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Abstract: Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic 
treatment of Alzheimer’s disease and other dementias. More recent use is for myasthenia 
gravis. Many of these inhibitors interact with the second known cholinesterase, 
butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in 
suppression of cytokine release through a “cholinergic anti-inflammatory pathway” which 
raises questions about the role of these inhibitors in the immune system. This review 
covers research and discussion of the role of the inhibitors in modulating the immune 
response using as examples the commonly available drugs, donepezil, galantamine, 
huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic  
anti-inflammatory pathway, a well-described link between the central nervous system and 
terminal effector cells in the immune system. 
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1. Introduction 

Inhibitors of AChE (EC 3.1.1.7.) and BChE (EC 3.1.1.8) are neurotoxic compounds capable of 
causing central, peripheral or both central and peripheral cholinergic crises. A number of these 
compounds have also found application as drugs developed for the treatment of Alzheimer’s disease 
(AD) and myasthenia gravis [1,2]. These are based on the premise that increasing the availability of 
acetylcholine (ACh) at acetylcholine receptors in the brain, results in better neuron to neuron transport 
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that will improve cognitive function. Cholinergic nerves, however, can be found in both the central 
(CNS) and peripheral (PNS) nervous systems and disparate body tissues [3]. Drugs that cross the blood 
brain barrier do not have dissociable groups as can be seen in the case of AD drugs [4]. Some of these 
drugs cannot penetrate the CNS and this property makes them suitable for use in myasthenia gravis [5]. 
For a long time, regulation of immunity was not considered an effect of AChE inhibitors. However, 
recent evidence casts new light on the subject. In this review, we explore the link between immunity 
and the AChE inhibitors as currently available AChE inhibiting drugs for AD. 

2. The Cholinergic Anti-Inflammatory Pathway 

Ach is a ubiquitous neurotransmitter [6,7] and found even in the roundworm Caenorhabditis elegans, 
one of the simplest organisms with a nervous system [8,9]. In the roundworm one third of the nervous 
system is cholinergic [10]. Humans have a large percentage of nervous system that is cholinergic 
including the CNS. Cholinergic nerves also form a major part of the parasympathetic and sympathetic 
nervous systems [11,12]. The wider significance of Ach is in understanding the biological effects of 
tested toxins and/or medical drugs: as any immunological effects of AChE inhibitors can involve both 
CNS and PNS, this has to be taken into consideration in interpreting any findings. For this reason, 
vagotomy, used to study the cholinergic anti-inflammatory pathway in animal experiments or selecting 
compounds that do not cross the blood brain barrier should be considered carefully before drawing any 
conclusions as to which pathway is involved in the proposed mechanism.  

The cholinergic system is tightly associated with the cholinergic anti-inflammatory pathway 
dominantly located in blood and mucosa. This pathway is a regulatory link between nerve terminations 
in blood and macrophages expressing the α7 nicotinic acetylcholine receptor (α7 nAChR) on their 
surface [11,13,14]. For a long time, the mechanisms of inflammatory regulation remained unclear. 
Discovery of the cholinergic anti-inflammatory pathway, however, allowed us to understand how the 
CNS is involved in the regulation of innate immunity [15–24]. AChE bound on erythrocytes plays an 
important role in termination of cholinergic anti-inflammatory pathway activation [11,25]. AChE 
activity is typically low in AD patients treated with AChE inhibitors [26]. Compared to AChE, BChE 
is constituted in the liver and secreted into the plasma where the enzyme is dissolved [27]. Apart from 
the fact that the conversion rate of Ach by BChE is lower than the conversion by AChE, BChE can 
substitute for AChE and split the neurotransmitter once they make contact [28,29]. The effect of BChE 
became relevant once the cholinergic anti-inflammatory pathway was studied as BChE plays a greater 
role in the blood than in the nervous system.  

The cholinergic anti-inflammatory pathway is one-way: the CNS can attenuate inflammation 
mediated by macrophages or any other immune cells having α7 nAChR. Ach released from the vagus 
nerve termination, agonizes α7 nAChR, which responds by opening a central channel allowing an 
influx of Ca2+ into macrophages [11,30,31]. Increased levels of Ca2+ activate the nuclear factor κ B  
(NF κB) resulting in suppression of inflammatory cytokine production including tumor necrosis factor 
α (TNFα), high mobility group box of proteins and interleukin 6 (IL-6) [32,33]. These blood AChE 
and plasma BChE are able to terminate the stimulation of the cholinergic anti-inflammatory pathway 
due to splitting ACh. The principle of the pathway is depicted in Figure 1. 
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Figure 1. Principle of the cholinergic anti-inflammatory pathway; abbreviations:  
ACh-acetylcholine; AChE-acetylcholinesterase; BChE-butyrylcholinesterase; HMGB-high 
mobility group box; IL-6-interleukin 6; NFκB-nuclear factor kappa B; TNFα-tumor 
necrosis factor alpha. 

 

The primary purpose of using AChE inhibitors in pharmacology is not modulation of immunity 
related pathologies. However, recent studies indicate that these inhibitors can cause a significant 
modulation of immunity as a side effect [29,34,35]. As seen from Figure 1, they can modulate the 
cholinergic anti-inflammatory pathway via protection of Ach from splitting by cholinesterases and thus 
enhancing the pathway. The mechanism of action is probably less effective than the standard mode but 
it becomes relevant when someone is using an inhibitor of cholinesterases in large amounts and/or for 
a long time such as patients suffering from AD. 

Apart from the regulation processes, some inhibitors can influence immunity via forming antigens 
by reaction with e.g., plasma proteins. The immune system is thus activated and the stimulation 
counteracts the anti-inflammatory action. This effect is, however, very weak but it can play a role in 
forming antibody proteins modified by nerve agents [36]. 

3. Division of Inhibitors 

The structure of AChE and BChE has been extensively reviewed in the following  
publications [7,29,37,38]. In brief, AChE has a more developed peripheral anionic site and narrower 
aromatic gorge than BChE. Aromatic compounds have higher affinity for AChE than BChE. Some 
aromatic inhibitors of AChE do not inhibit BChE, for example aflatoxins [39,40]. When the role of the 
cholinesterases is evaluated in humans, their genomic diversity and posttranslational modifications 
have to be taken into account [41,42]. 

Organophosphorus compounds are irreversible inhibitors of both AChE and BChE. They bind to 
the active site of the cholinesterases and easily cross the blood brain barrier [6,43]. Nerve agents, e.g., 
sarin, soman, tabun, and some highly toxic compounds, formerly used as pesticides (paraoxon, parathion, 
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malaoxon, malathion), are examples [44–47]. High toxicity characterizes organophosphorus inhibitors 
that are used in chemical warfare or as pesticides. Their pharmacological importance is relatively 
small; Metrifonate (trichlorfon) was chosen for AD treatment and became an exception but it was 
withdrawn because of adverse effects [48–50]. Though organophosphorus compounds typically inhibit 
both AChE and BChE, tetraisopropyl pyrophosphoramide, also known as iso-OMPA, is dissimilar to 
the other inhibitors. It does not penetrate to the active site of AChE and it inhibits BChE only. It is 
typically used as a reagent for rapid distinction between AChE and BChE activity in biological 
samples [51,52]. 

Carbamate inhibitors bind to the active site of both cholinesterases like organophosphorus 
inhibitors; however, the covalent bound is not stable and the carbamate moiety is hydrolytically split 
from the active site after some time [29,53,54]. The mechanism of carbamate binding is sometimes 
called pseudo-irreversible because of carbamate moiety spontaneous hydrolysis and resurrection of 
cholinesterase activity. From a pharmacological point of view, there is a big difference between 
carbamates and organophosphorus inhibitors. Many carbamates do not cross the blood brain barrier 
and the carbamate moiety has to be modified or encapsulated to cross it [55–57]. Quarternary 
ammonium containing pyridostigmine and neostigmine are examples. On the other hand, the  
blood brain barrier is not impenetrable by all carbamates e.g., rivastigmine (see further text) and 
physostigmine easily reach AChE in the brain [58–60].  

AChE and BChE can be inhibited by a group of secondary metabolites from plants and fungi. 
Galantamine and huperzine are examples of plant alkaloids used in pharmacology. Alkaloids α-chaconine, 
α-solanine, tomatine, berberine, palmatine and jatrorrhizine are other metabolites that inhibit 
cholinesterases [29,61–65]. Aflatoxins too, can be introduced as secondary metabolites from fungi.  

Disparate synthetic drugs not belonging to carbamates and organophosphates can be mentioned last 
but not least. Donepezil is the most relevant compound of this group. (See the next chapter). Tacrine 
(1,2,3,4-tetrahydroacridin-9-amine) is another synthetic drug which easily crosses the blood brain 
barrier and is used as a highly effective drug for ameliorating Alzheimer disease manifestation by 
inhibition AChE and by lower but still effective inhibition of BChE [53,66,67]. It was withdrawn from 
clinical use because of adverse effects. Hepatotoxicity was the main pathological consequence of 
tacrine intake [68,69]. The basic facts about groups of inhibitors are summarized in Table 1. 

In considering the role of the inhibitors in modulating immunity, other factors such as the environment 
and genetic disposition should be taken into account. This conclusion is based on blood cholinesterase 
activity in male volunteers working with pesticides [70]. The activity varied in infected patients with 
proven bacterial meningitis [71]. The sensitivity of humans to the inhibitors can also significantly be 
affected because detoxification mechanisms have unequal efficacy. This idea was, e.g., demonstrated 
by Sonali et al. on AD patients treated with rivastigmine [72]. Variability in inhibitor effects should be 
considered when conclusions are drawn from animal models and cell lines, extrapolated to humans.  
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Table 1. Summarization of facts about cholinesterases’ inhibitors. 

Group  

of Compounds 

Compounds 

(Examples) 

Mechanism 

of Inhibition 

Inhibition of 

AChE and BChE 

Penetration through 

Blood Brain Barrier 

Importance 

as Drugs 
References 

Organophosphates 
sarin, soman,  

tabun, malaoxon 
irreversible 

equal to AChE  

and BChE 
Good Low [6,43–50] 

Carbamates 

pyridostigmine, 

physostigmine 

neostigmine, 

rivastigmine 

pseudo-

irreversible 

equal to AChE and 

BChE 

low (pyridostigmine, 

neostigmine),  

good (physostigmine, 

rivastigmine) 

High [29,53–60] 

- Tacrine 
non-

competitive 
AChE > BChE Good 

former drug, 

discontinued 

now 

[53,66,68,69] 

- Galantamine competitive AChE Good High [73,74]  

- Donepezil 
non-

competitive 
AChE Good High [75,76] 

- huperzine A 
non-

competitive 
AChE >> BChE Good will increase [29,75,77–79] 

4. Inhibitors that Cross the Blood Brain Barrier 

The following text focuses on galantamine, donepezil, huperzine and rivastigmine. Galantamine 
(Figure 2) is a drug used for treating AD and related dementias. Currently, galantamine is an 
alternative to rivastigmine and can be given to patients with similar stages of dementia. On the market, 
it is sold under the trade names Razadyne™, Razadyne™ER, Reminyl™ER, and Reminyl® The drug 
was firstly isolated by soviet scientists Mashkovsky and Kruglikova-Lvova from bulbs of Caucasian 
snowdrops Galanthus sp. in the early 1950s and chemical synthesis was introduced in the following 
decades [80]. After marketing of the drug, it drove out the more toxic tacrine [81] and has become one 
of the best drugs for Alzheimer disease treatment [73]. 

Figure 2. Structure of cited compounds that cross the blood brain barrier. 
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Galantamine is a competitive inhibitor of AChE and an allosteric modulator of nAChR [74].  
Its dual action on both AChE and nAChR is an advantage and unlike other marketed drugs that inhibit 
AChE. It is believed that galantamine may interact with the cholinergic anti-inflammatory pathway via 
direct modulation of the α7 nAChR [82]. The anti-inflammatory pathway modulation may explain the 
activation of microglia followed by amyloid beta clearance [83]. In a rat model, galantamine was also 
approved as effective in reducing circulating TNFα which was, in the past, initiated by administration 
of bacterial lipopolysaccharide [84]. For this reason, galantamine could act not only as a drug for 
symptomatic treatment but as a compound for slowing Alzheimer disease progression. This conclusion 
is not, however, commonly accepted and more detailed evidence of the process is needed.  

Donepezil is a selective, noncompetitive inhibitor of AChE. The inhibition is quite effective as the 
equilibrium constant is reported to be 12.5 nmol/L for AChE from rat erythrocytes [75]. Donepezil is 
available under the trade name Aricept as a highly effective drug for Alzheimer disease, originally 
developed by Eisai and Pfizer. The structure of donepezil is depicted in Figure 3. Clinical experience 
with donepezil is good: it is well tolerated and slowly eliminated so that the drug can be taken over 
long periods [76]. Compared to other drugs for Alzheimer disease, donepezil works via a simple 
pathway based on AChE inhibition. It is not involved in other pathways and does not involve BChE 
inhibition [29]. 

Figure 3. Structure of carbamates that cross the blood brain barrier. 

 

We can assume that donepezil activates the cholinergic anti-inflammatory pathway via inhibition of 
AChE and increased availability of ACh. However, Hwang and coworkers found anti-inflammatory 
effects on microglia cell lines where no AChE was present [85]. These authors showed significant 
attenuation of TNFα, IL-1, and NF-κB release. From these results, we can infer that donepezil is  
either able to directly stimulate α7 nAChR and not act as an inhibitor only or it has some other 
unknown pathway. Beside the anti-inflammatory pathway, donepezil was proven to be able to 
modulate viral progression and the modulation is probably based on a mechanism other than agonism  
of α7 nAChR [86,87]. This fact would support the results on the microglia cells. Unfortunately, the 
antiviral effect of donepezil was not studied further, though the issue deserves greater attention. 

Huperzine is a secondary metabolite from the lycopods, Huperzia from which it is isolated for 
pharmacological purposes. The upper production of huperzine alkaloids can be found in H. serata. 
More types of huperzine are known. However, huperzine A (Figure 2) is the most likely to be used in 
Alzeheimer disease [75]. Elaborative isolation of huperzine from plant biomass is the main disadvantage 
of huperzine as chemical synthesis is problematic due to expensive isolation of the (−) huperzine A 
from the (+) isomer which is not pharmacologically relevant [88]. Though advanced chemical 
synthesis protocols [89] and biotechnology processes [90] for the (−) huperzine A production are 
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described, they are far from practical use. Huperzine is used in traditional Chinese medicine and it is 
available as a supplement in the country. It can be taken as a mechanically milled plant tissue or as an 
extract prepared by chromatographic isolation [77]. In countries of the European Union and United 
States, pro-drug ZT-1 derived from huperzine A is clinically tested and introduction for therapy 
purposes is expected in the near future [91].  

Huperzine A is a selective inhibitor of AChE, acting by a non-competitive or mixed mechanism [75]. 
Huperzine A can bind to the peripheral anionic site of AChE and the effect is reportedly responsible 
for amelioration of the amyloidogenic process [92]. Besides AChE inhibition, huperzine A is a potent 
non-competitive inhibitor of the N-methyl-D-aspartate receptor [78,79]. 

Huperzine A was proven to reduce neuroinflammation in experimental autoimmune encephalomyelitis 
in mice [93]. The authors reported a decrease in the number of inflammatory cells, interferon gamma 
(IFNγ), IL-17, MCP-1, RANTES, TWEAK and an increase in IL-4 and IL-10 in the course of 
treatment. In another experiment, huperzine inhibited activation of NF-κB, inducible nitric oxide 
synthase and cyclooxygenase 2 in C6 rat glioma cells [94]. Though direct molecular evidence is 
missing, agonism of α7 nAChR with subsequent activation of the cholinergic anti-inflammatory 
pathway is presumed to be involved in huperzine’s mechanism of action [95]. 

Rivastigmine (Figure 3) is a carbamate inhibitor of AChE as well as BChE and it easily crosses the 
blood brain barrier. Rivastigmine is probably the most marketed carbamate in pharmacology. The drug 
is sold under the trade name Exelon for the treatment of Alzheimer and Parkinson disease in early and 
mild stages. Currently, it is the only available drug for these diseases, which is not a reversible 
inhibitor of AChE since it inhibits the cholinesterases in a pseudo-irreversible manner [96]. Slow 
elimination of rivastigmine because of the covalent bond in the active site of the enzyme is an 
advantage over other drugs. The effect of rivastigmine can last until the rivastigmine moiety 
spontaneously splits from the cholinesterase’s active site by a decarbonylation process [4,54].  

The long-term effects of rivastigmine remain unclear. It was proven that rivastigmine causes 
significant up-regulation of AChE expression [97]. The molecular mechanism is, however, unrevealed. 
In clinical tests, rivastigmine was not found to generate inflammation or have any other adverse effect. 
For this reason, rivastigmine is considered as a quite safe drug [98]. On the contrary, more detailed 
examination showed that rivastigmine can suppress inflammation [99]. Namely, decreased reactivity of 
encephalitogenic T lymphocytes and production of pro-inflammatory cytokines was reported [100]. 
More experiments on this issue will be necessary as the exact mechanism is not clear. It can be 
assumed that the cholinergic anti-inflammatory pathway can be activated as Ach becomes available for 
the α7 nAChR on macrophages and microglial cells. Direct proof is, however, missing.  

Like rivastigmine, physostigmine (or eserine in some sources) crosses the blood brain barrier and 
can inhibit AChE and BChE in the both central and peripheral nervous systems. Physostigmine is a 
carbamate of natural origin that can be found in the seeds from a plant Physostigma venosum known as 
the Calabar bean. At the current time, cheap and reliable protocols for physostigmine synthesis are 
available and preferred over isolation from plants [101]. Physostigmine can be used for alleviation of 
glaucoma manifestation [102] and it is suitable for the treatment of Alzheimer disease [103,104].  
As discussed later in the text, physostigmine can inhibit protein kinase C. This ability is not common 
to other carbamate inhibitors of cholinesterases [105]. Physostigmine was shown to increase the 
availability of ACh and stimulate the cholinergic anti-inflammatory pathway in experimental endotoxemia 



Int. J. Mol. Sci. 2014, 15 9816 
 

 

by lipopolysaccharide [106]. In another experiment, physostigmine regulated early inflammation and 
oxidative stress as the superoxide radical in rats with induced forebrain ischemia [107]. 

5. Peripherally Acting Carbamates-Parasympathomimetics 

Most carbamates have limited ability to pass the blood brain barrier. Rivastigmine is an  
exception from this point of view. The poor ability to cross the blood brain barrier can be an advantage 
when we need a compound to regulate the PNS and not the CNS. Drugs that do this are used for two 
main purposes: in the treatment of myasthenia gravis [108] and in anesthesia [109]. Myasthenia gravis  
is an autoimmune disease where antibodies against acetylcholine receptors are created in the body.  
The treatment the disease can be based on administration of immunosuppressant and/or an AChE  
inhibitor [110]. In surgical interventions, there is a necessity to give muscle relaxants such as 
parasympathomimetics. The parasympathomimetics can act as polarizing agents via direct stimulation 
of receptors (e.g., succinylcholine) or as non-polarizing agents where the peripherally acting carbamates 
belong [111,112]. Pyridostigmine and neostigmine are well known examples of carbamates acting  
as parasympathomimetics [113]. Beside the carbamates, a quaternary nitrogen containing inhibitor 
edrophonium is also used as a parasympathomimetic [114]. The chemical structures of neostigmine 
and pyridostigmine are shown in Figure 4. Though the blood brain barrier seems to be impenetrable for 
compounds like pyridostigmine and neostigmine, the contrary is true. For example, Friedman et al. 
showed that stress conditions can cause penetrability of blood brain barrier by pyridostigmine [115]. 
This factor has to be considered in critical evaluation of peripherally acting carbamates. Strong 
stressogenic conditions can cause peripherally acting carbamates to have the same effect as a centrally 
acting one.  

Figure 4. Structure of carbamate inhibitors that do not cross the blood brain barrier. 

 

The peripherally acting carbamates have similar action to rivastigmine. They are pseudo-irreversible 
inhibitors of both AChE and BChE [29]. Selective effect on the PNS is the main difference between 
the carbamates such as neostigmine and pyridostigmine and the centrally acting rivastigmine. The 
inability to cross blood brain barrier discriminates the peripherally acting carbamates from being used 
for regulation of neuroinflammation and other immunity related disorders within the CNS. On the 
other hand, they can be expected to be favored in the generalized immunity disorder regulation 
whenever brain functions should be spared. 

Plausible anti-inflammatory effects of the peripherally acting carbamates have been described in 
some papers. In an example, physostigmine (crossing blood brain barrier) and neostigmine (not crossing) 
reduced inflammation which was previously initiated by a bacterial lipopolysaccharide [116,117]. 
Similar results were reported in an experiment where mice were infected with tularemia and treated 
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with neostigmine [118]. In this experiment, neostigmine worsened the tularemia pathology. Sun et al. 
tested neostigmine effects in mice and Beagle dogs [119]. They showed that neostigmine acts via the 
cholinergic anti-inflammatory pathway. This conclusion is supported by the fact that mice with 
knockout gene for α7 nAChR are not sensitive to the immunomodulatory effect. On the other hand, 
more experiments on the issue will be needed as some did not confirm any significant anti-inflammatory 
effect of carbamates [120]. Regulation of immunity can be based on pathways far from the cholinergic 
system. e.g., Bitzinger et al. revealed the ability of physostigmine to inhibit protein kinase C while 
neostigmine did not have this ability [105].  

6. Conclusions 

Currently available drugs for inhibiting either AChE alone or in combination with BChE are 
available for the treatment of AD, myasthenia gravis and other conditions. These drugs however, are 
not used for immunomodulation purposes at this time. This review highlights the fact that these 
inhibitors may affect not only the cholinergic anti-inflammatory pathway but also other unknown 
pathways involved in regulating immunity. A simplified mechanism for how these inhibitors may be 
involved in regulating immunity is depicted schematically in Figure 5. This issue deserves greater 
attention due to its pharmacological relevance.  

Figure 5. Simplified scheme for showing how inhibitors of cholinesterases may be 
involved in regulation of immunity using the cholinergic anti-inflammatory pathway. 
Abbreviations used in the figure: ACh—acetylcholine; CAP—cholinergic anti-inflammatory 
pathway; ChE—cholinesterase; HMGB—high mobility group box proteins. 
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