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Abstract

Granular gas-dynamic equations are written down and numerically integrated to study convec-

tion. For a two-dimensional gas of inelastic hard disks in a square box and under the e1ect of

gravity, the equations predict buoyancy driven convection triggered by the dynamically created

“temperature”-gradient, in coincidence with what has been seen in molecular dynamics simula-

tions and in real 3D experiments. Three states are observed: conductive, one-convective roll and

two-convective rolls states. The numerical solution predicts a hysteresis cycle between the last

two states.
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1. Introduction

In this article we study a bidimensional granular gas in a square box, subject to

gravity. Three of the walls are adiabatic while the base behaves as if the system were

in contact with a “heat bath”. The latter plays the role of a steady energy source. The

four walls are shear-free. We focus our attention in granular-gas-dynamic equations
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to prove that they predict convection driven by buoyancy e1ects and not by shearing

e1ects produced by the walls of the container.

The system that we model consists of inelastic disks, all of the same size, with

disk–disk collisions characterized by a constant normal restitution coeFcient r. The

system is in a square box, particles hitting the base bounce back preserving their

tangent velocity (hence no shearing) while the normal component is sorted as if

the particles were coming from a heat bath at a speciBed granular temperature T0
(kinetic energy per particle). The collisions with the other three walls are mirror

reGections, hence all walls are shear free. This is an unrealistic situation which has

the merit of pinpointing the existence of an e1ect independent of external shear-

ing. In real experiments, therefore, the combined e1ect of friction and inelastic colli-

sions with the walls, plus buoyancy, must be considered when analyzing convective

regimes. As a consequence of the inelastic nature of the particle–particle collisions

the “temperature” will typically decrease with height. In the case of a normal Guid

(i.e., with conservative collisions) in a box with isolating walls—except for a ther-

mal base—the equilibrium is with uniform temperature regardless of the e1ects of

gravity.

Convection in Guidized granular systems excited by a vibrating base reaching a sta-

tionary state not slaved to the movement of the base itself was apparently Brst suggested

in Ref. [1]. We have shown—via molecular dynamics, in the case of a bidimensional

system of inelastic hard disks—that if the energy injection rate comes from a shear-free

stochastic base, buoyancy driven convection does appear. Buoyancy driven convection

was observed in molecular dynamic simulations and it takes place as a consequence

of the temperature gradient that the system dynamically creates because of the in-

elastic nature of the particle–particle collision rule [2]. A buoyancy driven convection

of this type was then observed experimentally in a three dimensional highly Guidized

granular system [3] and a theoretical calculation, based in a lattice gas Boltzmann equa-

tion, put forward to describe this type of convection, was given in Ref. [4]. See also

Ref. [5].

From the theoretical point of view many proposals for granular dynamics have

been submitted in the last decades [6,7]. In the case of granular gases we rely in

the granular-gas-dynamic equations that we derived from Boltzmann’s equation [7].

In that derivation we used moment expansions, which require a small Knudsen

number. In the present case this implies that the mean free path is much smaller

than the linear size of the system. The dynamic equations that we obtain are quite

involved and, for the scope of the present paper, we use a simpliBed version of them,

hoping that they grasp the basic features of the system. In the stationary case the

dimensionless equations of Ref. [7] reduce, in a limit to be explained, to

∇ · (ñv) = 0 ;

n(̃v · ∇)̃v=−∇ · P− n Fr k̂ ;

n(̃v · ∇)T =−∇ · Q̃ − P : ∇ṽ− 8q(1− q)
Kn

T 3=2n2 ;
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where

Q̃ =− 2Kn

(1− q)(2 + 15q)

√
T∇T ;

Pij =
Kn

√
T

2(1− q)(2 + 3q)

(

9vi

9xj
+
9vi

9xj
− �ij∇ · ṽ

)

;

k̂ in a unit vector pointing upward, q is the inelasticity coe;cient q ≡ (1− r)=2, the
Froude number is Fr = (mgL)=T0, m is the mass of the disks, g is the acceleration of

gravity and T0 is the granular temperature imposed at the base. We use as Knudsen

number Kn= 1=
√
N �A where N is the number of disks and �A is the fraction of area

occupied by the disks. This Kn is of the same order of magnitude as the ratio between

the mean free path and the linear size L of the box. The general granular-dynamic

equations of Ref. [7] reduce to the equations above in the limit of very small Kn. It

can be seen that the mass continuity equation is the only possible one, the momentum

equation is that of a Newtonian Guid with viscosity slightly di1erent from that of an

ideal gas (low density system). Something similar can be said with respect to the en-

ergy equation, except that a sink term is present. Fr, Kn plus the inelasticity coe;cient

q are the control parameters. As we have said before the aspect ratio of the box is

one.

We determine—via numerical integration in a 2D grid—that the granular-

hydrodynamic equations do imply that buoyancy driven convection appears when the

inelasticity coeFcient q is above a certain threshold. The equations are integrated in a

square box having a base at Bxed temperature while the other three walls are perfectly

shear-free and adiabatic. The results are summarized in the following paragraphs.

We have integrated these equations for several values of the control parameters

(Fr; Kn; q) and in the following we present typical results. Fixing the values Fr=0:55,

Kn = 0:66, we Brst get, using q = 0, a homogeneous solution. Then we integrate, for

ever increasing values of q, taking as initial condition the last stationary solution with

the previous (smaller) value of q. This is done until we reach q ≈ 0:08, point at which

we begin integrating backward, namely for decreasing values of q and again taking as

initial condition the last stationary solution with the previous (larger) value of q.

In Fig. 1 we plot a simple observable, the behavior of the di1erence � between the

maximum and minimum values of T at mid height, � = Tmax − Tmin. Such di1erence

is zero until a threshold value of q, q1 ≈ 0:022, where � starts to grow abruptly as

a function of q. This change in the behavior of � signals the point at which con-

vection appears for the Brst time. The curve then reaches a maximum and slightly

beyond it, at q2 ≈ 0:066, � has a discontinuous jump to a smaller value. This tran-

sition corresponds to the passage from a one to a two-convective-rolls solution. After

reaching q ≈ 0:08 we integrate decreasing the values of q. At Brst we recover the

same values of �, but the two rolls-solution remains stable below the value q2 and

a discontinuous jump to the one-roll solution occurs at q3 ≈ 0:054. From then on

again old values of � are recovered. It is seen then, that there is hysteresis, namely,

the discontinuous transitions take place at values of q which depend on whether q

is increasing or decreasing. The statement about stability comes from the numerical
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Fig. 1. Using Kn = 0:06, Fr = 0:55 and the inelasticity coeFcient ranging from q = 0 to 0.08, the graph

plots the di1erence � between the maximum and minimum values of T at mid-height. When there is no

convection � is zero. In the zone where two stable solutions coexist, the one-roll solution has a larger �

than the two-rolls solution. Notice the hysteresis loop.

method: if the solutions that we have found were unstable, our numerical method

would have become unstable. In the case of Fig. 1 the equations in fact became unsta-

ble for larger values of q. Hysteresis when q is being varied may seem rather strange,

but the point is that the numerical method shows that in a region of the parameter

space there are two stable solutions and which one is obtained depends on the initial

conditions.

In Fig. 2 we show the velocity ṽ(x; y), the number density n(x; y), and the temper-

ature T (x; y) for two solutions that share the same values of the control parameters:

(Fr; Kn; q) = (0:06; 0:55; 0:063). These two solutions were obtained keeping (Fr; Kn)

Bxed and approaching a value q (q36 q6 q2), from the upper and lower branches

seen in Fig. 1, respectively. We have obtained solutions with both signs of

the velocity Beld. MD simulations, on the other hand, tend to show the two rolls

solution with the central part moving down and that seems to be an e1ect beyond our

simple hydrodynamics.

2. Comments and conclusions

We have shown that our granular-gas dynamics, with shear free boundary conditions,

subject to gravity and a Bxed temperature at the base: (i) dynamically produces its own

temperature gradient and (ii) if the inelasticity coeFcient q is large enough buoyancy

driven convection appears. In the bidimensional system in a square box that we have

studied we obtain, numerically integrating our hydrodynamic-like equations, a purely

conductive solution, a one-convective-roll solution and a two-convective-rolls solution.

All of them are time-independent. Which of these solutions is reached depends on the

value of the control parameters and also in the initial conditions because, as we have

shown, the numerical integration method presents hysteresis. The central physical point

is that there are conditions (values (Fr; Kn; q)) for which the equations have two stable

solutions.
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Fig. 2. Left and right Bgures correspond to two stable stationary solutions sharing the same values for the

control parameters: Kn = 0:06, Fr = 0:55 and inelasticity coeFcient q = 0:063. At top the velocity Belds;

below the surfaces representing the dimensionless number density n(x; y) rescaled to satisfy
∫

n dx dy = 1;

at bottom the temperature surfaces T (x; y).

We Bnally make the distinction between the thermal boundary condition at the base

and more realistic ones. Experimentally the energy source is typically a vibrating base.

A granular system kept highly excited by means of a vibrating base characterized by

a vibrating amplitude much smaller than the mean free path and a frequency much

larger than the particle’s collision rate, can behave as if it were in contact with a

stochastic static wall injecting energy at a steady rate [8]. Such boundary condition is

not equivalent to having the system in contact with a heat bath as deBned above but

they are quite similar only close to hydrostatic conditions (no convection).
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