Chords of Longest Cycles in Cubic Graphs

Carsten Thomassen

Department of Mathematics, Technical University of Denmark,
Building 303, DK-2800 Lyngby, Denmark

Received September 9, 1996

We describe a general sufficient condition for a Hamiltonian graph to contain another Hamiltonian cycle. We apply it to prove that every longest cycle in a 3-connected cubic graph has a chord. We also verify special cases of an old conjecture of Sheehan on Hamiltonian cycles in 4-regular graphs and a recent conjecture on a second Hamiltonian cycle by Triesch, Nolles, and Vygen.

1. INTRODUCTION

In 1976 I conjectured that every longest cycle in every 3-connected graph has a chord [3, Conjecture 6.11], see also [8, Conjecture 6; 2, Conjecture 8.1; and 11, Conjecture 8.3.14]. In this paper the conjecture is verified for cubic graphs.

The proof follows from a general sufficient condition for a second Hamiltonian cycle (using Thomason’s lollipop method) combined with the result of Fleischner and Stiebitz [5] (proved with the aid of the Alon and Tarsi result [1]) that every “cycle plus triangles graph” is 3-colorable. We prove that every “cycle plus triangles graph” has a second Hamiltonian cycle. This verifies a special case of the conjecture made in 1975 by Sheehan [6] that every 4-regular Hamiltonian graph has another Hamiltonian cycle. Motivated by a problem on optimum tours in the Travelling Salesman Problem, Triesch et al. [10] made the following conjecture: Let C be a cycle with n vertices. Let c be a coloring of $V(C)$ in m colors where $2m + 1 \leq n$. Consecutive vertices are allowed to have the same color. Add all edges between vertices of the same color. Then the resulting graph G has a Hamiltonian cycle distinct from C. We verify this when c is proper (i.e., no two consecutive vertices of C have the same color) and all color classes have at least 3 vertices. The graph of Fleischner [4, Fig. 6] shows that the conjecture fails in general even if c is proper and all color classes have at least 2 vertices.
2. A SECOND HAMILTONIAN CYCLE

Lemma 2.1. Let G be a graph with a Hamiltonian cycle C. Suppose that for some set A of vertices, the subgraph $G - A$ has $|A|$ components each of which is a path whose ends are of odd degree in G. Then

1. for every Hamiltonian cycle C' of G, $C' - A = C - A$, and
2. each edge of G incident to a vertex of A is included in an even number of Hamiltonian cycles of G.

Proof. (1) is obvious. Let $e = xy$ where $x \in A$. Every Hamiltonian path in G which starts with x and e (if any) must end at an end of one of the paths in $G - A$. That vertex has odd degree in G. It follows by Thomason's lollipop argument [7] (see also [9, Theorem 2.1]) that G has an even number of Hamiltonian cycles containing e. □

Theorem 2.2. Let G be a graph with a Hamiltonian cycle C. Let A be a vertex set in G such that

(i) A is independent in C (i.e., A contains no two consecutive vertices of C), and

(ii) A is dominating in $G - E(C)$ (i.e., every vertex of $G - A$ is joined to a vertex in A by some chord of C).

Then G has a Hamiltonian cycle C' distinct from C. Moreover, C' can be chosen such that

(iii) $C' - A = C - A$, and
(iv) there is a vertex v in A such that one of the two edges of C' incident with v is in C and the other is not in C.

Proof. We consider the following subgraph G' of G: G' contains C and, for each vertex x which is adjacent on C to a vertex of A, we let G' contain precisely one chord of C from x to a vertex of A. So in G', x has degree 3. Every vertex of C which is not in A and not consecutive to a vertex of A has degree 2 in G'. Note that $G' - A$ has precisely $|A|$ components, each of which is a path. By Lemma 2.1, G' has a Hamiltonian cycle C' distinct from C. Clearly, C' satisfies (iii).

To prove (iv) we consider a Hamiltonian cycle C' of G' such that $C' \neq C$ and C' contains as many edges of C as possible. We claim that C' satisfies (iv). Suppose (reductio ad absurdum) that C' does not satisfy (iv). Let H be the graph $C \cup C'$. Let A' be those vertices of A which contain an edge (and hence two edges) in $E(C') \setminus E(C)$. Then each vertex of A' has degree 4 in H, each vertex in $V(G) \setminus A'$ which is adjacent (on C) to a vertex in A' has degree 3 in H, and all other vertices have degree 2 in H. Also, $H - A'$
has precisely $|A'|$ components, each of which is a path whose ends are of
degree in H. Now let u be a vertex of A' and let uv be an edge of C'.
By Lemma 2.1, H has a Hamiltonian cycle C'' distinct from C' containing
uv. There must be some vertex z in A' such that C'' does not contain the
two edges of C' incident with z. (This follows because $C'' - A' = C' - A'$.)
But then C'' contains an edge of C incident with z. We claim that C'' also
contains each edge f in $C \cap C'$. This follows from Lemma 2.1 if f is not inci-
dent with a vertex of A. On the other hand, if f is incident with a vertex
w of A, then w is not in A' (by the definition of A') and hence w has degree
2 in H. Therefore f is in every Hamiltonian cycle of H. This contradiction
to the maximality property of C' proves that C'' satisfies (iv).

3. APPLICATIONS

The following was proved in [9].

Theorem 3.1. If C is a Hamiltonian cycle in a bipartite graph with
bipartition A, B such that every vertex of B has degree at least 3 in G, then
G has a Hamiltonian cycle distinct from C.

Theorem 3.1 follows from Theorem 2.2 since the set A in the former can
play the role of A in the latter. Conversely, Theorem 2.2 except (iv) follows
easily from Theorem 3.1 by subdividing each edge of $C - A$ once and
adding the new vertices of degree 2 to A.

The next result is related to the conjecture of Triesch et al. mentioned in
the Introduction.

Theorem 3.2. Let G be a graph with a Hamiltonian cycle C such that
$G - E(C)$ is the disjoint union of complete graphs each of order at least 3.
Then G has a Hamiltonian cycle distinct from C.

Proof. Select a triangle in each component of $G - E(C)$. Let G' denote
the union of C and these triangles. Then G' is a subdivision of a “cycle plus
triangles graph” which, by a result of Fleischner and Stiebitz [5] is
3-colorable. Since a subdivision of a 3-colorable graph is 3-colorable, G'
is 3-colorable. Any color class of G' satisfies (in G) the assumption of
Theorem 2.2. Hence G has a Hamiltonian cycle distinct from C.

We can now prove the main result.

Theorem 3.3. Let C be any longest cycle in a 3-connected cubic graph
G. Then C has a chord.
Proof. Suppose (reductio ad absurdum) that C has no chord. For each component H of $G - V(C)$ we select three vertices $x(H), y(H), z(H)$ of C which are joined to vertices of H. This is possible because G is 3-connected. As G is cubic, \{ $x(H), y(H), z(H)$ \} \cap \{ $x(H'), y(H'), z(H')$ \} = \emptyset when $H \neq H'$. We form a new graph G' which consists of C and all triangles of the form $x(H), y(H), z(H)x(H)$. By [5], G' is 3-colorable. Let A be a color class. Assume without loss of generality that A contains all vertices of the form $x(H)$ where H is a component of $G - V(C)$. We form a new graph G' by contracting each component H of $G - V(C)$ into $x(H)$. Clearly, G' and A satisfy (i) and (ii) in Theorem 2.2 (with G' instead of G). Let C' be a Hamiltonian cycle of G' satisfying (iii) and (iv). C' can easily be modified into a cycle C'' of G. The condition (iv) implies that C'' is longer than C, a contradiction which completes the proof.

REFERENCES