

The carboxylic acids exhibit a tendency to form dinuclear coordination compounds
with copper. Such compounds possess the paddle-wheel structure in which two copper
cations are bridged by four carboxylate anions. Most often, the paddle-wheel structure
is completed by two terminal axial ligands. Research on dinuclear copper compounds
has been conducted since the 1950s [13–15], and they are still of great interest due to i.a.
magnetic properties [16–22]. The spin exchange parameter (−2 J) for such compounds is
most often in the range 200–600 cm−1, which means antiferromagnetic coupling [23–25].
The value of this parameter is not only dependent on Cu•••Cu distance but also on other
structural parameters, e.g., lengths of Cu-L(axial) bonds, lengths of Cu-O-C-O-Cu bridges,
O-Cu-O, and Cu-Cu-O angles as well as on the electronic properties of ligands [23–25].

This work presents the synthesis, crystal structure, and study of spectroscopic, thermal,
and magnetic properties of the new coordination compound of copper and tiglic acid
tetrakis(µ-tiglato)bis(tiglic acid)dicopper(II).

2. Materials and Methods
2.1. Synthesis of [Cu2(tig)4(tigH)2]

Copper(II) carbonate hydroxide (15.9 g, 0.0721 mol, POCh, Gliwice, Poland) and
tiglic acid (28.0 g, 0.2800 mol, Sigma-Aldrich, Darmstadt, Germany) were placed in a
round-bottom flask with 250 cm3 of water. The reaction mixture was heated under a reflux
condenser for 6 h. Then, the unreacted copper(II) carbonate hydroxide was filtered off and
the clear solution was left to crystallization at room temperature. Green single crystals
of [Cu2(tig)4(tigH)2] were obtained after several weeks. They were filtered and dried in
the air. The yield of the synthesis calculated in relation to tiglic acid (substrate used in
deficiency) was 56% (resulting mass 18.9 g).

2.2. Crystal Structure Determination

X-ray diffraction data of [Cu2(tig)4(tigH)2] were collected on a Rigaku Synergy Du-
alflex automatic diffractometer (Rigaku Corporation, Tokyo, Japan) equipped with Pilatus
300 K detector and microfocus sealed PhotonJet X-ray tubes, with shutterless ω scan
mode. Lorentz, polarization, and empirical absorption (using spherical harmonics, imple-
mented in SCALE3 ABSPACK scaling algorithm) corrections were applied during the data
reduction. The structure was solved with a dual-space algorithm (SHELXT [26]). All non-
hydrogen atoms were refined anisotropically using a full-matrix, least-squares technique
on F2 (SHELXL [27]). All hydrogen atoms were refined using the “riding” model. Isotropic
displacement factors of hydrogen atoms were equal to 1.2 times the value of an equivalent
displacement factor of parent methine carbon atoms, and 1.5 times of parent hydroxyl
oxygen and methyl carbon atoms. Structural visualizations were made in Mercury CSD
4.3.0 (Cambridge Crystallography Data Centre, Cambridge, UK) [28]. Hirshfeld surface
maps and the fingerprint plots were generated using Crystal Explorer 17.5 (University
of Western Australia, Nedlands 6009, Australia) [29] Details concerning crystal data and
refinement are given in Table 1.

CCDC 2045148 contains the supplementary crystallographic data for this paper. These
data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html
(or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44-1223-336033; E-mail:
deposit@ccdc.cam.ac.uk).

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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Table 1. Crystal data and structure refinement details for [Cu2(tig)4(tigH)2].

Empirical formula C30H44Cu2O12
Formula weight 723.73
Crystal system Monoclinic

Space group P21/c (No. 14)
Temperature (K) 100.0(1)

X-ray wavelength (Å) λ(CuKα) 1.54184
Unit cell dimensions

a (Å) 9.2533(1)
b (Å) 17.4061(1)
c (Å) 10.2739(1)
α (◦) 90
β (◦) 95.113(1)
γ (◦) 90

Volume (Å3) 1648.17(3)
Z 2

Calculated density (Mg/m3) 1.458
Absorption coefficient (mm−1) 2.101

F(000) 756
Crystal size (mm) 0.078 × 0.093 × 0.098

θ Range for data collection (◦) 4.798 to 78.728
Index ranges −11 ≤ h ≤ 11, −21 ≤ k ≤ 21, −13 ≤ l ≤ 12

Reflections collected/unique 33781/3438
Rint 0.0252

Completeness (%) 100.0 (to θ = 67◦)
Min. and max. transmission 0.50235 and 1.00000
Data/restraints/parameters 3438/0/206

Goodness-of-fit on F2 1.059

Final R indices [I > 2σ(I)] R1 = 0.0247,
wR2 = 0.0663

R indices (all data) R1 = 0.0252,
wR2 = 0.0666

Largest diff. peak and hole (e•Å−3) 0.345 and −0.359

2.3. Magnetic Measurements

Magnetic studies were performed in a commercial superconducting quantum in-
terference device (SQUID) magnetometer MPMS XL5 of Quantum Design. To facilitate
adequately sensitive SQUID measurements of powdered substances, gelatin capsules or
other unreliable containers were not used. Instead, the powder material was stabilized with
a strongly ethanol-diluted GE-varnish [30]. GE is a well-known low temperature bonding
agent particularly handy for such studies as it introduces a marginally weak magnetic flux.
Subsequently, the wet mixture was transferred onto a 5 × 4 × 0.15 mm3 piece of previously
well magnetically characterized silicon (Si). The Si plate provides a solid support and eases
the handling of the specimen. After evaporation of ethanol, the GE-stabilized powder
and the Si plate form a robust structure, which survived perfectly intact the mounting
in the magnetometer and the whole magnetic H field and temperature T cycling applied
during the measurements. The relatively weak magnetic signal of the Si base plate was
adequately removed from the results, yielding the magnetic response of the investigated
[Cu2(tig)4(tigH)2]. For the measurements, the whole structure was affixed at the center of
about a 20 cm long silicon strip using the same dilute GE varnish. The Si strip takes the
role of the sample holder assuring the adequate sample position with respect to the SQUID
pick-up coils, without introducing any detectable signal. All the measurements, data
reduction, and final magnetic moment determination were performed following strictly the
already described procedures adequate for high sensitivity studies of a sample of minute
magnetic signals [31].
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2.4. Other Measurements

The elemental analysis of C, H, and O was carried out using a Vario EL III CHNOS El-
emental Analyzer (Elementar, Langenselbold, Germany). The Cu content was determined
based on edta titration in the presence of 1-(2-pyridylazo)-2-naphtol as an indicator [32].
Analysis for the studied compound [determined/theoretical (%)]: C 48.9/49.8; H 6.0/6.1;
O 27.1/26.5; Cu 16.9/17.6. The FT-IR spectra were recorded on a Jasco FT/IR 6200 spec-
trophotometer (JASCO, Easton, MD, USA), in the form of KBr pellets, in the spectral range
4000–400 cm−1, with resolution 1 cm−1. The thermal decompositions were carried out with
a Netzsch STA 449 F1 Jupiter thermoanalyzer (Netzsch-Geratebau GmbH, Selb, Germany)
coupled with a Netzsch Aeolos Quadro QMS 403 mass spectrometer (Netzsch-Geratebau
GmbH, Selb, Germany). Samples were heated in Al2O3 crucibles, in the temperature range
35–1000 ◦C, with the heating rate 10 ◦C/min in synthetic air (80% N2, 20% O2).

3. Results and Discussion
3.1. Structural Analysis

The studied compound tetrakis(µ-tiglato)bis(tiglic acid)dicopper(II) is the first coordi-
nation compound of copper with tiglate anion, the structure of which was determined [12].
This is a dinuclear compound, whose two copper cations are bridged by four tiglate anions
with syn–syn mode, forming a paddle-wheel structure (Figure 2a) [33]. The coordination
sphere of the central atom is completed by monodentate tiglic acid coordinating by car-
bonyl oxygen. The coordination polyhedron adopts the geometry of a tetragonal pyramid
(Figure 2b,c), in which the equatorial positions are occupied by oxygen atoms of anions
and the axial position by carbonyl oxygen of acid. The presence of the inversion center
(special position b of P21/c space group) in the middle between copper cations makes that
the one-half of the compound [Cu(tig)2(tigH)] is equivalent to the second one. The bond
valence sum of Cu1 is 1.976 (Table 2) [34–37], and it is close to the formal charge 2+ of
copper, which proves that Cu•••Cu interaction has a nonbonding character [38].
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Figure 2. Molecular structure of [Cu2(tig)4(tigH)2], with atom numbering scheme, plotted with 50% probability of displace-
ment ellipsoids of nonhydrogen atoms. Hydrogen atoms are plotted as spheres of arbitrary radii. The symmetry generated
atoms are indicated by i letter [symmetry code: −x + 1, −y + 1, −z + 1] (a). Coordination polyhedron of [Cu2(tig)4(tigH)2],
general view (b), view along tetragonal base (c).
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Table 2. Selected structural data of the studied compound.

i—j dij (Å) νij (v.u.) i—j—k αijk (◦) i—j—k αijk (◦)

Cu1—O1 1.9530(10) 0.448 O1—Cu1—O2i 169.39(4) O2i—Cu1—O4i 88.42(4)
Cu1—O2i 1.9955(10) 0.399 O1—Cu1—O3 89.93(5) O2i—Cu1—O5 91.76(4)
Cu1—O3 1.9515(10) 0.450 O1—Cu1—O4i 90.37(4) O3—Cu1—O4i 169.61(4)
Cu1—O4i 1.9528(10) 0.448 O1—Cu1—O5 98.85(4) O3—Cu1—O5 94.02(4)
Cu1—O5 2.1991(10) 0.230 O2i—Cu1—O3 89.38(4) O4i—Cu1—O5 96.19(4)

Cu1•••Cu1i 2.5956(4) – – – – –

D—H•••A d(D—H) (Å) d(H•••A) (Å) d(D•••A) (Å) <(DHA) (◦) Graph-Set

O6—H6O•••O2i 0.82 1.82 2.6345(14) 170.3 S(6)

The bond valences were calculated as νij = exp[(Rij-dij)/b] [34,35], where Rij is the bond-valence parameter for i-j bond (RCu-O = 1652 Å [36])
and b is the constant equaled 0.37 Å [37]. Symmetry transformations used to generate equivalent atoms: (i) −x + 1, −y + 1, −z + 1.

The structural features of the studied compound were compared with 12 known
dicopper compounds with the formula [Cu2(A)4(HA)2] (where: HA is a carboxylic acid
and A is its anion) [12]. It was reported that Cu•••Cu distance depends on an axial
ligand [39]. More nucleophilic axial ligands lead to a lengthening of dicopper distance
as a result of the formation of a stronger Cu-L(axial) bond. Taking into account only
carboxylic acids as the axial ligands allows estimation of the strength of Cu-O(axial) bonds
based on their length. The comparison of Cu•••Cu distance with Cu-O(axial) length for
[Cu2(A)4(HA)2] compounds shows no significant relationship (Figure 3a). In the studied
compound, both mentioned structural parameters (Table 2) are within standard deviations
of the mean values (2.61 ± 0.02 Å and 2.17 ± 0.03 Å, respectively) calculated for the group
of [Cu2(A)4(HA)2] compounds. The lack of correlation between mentioned parameters
means that differences in strength of acids resulting from different substituents bonded
to a carboxylic group do not influence the dicopper distance. It can be a consequence of
the intramolecular hydrogen bond formed between the hydroxyl group of acid and the
oxygen of one bridging anion. The formation of S(6) hydrogen-bonded ring introduces
some strains to the structure, which can affect a disruption of the correlation between the
above-discussed structural parameters. While the direct influence of h-bond strength on
the dicopper distance is not observed (Figure 3b), there is an inverse relationship between
h-bond O(donor)•••O(acceptor) distance and the Cu-O(axial) bond length (Figure 3c). It
means that an increase in strength of the intramolecular h-bond causes the weakening of
the Cu-O(axial) bond. This h-bond in the studied compound is one of the strongest in the
[Cu2(A)4(HA)2] group. It is a consequence of coupling between the carboxylate group
and the double bond, which increases the nucleophilic character of the h-bond acceptor.
Moreover, the involvement of one equatorial oxygen in the h-bond leads to significant
lengthening of its coordination bond in comparison to the rest of the three equatorial
bonds (Table 2). This phenomenon is observed for the whole [Cu2(A)4(HA)2] group
(Figure 3d) and the mean difference between the longest equatorial bond and the rest
equatorial bonds is 0.03 Å. Only one exception is the compound of triphenylactetic acid
(CSD refcode: ROLZUN [16]), in which the equatorial coordination bond involved in the
h-bond has the second-shortest length (white stars in Figure 3d). This is a consequence of
a large steric hindrance of ligands. Because four bridging triphenylacetate anions cannot
rich the most favorable position in the inner coordination sphere, they form strongly
asymmetrical bridges.
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only for ROZLUN, whose copper cations are not equivalent.

The crystal structure of the studied compound is stabilized by dispersive interac-
tions and weak hydrogen bonds. The above discussed O-H•••O hydrogen bond is an
intramolecular interaction; thus it does not influence molecular packing. The analysis of
the Hirshfeld surface and the 2D fingerprint plots revealed that the greatest contribution in
intermolecular contacts has dispersive H•••H interactions (Figure 4), which are formed
between hydrogens of two methyl groups or methyl and methine groups. The next in turn
of these are the weak hydrogen bonds C-H•••O and C-H•••C. Enrichment ratios for such
three main interaction types are very close or higher than 1 (Figure 4), which indicates
that they are favorable for the crystal net [40]. The ER value for C-H•••O is the largest,
which means that these interactions play a slightly more important role in supramolecular
assembling in comparison to the rest.

3.2. IR Spectroscopy Analysis

The spectrum of the studied compound contains absorption bands in the regions,
which are characteristic of tiglic acid and its anion (Figure 5). For pure acid, the ν(C=O)
vibrations are identified as the strong bands at 1678 and 1639 cm−1. In its spectrum, there
are also ν(OH) and δ(OH) modes in the ranges 3300–2500 cm−1 and 1440–1380 cm−1,
respectively. Additionally, bands of the stretching CH vibrations exist in the region
3300–2500 cm−1. Characteristic absorption modes for ν(C-O) appear at 1348 and 1293 cm−1.
In the region 900–600 cm−1, bands of γ(CH) are observed. The spectrum of [Cu2(tig)4(tigH)2]
is poorer than that of free acid. In comparison to tiglic acid, all bands are shifted to higher
and lower frequencies as a result of the coordination process. The bands at 1677 cm−1,
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1399 cm−1, 1372 cm−1, and 1269 cm−1 are assigned respectively to ν(C=O), δ(OH) and
ν(C-O), and they are the evidence of the presence of coordinated acid molecules in the
copper compound. In its spectrum, there are also bands characteristic of tiglate anions. The
most important are two bands originating from stretching vibrations of the carboxylate
group: νas(COO) at 1591 cm−1 and νs(COO) at 1496 cm−1. It proves that COO groups are
bonded to copper(II) ions. In the spectrum of the copper compound, the absorption bands
of γ(CH) exist at 824 cm−1, 749 cm−1, and 673 cm−1.
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3.3. Thermal Analysis

The studied coordination compound is stable up to 120 ◦C (Figure 6a). The first
step of decomposition takes place in the temperature range 120–200 ◦C and is associated
with a loss of two molecules of tiglic acid (mass loss 26.7%, calculated 27.6%). This is an
endothermic process with the maximum on the DTA curve at 175 ◦C. For comparison,
thermal decomposition of free tiglic acid starts at 50 ◦C (Figure 6b), and this is an exothermic
process (two peaks at 90 and 170 ◦C on the DTA curve). It proves that the formation of
coordination bonds makes tiglic acid more thermally stable and changes the mechanism
of decomposition (exothermic for free acid and endothermic for coordinating acid). The
second decomposition step of [Cu2(tig)4(tigH)2] is the disintegration of tiglate anions (mass
loss 51.4%, calculated 50.3%). It occurs directly after the decomposition of tiglic acids and
ends at 415 ◦C. It is an exothermic process composed of several substages (peaks at 240,
260, 340, and 410 ◦C on DTA curve). The mass residue is 21.9%, which indicates that the
final solid product is CuO (calculated 22.1%).
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Figure 6. TG (green), DTG (blue), and DTA (red) curves for [Cu2(tig)4(tigH)2] (a) and tyglic acid (b).

Mass spectra registered during the thermal analysis of [Cu2(tig)4(tigH)2] revealed the
volatile products formed during decomposition (Figure 7). Major maxima for ion currents
were observed at temperatures 180 ◦C (the first decomposition step) and 250 ◦C (the second
decomposition step). The signals for m/z = 12, 17, 18, 44, 45, 46 correspond to C+, OH+,
H2O+, CO2

+, and they are connected with the combustion of organic ligands. Other signals
(m/z = 15, 26, 27, 29, 34, 39, 40, 41, 42, 53, 54, 55, 72, and 83) are the result of fragmentation
processes of ligands.
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3.4. SQUID Magnetization Analysis

Figure 8 shows the temperature dependence of the molar magnetic susceptibility
χexp(T) of 3.4 ± 0.2 mg sample of [Cu2(tig)4(tigH)2] measured at H = 0.6 T and presented
as χexp × T plot (black circles). A slow roll down of χexp × T on lowering T confirms that
the Cu(II)–Cu(II) coupling is antiferromagnetic, which means that the low temperature
ground state of this dimer is a nonmagnetic singlet. A relatively strong magnetic response
at high T, above 60% of the expected signal of two noninteracting Cu(II) spins, indicates
that the energy separating the ground singlet state from the excited triplet states, −2 J,
is of the order of thermal energy at room temperature, kBT ∼= 25 meV ∼= 200 cm−1; kB is
the Boltzmann constant. This allows a substantial population of the lowest, the magneti-
cally active mS = −1 triplet state and so such a substantial magnetic response above some
150 K. The magnitude of the antiferromagnetic exchange coupling −2 J was estimated
by fitting to the experimental results the model Bleaney–Bowers formulae describing the
T-dependence of the magnetic susceptibility of two interacting S = 1/2 spins defined by
the Hamiltonian H = −2 JS1S2 [41]. The Curie law contribution was also added to give
an account of a paramagnetic-like increase of χexp at very low temperatures due to some
structural defects [42] and a T-independent parameter describing the diamagnetism of the
host structure, χdia. In the performed modeling −2 J, χdia, and two molar concentrations
of Cu dimers and paramagnetic defects, ndimer and npara, respectively, were the fitting
parameters. The resulting fit to χexp(T) is denoted in Figure 8 by the red solid line. It has
been obtained for −2 J = 292.0(3) cm−1, npara = 0.008, and ndimer = 1.09. The magnitude of
−2 J established for the studied compound matches almost perfectly the exchange integral
found in copper acetate [Cu2(CH3COO)4(H2O)2]: 286 cm−1 [14], which is a consequence
of similar electronic properties of tiglate and acetate anions (pKa = 4.96 [43] and 4.76 [44],
respectively). If analogous dicopper compound [Cu2(CCl3COO)4(CCl3COOH)2] is com-
posed of a stronger carboxylic acid (pKa for trichloroacetic acid is 0.66 [44]), −2 J value
decreases to 240 cm−1 [45]. Given an experimental uncertainty of the absolute mass of the
powder used to prepare the specimen (about 6%), ndimer was found to be very close to the
expected value of unity. Since npara is close to zero the magnetic studies confirm a very
high structural and chemical constitution of the synthesized material.
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T. Experimental points are marked by black circles and the results of the modelling including T-
dependent response of a Cu(II)–Cu(II) dimer (mid-to-high T range), a Curie paramagnetic-like
contribution (very low temperatures) and T-independent diamagnetism of the host are depicted as
the red solid line. The black dashed line denotes the Curie constant calculated for two noninteracting
S = 1

2 spins. The inset: [Cu2(tig)4(tigH)2] powder specimen attached to the rectangular Si support
plate and mounted onto a Si holder.



Materials 2021, 14, 2148 10 of 12

4. Conclusions

The reaction between copper(II) carbonate hydroxide and tiglic acid led to obtaining
the dinuclear copper compound of the paddle-wheel structure composed of four syn–syn
bridging tiglate anions and two monodentate tiglic acid molecules. The structural data
supported by the bond valence theory proves that interaction between copper cations
in [Cu2(tig)4(tigH)2] has a nonbonding character. The OH group of tiglic acid forms an
intramolecular hydrogen bond with carboxylate oxygen of one tiglate anion. The involve-
ment of one tiglate oxygen in h-bond leads to significant lengthening of its coordination
bond with copper in comparison to the rest of the tiglate oxygens. The supramolecular
structure of the studied compound is stabilized by H•••H dispersive interactions and
weak C-H•••O and C-H•••C hydrogen bonds. The FT-IR spectrum contains bands cor-
responding to both tiglic acid and tiglate anion. The vibration modes of carboxylic and
carboxylate groups are well distinguishable. Thermal analysis showed that tiglic acid
molecules decompose before tiglate anions. The final product of decomposition is CuO.
The magnetic measurements of the studied material indicate its very high structural and
chemical quality and yield the antiferromagnetic configuration of Cu(II) ions, thus opening
wide prospects of utilization in various fields as, e.g., biosensors, capacitors, transistors, or
in data storage systems [46–49].
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